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VMF-SNE: Embedding for Spherical Data
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Abstract—T-SNE is a well-known approach to embedding high- (LLE) follows the same idea but formulates the embedding
dimensional data and has been widely used in data visualizah. as a local-structure learning based on linear prediciign [7
The basic assumption of t-SNE is that the data are non- apgther approach to deriving the global non-linear streetu
constrained in the Euclidean space and the local proximity an . | . K L . thod th .
be modelled by Gaussian distributions. This assumption deenot 'nVQ Yes vanoug ernel learning me ‘o S, €.g., the semi-
hold for a wide range of data types in practical applications for ~ definite embedding based on kernel PCA [8] and the colored

instance spherical data for which the local proximity is beter ~maximum variance unfolding (CMVU} [9].
modelled by the von Mises-Fisher (vVMF) distribution insteal A major problem of the above non-linear embedding meth-

of the Gaussian. This paper presents a VMF-SNE embedding . . e
algorithm to embed spherical data. An iterative process is ods is that most of them are not formulated in a probabilistic

derived to produce an efficient embedding. The results on a Way, which leads to potential problems in generalizability
simulation data set demonstrated that vMF-SNE produces bé¢r  The stochastic neighbor embedding (SNE)/ [10] attempts to

embeddings than t-SNE for spherical data. solve the problem. It models local proximity (neighbourtpo
Index Terms—data embedding, data visualization, t-SNE, Von Of data in both the original and embedding space by Gaus-
Mises-Fisher distribution sian distributions, and the embedding process minimizes th
kullback-leibler (KL) divergence of the distributions imet
I. INTRODUCTION original space and the embedding space.

IGH-DIMENSIONAL data embedding is a challenging, A pr?tegtial drawb;elck of (?NE ';‘ the ‘c;ov(\;ding pLoblgm’,h
task in machine learning and is important for man e, the data samples tend to be crowded together in the

applications, particularly data visualization. Prindipadata mbedding space [11]. A UNI-SNE approach was proposed

embedding involves projecting high-dimensional data tova | to de.al withdthe problerr]n, Wziclh inﬁroduces a §ymmetr|ic .C.OSt
dimensional (often 2 or 3) space where the major struct Kpction ar? a smoot T,Odg' W enf cdompgtlnﬁ S|m|sr|(;|c(ja§
(distribution) of the data in the original space is mostlg-pr etween the images (embeddings) of data in the embedding

served. Therefore data embedding can be regarded as alspé%f%\?é 1 f‘] %Niﬁh the same problem in cofncerr_L [1é] propolsed
task of dimension reduction, with the objective functiohtee t S d'W Ic d'a s%us_es a si/]mmﬁtrlc cogt unt_:tlond,_ ulémeum oy
preserve the structure of the data. a Student t-distribution rather than a Gaussian distidioutd

Various traditional dimension reduction approaches can B2d€! similarities between images. T-SNE has shown clear
used to perform data embedding, e.g., the principal coiiperiority over other em.beddlng methods partlcularlwma
ponent analysis (PCA) 1] and the multi-dimensional scaﬁhat _I|e within several different but related low-dimensid
ing (MDS) [2]. PCA finds low-dimensional embeddings tha‘inan'fOIdS' ) o ) _
preserve the data covariance as much as possible. ClassicAthough highly effective in general, t-SNE is weak in
MDS finds embeddings that preserve inter-sample distanc@glbedding data that are not Gaussian. For example, there are
which is equivalent to PCA if the distance is Euclidean. BotRtany applications where the data are distributed on a hyper-
the PCA and MDS are simple to implement and efficient igphere, such as the topic vectors in document processiig [13
computation, and are guaranteed to discover the true stauct2nd the normalized i-vectors in speaker recognition [1Apse
of data lying on or near a linear subspace. The shortagetis tgherical data are naturally modelled by the von Mises Fishe
they are ineffective for data within non-linear manifolds. ~ (VMF) distribution rather than the Gaussian [15]. [[16]. [[l17

A multitude of non-linear embedding approaches have be8fd hence are unsuitable to be embedded by t-SNE. This
proposed. The first approach is to derive the global norating®@per presents a vMF-SNE algorithm to embed spherical
structure from local proximity. For example, ISOMAP extenddata. Specifically, the Gaussian distribution and the Stute
MDS by calculating similarities of distant pairs based ofistribution used by t-SNE in the original and the embedding
similarities of neighbouring pair§ [3].[4]. The self-orjaing SPace respectively are all replaced by vMF distributioms| a
map (SOM) or Kohonen net extends PCA and derives t8@ EM-based optimization process is derived to conduct the
global non-linearity by simply ignoring distant pairs [5].embedding.The experimental results on simulation datewsho
The same idea triggers the generative topographic mappFHQt vMF-SNE produce; better embeddings for spherical data
(GTM) [6], where the embedding problem is cast to a Bayesidie code is online availalile
inference with an EM procedure. The local linear embedding The rest of the paper is organized as follows. Sedfion Il

_ ' o describes the related work, and Secfioh Ill presents the-vMF
i Yars . astr Scer g sy of Pt Tl SNE algorthm. Th xperment s presented i 1V, and the
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Il. RELATED WORK data that are confined in a non-linear subspace, this asgmpt

This work belongs to the extensively studied area of di§ Potentially invalid and the t-SNE embedding is no longer
mension reduction and data embedding. Most of the relat@Bimal. This paper focuses on spherical data embedding,
work in this field has been mentioned in the last sectiof?” Which t-SNE tends to fail. This is because the Gaussian
Particularly, our work is motivated by t-SNE [11], and iglistribution assumed by t-SNE can hardly model spherical
designed specifically to embed spherical data which are @ and the Euclidean distance associated with Gaussian
suitable to be processed by t-SNE. A more related work §éstributions is not appropriate to measure similarities &
the parametric embedding (PE) [18], which embeds vectdr¥Per-sphere. A new embedding algorithm is proposed, which
of posterior probabilities, thus sharing a similar goal as oShares the same embedding framework as t-SNE, but uses
proposal: both attempt to embed data in a constrained spdc&0reé appropriate distribution form and a more suitable
though the constrains are differeit in PE and/-2 in vMF-  Similarity measure to model spherical data.

SNE).

Probably the most relevant work is the spherical semantic YMF-SNE o
embedding (SSE) [19]. In the SSE approach, document vectord has been shown that the vMF distribution is a better
and topic vectors are constrained on a unit sphere and §R@ice than the Gaussian in modelling spherical data, a@d th
assumed to follow the VMF distribution. The topic model an@Ssociated cosine distance is better than the Euclidemdes
the embedding model are then jointly optimized in agenmatiWhen measuring similarities in a hyper-spherical space, fo
model framework by maximum likelihood. However, SSE inlnstance, in tasks such as spherical data clustering [20], [
fers local similarities between data samples (documertbvec Therefore, we present an embedding method based on the as-
in [19]) using a pre-defined latent structure (topic vec)torssumption that the data in both the original and the embedding
which is difficult to be generalized to other tasks as thentateSPace follow vMF distributions. This new method is thusexll
structure in most scenarios is not available. Additionate VMF-SNE'.

cost function of SSE is the likelihood, while vVMF-SNE uses Mathematically, the probability density function of the #M
the symmetric KL divergence. distribution on the {-1)-dimensional sphere iR? is given by:

. _ N;LTw
I1l. VMF-DISTRIBUTED STOCHASTIC NEIGHBOURING falw; p, k) = Calk)e
EMBEDDING where ||z|| = ||g|]| = 1, & > 0 and . are parameters of
A. t-SNE and its limitation the distribution and”;(x) is a normalization constant. Note

that the vMF distribution implies the cosine distance. As in

Let {x;} denote the data set |n.the hlgh-dlmensmna! Spa':t(-eSNE, the symmetric distance is used in both the origindl an
and {y;} denote the corresponding embeddings, or images

The t-SNE algorithm measures the pairwise similaritiehim te?;gzgﬁ;tn 9 osfp;gcei.v:enntgg ac;r]gmal space, define the condltion
high-dimension space as the joint distribution 20f and z; P yolr; 9 R

which is assumed to be Gaussian, formulated by the following fa(xj; i, ki) 3)
Pjli = )
e—llzi—z;]1/20 NS it Fa(@m; @i, 1)
bij = [ P— =R (1) the joint distributionp;; is defined as follows:
Zm;ﬁn € e ’
In the embedding space, the joint probability @f and y; pij = Pilj + Pjli. @)

2
CI)L the embedding space, a simpler form of joint distribution
is chosen by setting the concentration paramktehe same
Al D! ) for all ;. This choice follows t-SNE, and the rationale is that
i Zm# (1 + |[ym — ynl]?)~1 the dISFI’IbutIOI’lpﬂZ— in the or|g!nal space needs to be _adjusted
) . ) according to the data scattering arourd However, doing so
The cost function of the e_mbeddmg is the KL divergencq e embedding space will cause unaffordable complerity i
betweenp;,; andg;,;, which is formulated by: computation, as we will see shortly. The joint distributign

i with this simplification is given by:
KL(PIIQ) =Y 3 pijin™?
i

is modelled by a Student t-distribution with one degree
freedom, given by:

qZ] e“y?yj

()

As in t-SNE, the KL divergence between the two distribu-
tions is used as the cost function:

A gradient descendant approach has been devised to conduct G = Zm;én efYmyn
the optimization, which is fairly efficien{ [11]. Additiotig,
the symmetric form of Eq[{1) and the long-tail property of th
Student t-distribution alleviate the crowding problemfstihg Pij
the original SNE and other embedding approaches. L= Z Zpijlnq—_J_

The assumption that t-SNE holds deserves highlight: the i “
joint probabilities of the original data and the embeddingdy gradient descendant, minimizing with respect to{y;}
follow a Gaussian distribution and a Student t-distribofice- leads to the optimal embedding. The gradients will be ddrive
spectively. This is generally fine in most scenarios, howtare in the following section.



C. Gradient derivation Algorithm 1 vMF-SNE

First note that Require:
Input:
{x;;]|z5]] = 1,i = 1,..., N}: data to embed
L= piiln(py) = 3_pisln(as)- P: perplexity in the original space
1,7 i\j

k. concentration parameter in the embedding space
Since the first item on the right hand side of the equation 1+ Number of iterations

is in dependent of the embedding, minimizidy equals to 1 learning rate
maximizing the following cost function: Output: _
{yi; llyil| = 1,4 =1, ..., N}: data embeddings
~ Procedure:
L= Zpijl”(qij)' 1: compute{x,} according to Eq.[{9)
I 2: computep;; according to Eq.[{4), and set; = 0
. T 3: randomly initialize{y;
DefineZ =3, ., ¢*¥=¥, we have: 4 for t — lyto T do (v}
~ 5. computeg;; according to Eq.[{5)
L=rY piyyly; —InZ 6: fori=1to Ndo
ij 7: 8 = g—yﬁi according to Eq.[(8)
a8 Yi = Yi +10;
where Zm pij = 1 has been employed. The gradient®f 4. ang for
with respect to the embedding is then derived as: 10: end for
g—; = ZHZ:pikyi - %8;;2 (6) A. Simulation data

9% . The experiments are based on simulation data. The ba-
= QHZpikyi — 7{2 eVi Yy (7) sic idea is to samplé: clusters of data and examine if
i i the cluster structure can be preserved after embedding. The
QKZ(pik — Qi)Y (8) gampling process starts from the centers of khelu_sters,
7 i.e., {ui;)|wi|] = 1,7 = 1,...,k}. Although the sampling for
o ) o .. different u; is essentially independent, we adopt a different
This is a rather simple form and the computation is eﬁ'c'enépproach: firstly sample the first center, and then derive
Note that th_is simplicity is pa!rtly due to the i_dentigalin other centers{;;} by randomly selecting a subset of the
the embedding space, otherwise the computation will be V&§imensions ofi;, and flipping the signs of the values on these
demanding. . _dimensions. By this way, the centefg;} are ensured to be
Algorithm(T illustrates the VMF-SNE process. Notice that ideparated on the hyper-sphere, which generates a cleterclus
the original data space, is required. Following [11]s; is set gty cture associated with the data.

to a value that makes the perplexity equal to a pre-defined  once the cluster centers are generated, it is easy to sample

value P, where; is formulated by: the data points for each cluster following the vMF distribat
A toolkit provided by Arindam Banerjee and Suvrit Sra was
P; = 2 @) (9) adopted to conduct the VMF samplihgin this work, the
dimension of the data is set &, and 800 data points are
and H (-) is the information entropy defined by: sampled in total. The concentration parameteused in the
sampling also varies, in order to investigate the perforceand
H(pji) = - ijlil"92(pj\i) the embedding approaches in different overlapping cariti
J

wherep;|; has been defined in Eq.I(3). As mentionedin [11B. Visualization test

making the p_erplexny associated to each data point the SaM&he first experiment visualizes the spherical data with vMF-
value normalizes the data scattering and so benefits (mtllgr

and crowding areas NE. Th_e perplexi_t)Pis set t040, and _the value ok in the
' embedding space is fixed ®o(see Algorithni1l). The data are
generated following vMF distributions by setting the segttg
IV. EXPERIMENT parametek to different values. Fid.]1 presents the embedding
results on 3-dimensional spheres with vMF-SNE, where the
To evaluate the proposed method, we employ VMF-SNE {@o pictures show the results withe15 ands=40 respectively.
visualize spherical data and compare it with the traditionfiote that thex here is used in data sampling, neither the

t-SNE. Since visualization is not a quantitative evaluatioysed to model the original data (which is computed frm
an entropy-based criterion is proposed to compare the two

embedding approaches. 2http://suvrit.de/work/soft/movmf



Fig. 1: The 3-dimensional embedding with vMF-SNE, withrig. 3: The 3-dimensional embedding with VMF-SNE (left)
data generated following a VMF distribution by setting= and 2-dimensional embedding with t-SNE (right). The data
15 (left) and x = 40 (right). The original dimension i§0, Was generated following a vMF distribution by setting- 10.
and there arel clusters, each of which is represented by a

particular color. TABLE I: Results of Entropy and Accuracy
4 Clusters Entropy Accuracy
K t-SNE | vMF-SNE | t-SNE VMF-SNE
o 10 0.6556 | 0.5922 42% 64.13%
o 20 0.4725 | 0.4187 85.38% | 92.63%
30 0.3804 | 0.3676 97.38% | 98.5%
® 40 0.3485 | 0.3466 99.75% | 99.95%
0 16 Clusters Entropy Accuracy
2of  TANEEL I 10 0.3152 | 0.2975 15.5% | 16.88%
B 0 el i 20 0.2812 | 0.2608 38.25% | 40.75%
o - 30 0.2312 | 0.2383 68.25% | 55.13%
000200 4060 40 0.1964 | 0.2187 91.25% | 60.63%

Fig. 2: The 3-dimensional embedding with vVMF-SNE (left)
and 2-dimensional embedding with t-SNE (right). The datﬁ(i) _ Zk

. e ! - c(i,7)In(c(i, 7)) wherec(i, j) is the proportion
was generated following a vMF distribution by setting= 15. of the da‘zalp(gints) g(ergera)tzed from (tb'et)h cluster but are

classified as the-th cluster in the embedding space. The

for each data point) nor the used to model the embeddingentmpy of the entire data set is computed as the average

data (which has been fixed ®). It can be seen that VMF- of H(:) over all the clusters. Tablg | presents the results.
SNE indeed preserves the cluster structure of the data in th§an be observed that in the case ftlusters, vMF-SNE
embedding space, and not surprisingly, data generatedaNitﬁC,h'eves lower gntropy and better accuracy than t-SNE _When
larger x are more separated in the embedding space. k is small. If ¥ is large, both the two methods can achieve

For comparison, the same data are embedded with t-SIQ‘EOd performance, for the reason that we have discussed.

in 2-dimensional space. The tool provided by Laurens van!n the case ofl6 clusters, it is observed that vMF-SNE
der Maaten is used to conduct the embdﬁinqhere the outperforms t-SNE with smak values (large overlaps). This

perplexity is set tod0. The comparative results are showrp®€Ms an |.nte_res.t|ng proper_ty and demqnstrates that umngt
in Fig. [ and Fig[B for data generated by settingl5 and matched distribution (VMF) is h(_alp_ful to improve embedding
x=10 respectively. It can be observed that wheris large for overlapped data. However, withincreases, VMF—SNE can
(Fig. 2), both VMF-SNE and t-SNE perform well and thdot rea_ch a performance as good as that obtained by t-SNE.
cluster structure is clearly preserved. However whésmsmall ~* Possible reason is that the large number of clusters leads t
(Fig. [@), VMF-SNE shows clear superiority. This suggesf&‘ta crowding yvh|ph can be better addressed with thg long-
that t-SNE is capable to model spherical data if the strectUfl! Student t-dlgtnbut!on .used by t-SNE. Neverthelesss t

is clear, even if the underling distribution is non-Gaussia€du!res further investigation.

however in the case where the structure is less discernable i

the high-dimensional space, t-SNE tends to mess the boyndar V. CONCLUSIONS

while vMF-SNE still works well. A VMF-SNE algorithm has been proposed for embedding
high-dimensional spherical data. Compared with the widely

C. Entropy and accuracy test used t-SNE, vMF-SNE assumes vMF distributions and cosine

similarities with the original data and the embeddings,deen

Visualization test is not quantitative. For further invgat : . . .

. . suitable for spherical data embedding. The experiments on a
tion, we propose to use the clustering accuracy and entrepy a .
L : ; - ’simulation data set demonstrated that the proposed agproac
the criteria to measure the quality of the embedding. This is : . .
. A . works fairly well. Future work involves studying long-taiviF
achieved by first finding the images of the cluster centerd, an.~, -~ " . .
2 . L istributions to handle crowding data, as t-SNE does wiéh th

then classifying the data according to their distances & t

centers in the embedding space. The classification accuraélf/dent t-distribution.

is computed as the proportion of the data that are correctly
classified. The entropy of théth cluster is computed as

Shttp://Iivdmaaten.github.io/tsne/
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