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A GMM-BASED STAIR QUALITY MODEL FOR HUMAN PERCEIVED JPEG IMA GES

Sudeng Hu, Haiqiang Wang and C.-C. Jay Kuo

Media Communications Laboratory, University of Southern California

ABSTRACT
Based on the notion of just noticeable differences (JND), a stair qual-
ity function (SQF) was recently proposed to model human percep-
tion on JPEG images. Furthermore, a k-means clustering algorithm
was adopted to aggregate JND data collected from multiple subjects
to generate a single SQF. In this work, we propose a new method
to derive the SQF using the Gaussian Mixture Model (GMM). The
newly derived SQF can be interpreted as a way to characterizethe
mean viewer experience. Furthermore, it has a lower information
criterion (BIC) value than the previous one, indicating that it offers
a better model. A specific example is given to demonstrate thead-
vantages of the new approach.

Index Terms— Stair quality function (SQF), just noticeable dif-
ference (JND), Gaussian mixture model (GMM), JPEG

1. INTRODUCTION

The traditional quality metric for coded image/video, suchas the
peak signal-to-noise ratio (PSNR), is a continuous function of the
coding bit rate [1, 2, 3, 4]. Several newly proposed quality metrics
such as SSIM [5] and perceptually weighted PSNR [6] still preserve
this property. However, these continuous quality models contradict
to our subjective visual experience since human can only differenti-
ate a small number of quality levels.

Based on the notion of just noticeable difference (JND), it was
shown in [7] that human-perceived quality of JPEG images is astair
function of the quality factor (QF). It is a monotonically increasing
piecewise-constant function characterized by a couple of jumps. The
stair quality function (SQF) is discontinuous, and its jumps can be
interpreted as the JND points between two adjacent quality levels.
For a given image coded by JPEG with multiple QFs, the number of
discrete quality levels and the location of JND points vary among
test subjects. Since they are random variables, it is important to
develop a methodology to integrate the data collected from multiple
test subjects. A simple k-means clustering algorithm was proposed
in [7] to process collected JND data to generate the aggregate SQF,
which is called the K-SQF here.

In this work, we treat JND points from a subject as samples,
and use the Gaussian Mixture Model (GMM) to fit the sample dis-
tribution. This approach leads to another aggregate SQF, called the
G-SQF. The G-SQF can be interpreted as the mean viewer experi-
ence in differentiating compressed image quality under a wide range
of coding bit rates. The shape parameters of the G-SQF such asthe
number of discrete quality levels and the location and height of JND
points are determined automatically by this modeling procedure. As
compared to the ad hoc k-means clustering algorithm used in deriv-
ing the K-SQF, the G-SQF is rooted in solid theoretical foundation.
We will show that the G-SQF has a lower information criterion(BIC)
value than the K-SQF, indicating that it is a better model. Further-
more, a specific example will be given to demonstrate the advantages
of G-SQF over K-SQF.

This rest of this paper is organized as follows. The data collec-
tion procedure for JND-based subjective JPEG quality assessment is
reviewed in Section 2. A GMM-based processing technique is pro-
posed to handle collected JND data in Section 3. The performance
comparison of G-SQF and K-SQF is conducted in Section 4. Finally,
concluding remarks are given in Section 5.

2. JND-BASED SUBJECTIVE JPEG QUALITY
ASSESSMENT

The process of building a large-scale human-centric quality dataset
for JPEG-coded images, called MCL-JCI, is described below.MCL-
JCI contains 50 source (or uncompressed) images of resolution
1920x1080. Each source image is coded by the JPEG encoder [8]
100 times with the quality factor (QF) set from 1, 2, 3 ... to 100.
Thus, the whole MCL-JCI dataset consists of 5,050 images in total.
The quality of coded images with respect to each source imageis
evaluated by 20 subjects. They were seated in a controlled envi-
ronment. The viewing distance was 2 meters (1.6 times the picture
height) from the center of the monitor to the seat. The image pair
was displayed on a 65” TV with native resolution of 3840x2160. A
subject compared two images displayed side by side and determined
whether these two images are noticeably different.

The following bisection search procedure was adopted to offer a
more robust and efficient pairwise comparison result.

• Initialization. We begin with comparing images of the best
and the worst quality. The best quality is obtained by setting
QF=100 while the worst quality is set to the QF value that
gives the lowest acceptable through subjective test. Before
the subjective test, a small number of volunteers were asked
to find the lowest acceptable QF parameter.

• Iteration. Compare two images whose QF is located at two
ends of the interval of interest and see whether they have no-
ticeable difference or not. If no, no further search is needed
for this interval since it does not contain a JND point. If yes,
we partition the interval into two halves of equal length, and
repeat the same comparison procedure iteratively until oneof
the two termination criteria is reached.

• Termination. There are two termination cases. First, the pro-
cess is terminated when the interval length reaches the mini-
mum value with the QF difference equal to one. Second, one
observes noticeable difference at a certain level and cannot
observe any noticeable difference at the next level.

The above subjective test produces raw JND data samples for
each image, where one subject contributes a set of JND samples.
The histograms of JND points for two exemplary images are shown
in Fig. 1, where (a) and (b) are obtained from source image No.6
and No. 26, respectively. They are too complicated to be usedas is.
It is essential to process them and build an aggregate SQF foreach

http://arxiv.org/abs/1511.03398v1


QF
0 20 40 60 80 100

O
cc

ur
an

ce

0

2

4

6

8

10

12

14

16

18

20

(a)

QF
0 20 40 60 80 100

O
cc

ur
an

ce

0

2

4

6

8

10

12

14

16

18

20

(b)

Fig. 1: The histograms of JND points for source image (a) No. 06
and (b) No. 26.

individual image. Ideally, the aggregate SQF can be used to char-
acterize the mean experience of subjects in the test. The derivation
of an accurate SQF will facilitate the use of the machine learning
technique in predicting the SQF for images not in the dataset.

The k-means clustering algorithm was proposed in [7] to process
collected JND samples for an aggregate SQF, wherek is determined
by the rounded mean of distinguishable quality levels. However,
the k-means clustering approach is a heuristic one. It is difficult
to give the resulting SQF any statistical meaning. To address this
shortcoming, we propose a new method to process collected JND
samples based on the GMM. Mathematically, it is easy to see that the
resulting SQF offers the mean viewer experience among all subjects
participating in the test.

3. GMM-BASED JND DATA PROCESSING

3.1. Group Partitioning of JND Points

Images coded in the range of high QFs have good perceptual quality
and their distortion can hardly be perceived. As a result, there are
only few JND points falling in this range as compare to those in the
low QF range. This phenomenon is obvious in the exemplary his-
tograms given in Fig. 1. Because perceptual difference in high qual-
ity images is so small that it can be easily neglected when compared
with low quality images in statistical analysis. Furthermore, com-
pressed images with high QF values are more important in practice
since people are interested in high quality images in most applica-
tions. They are much more frequently used than those compressed
with low QF values. For the above-mentioned reasons, the high QF
JND points should not be merged with the low QF JND points to
form components in one single GMM. By following a similar argu-
ment, one can argue that JND points in the low QF range should
not be merged with those in the middle QF range. As a result, we
classify JND samples into three main groups according to their loca-
tions: high QF, middle QF and low QF groups. This is achieved by
a partitioning scheme described below.

First, we order JND points according to their QF values (from
the largest to the smallest) and identify the JND points lying at the
top 10% and 50% locations. Then, we examine the heights of these
two JND points against the JND histogram curve. There are three
scenarios.

1. If a JND point happens to be a local minimum (or zero), we
select it as the boundary point between two groups.

2. If a JND point is a local maximum, we search two local min-
ima (or zero) along its left and right directions and select the
smaller one as the updated boundary point.
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Fig. 2: Partitioning of JND points into high, middle and low QF
groups, where each group will be modeled by a GMM indepen-
dently.

3. If the JND point is neither a local maximum nor a local min-
imum, we search along the descending direction for the lo-
cal minimum (or zero) and select it as the updated boundary
point.

We split the height of a boundary point (i.e. its number count)
equally into two halves - one goes to the left and the other goes to
the right. By following the above steps, we obtain the high, middle
and low QF groups. An example is given in Fig. 2. Then, we will
use three GMMs to model their JND distributions independently.

3.2. JND Histogram Modeling with GMM

The number of distinguishable quality levels and their JND positions
depend on both image content and test subjects. Even for the same
image and the same QF group, it is still difficult to group JND points
since different subjects may have different numbers of JND points.
To proceed with statistical analysis, we need an underlyingmodel for
the JND distribution. Here, it is assumed that the JND distribution
is in form of GMM with N components. Mathematically, it can be
expressed as

f(x) =
N∑
i=1

αi · 1√
2πσi

exp(− (x− qi)
2

2σ2

i

), (1)

where each component is a normal distribution with meanqi and
varianceσ2

i , andai is the mixture weight satisfying the constraint∑N

i=1
αi = 1.

To determine the set of parameters of GMM in Eq. (1); namely,

Θ = {αi, qi, σi}, i = 1, · · · , N,

we adopt the Expectation Maximization (EM) algorithm [9]. It is
well known that the EM algorithm is an iterative algorithm that up-
dates these parameters in each iteration until the process converges
or reaches the preset maximum iteration number. The EM algorithm
is sensitive to the initial values of these parameters. In the proposed
method, we compute the histogram of JND samples in the targetQF
region, and select the location ofN largest bins as initial value for
the mean ofN components (i.e.,qi, i = 1, · · · , N ). The initial
variance of all components is set to 1.

Furthermore, we need to specify the component number,N , of
the GMM. If N is too small, it is difficult to fit the JND samples
well. If N is too large, it may result in overfit. Here, we perform an
exhaustive search for the optimal component numberN∗. That is,
we begin withN = 1, and increase its value by one every time until
N reaches the pre-set maximum component number of each group.
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Fig. 3: Selection of the GMM component number: (a) the BIC value
as a function of the GMM component number and (b) the posterior
probability of the optimal GMM.

We have the following observation based on a large number of ex-
periments. For the high QF group, the optimalN∗ is either one or
two so that the maximumN is set to three. Similarly, the maximum
component numbers are set to four and three for the middle andthe
low QF groups, respectively. Thus, the cost of exhaustive search is
under control.

We use the Bayesian information criterion (BIC) [10] to deter-
mine the best GMM. A lower BIC value indicates better perfor-
mance. Mathematically, the BIC is defined as

BIC = −2 · ln(L̂) + k · ln(n), (2)

whereL̂ is the maximized value of the likelihood function of the
model, ln is the natural log,k is the number of free parameters in
the model, andn is the number of samples. In the current case,

L̂ = p(x|Θ),

wherex denotes all samples andΘ is the set of GMM parameters.
Both terms of BIC in Eq. (2) are positive. A better fit will drive the
first term lower and a smallerk will drive the second term lower for
fixed n. Thus, the BIC value helps strike a balance between data
fitting performance and model complexity.

To give an example, for the middle QF group in Fig. 2, we
show the BIC value as a function of the GMM component number,
N = 1, · · · , 7, in Fig. 3 (a). The BIC decreases as the component
number increases fromN = 1 to 2. The BIC reaches the minimum
value atN = 2. Afterwards, the BIC increases asN increases. The
probability density function of the optimal GMM withN = 2 is
shown in Fig. 3 (b), where we see two Gaussian components clearly.

3.3. From GMM to SQF

Once a GMM is built for each QF group (or region), the remaining
task is to build the corresponding SQF. We first discuss the SQF for
a single QF group. Let the normal functionN(x|qi, σi) be theith
Gaussian function in the GMM in the corresponding region. We
associate the location of theith jump in the SQF withqi while its
height is set to be proportional to the area under the weighted normal
functionαiN(x|qi, σi).

Next, we examine the SQF for all three QF regions combined
together. The JND for the whole range can be obtained by combining
the three JND sets. Mathematically, the JND function can be written
as

JND(x) =
3∑

j=1

N∑
i=1

Hijδ(x− qij), (3)
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Fig. 4: (a) The simplifed JND histogram of source image No. 06, (b)
the SQF of source image No. 06, (c) the simplifed JND histogram
of source image No. 26, (d) The SQF of source image No. 26.

whereδ(·) is the Dirac delta function andHij is the percepture qual-
ity change degree at theith JND position in thejth group (i.e. low,
middle and high QF groups). The SQF is the normalized cumulative
sum of JND function. Mathematically, it can be expressed as

SQF (x) =
1∑

3

j=1

∑N

i=1
Hij

∫ x

0

JND(t)d(t), (4)

which is a monotonically increasing piecewise constant stair func-
tion.

To give an example, after the processing of the two raw JND
histograms shown in Figs. 1 (a) and (b) obtained from 20 subjects,
we can aggregate them into two simplified JND histograms as shown
in Fig. 4 (a) and (c) while their corresponding SQFs are shownin
Figs. 4 (b) and (d), respectively. These two SQFs offer the mean
viewer experience towards these two images.

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of the method proposed
in [7], called the K-method, and the proposed JND data processing
method, called the G-method. The BIC in Eq. (2) offers a relative
estimate of information loss in using a statistical model tomodel
sample data. It is used to compare the performance of two models
quantitatively. To calculate BIC of the K-method, a statistical model
is needed to model JND points. We use a Gaussian model for each
JND in the K-method. The JND location from the K-method is set
to the mean of the Gaussian model and the model variance is setto
the sample variance of that cluster. The BIC is calculated for all 50
images in the data set, and the results are shown in Fig. 5. We see the
BIC of G-method is always lower than that of the K-method, which
means the G-method offers a better model.

Without loss of generality, we choose source image No. 13 in
Fig. 5 as an example to shed light on the BIC values of the two meth-
ods. The BIC value consists of two terms as presented in Eq. (2).
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Fig. 5: Comparison of the BIC values of two models with respect
to 50 source images, where the K-method and the G-method denote
the k-means clustering method used in [7] and the proposed GMM-
based method, respectively.

One is the goodness of fit to the sample data, which is determined by
the negative model log-likelihood term. Another term is thepenalty
of model complexity that is related to the number of model parame-
ters. The BIC value and its two contributing terms are listedin Table
1 for two models on image No. 13 . The BIC value of the K-method
is 888.84, which is larger than that of the G-method. By examining
their individual contributing terms, we see that the difference in their
model complexity penalty terms are relatively minor as compared to
that of the model negative log-likelihood term. It shows that the K-
method does not offer a good model for JND points.

Table 1: Comparison of the model negative log-likelihood term, the
model complexity term and the BIC values of the K-method and the
G-method for Image No. 13.

−2ln(P (x|Θ)) Complexity BIC

K-method 824.65 64.19 888.84
G-method 485.37 91.70 577.07

We compare the performance of two methods for Image No. 13
side by side in Fig. 6. The first, second and third rows of the figure
display the input JND histograms before modeling, the output JND
histograms after modeling, and the final SQFs. The difference in
histograms in Fig. 6 (a) and (b) is due to a weighting scheme used in
the K-method. In that method, the JND point from each individual
was first normalized by the total observed JND numbers. (For exam-
ple, if a person observesN JND points, each JND point of him/her
is weighted by1/N .) This scheme penalizes observed JND data in
the high QF region since people who observe JND points in the high
QF region tend to have a larger total JND number. In contrast,we
do not perform any weighting on the collected JND data. The JND
histogram in Fig. 6 (b) is obtained with raw user data.

The output JND histograms obtained by the two methods are
shown Fig. 6 (c) and (d), respectively. In the K-method, the location
of the output JND point is determined as the median of JND points
within that cluster. These points are marked by circles in Fig. 6 (a).
This may lead to inaccurate result when JND points are not clustered
correctly. For example, the first four JND points (from the left) in
Fig. 6 (c) are very close to each other while the last JND points is
very far apart from the others. In our proposed method, the output
JND locations are set to the means of all Gaussian components. They
are more stable and set apart with more uniform spacing.
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Fig. 6: (a) The input weighted JND histogram used in the K-method,
(b) the input raw JND histogram used in the G-method, (c) the out-
put JND histogram processed by the K-method, (d) the output JND
histogram processed by the G-method, (e) the K-SQF, and (f) the
G-SQF.

It is worthwhile to point out that the total JND number for a
given image in the K-method is a pre-set number. This ad hoc choice
has a negative impact on its output JND histogram as shown in Fig.
6 (c). It has 5 peaks only, which is less than the G-method by two.
In the proposed G-method, the JND number is determined by op-
timizing the model with the lowest BIC value. Finally, Fig. 6(e)
and (f) show the K-SQF and the G-SQF, respectively. The G-SQF
offers more quality levels, which is actually more reasonable by re-
examining the full set of JPEG coded images for Image No. 13.

5. CONCLUSION AND FUTURE WORK

In this work, we proposed the use of the GMM to model the raw
JND data collected by the subjective test, and derived the G-SQF.
The new method always provides a model that has a smaller BIC
value than that proposed in [7], indicating that it is a better model.
The G-SQF for all 50 source images will be made available to the
public soon. It will provide a training dataset of human perceptual
experience on JPEG images. We will develop a machine learning
technique to predict viewer experience on JPEG images that are not
in the training dataset.
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