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Sparse Bayesian Dictionary Learning with a
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Abstract— We consider a dictionary learning problem whose
objective is to design a dictionary such that the signals admits a
sparse or an approximate sparse representation over the learned
dictionary. Such a problem finds a variety of applications such as
image denoising, feature extraction, etc. In this paper, wepropose
a new hierarchical Bayesian model for dictionary learning, in
which a Gaussian-inverse Gamma hierarchical prior is used to
promote the sparsity of the representation. Suitable priors are
also placed on the dictionary and the noise variance such that
they can be reasonably inferred from the data. Based on the
hierarchical model, a variational Bayesian method and a Gibbs
sampling method are developed for Bayesian inference. The
proposed methods have the advantage that they do not require
the knowledge of the noise variancea priori. Numerical results
show that the proposed methods are able to learn the dictionary
with an accuracy better than existing methods, particularly for
the case where there is a limited number of training signals.

Index Terms— Dictionary learning, Gaussian-inverse Gamma
prior, variational Bayesian, Gibbs sampling.

I. I NTRODUCTION

Sparse representation has been of significant interest over
past few years and has found a variety of applications in
practice as many natural signals admit a sparse or an approxi-
mate sparse representation in a certain basis [1]–[3]. In many
applications such as image denoising and interpolation, signals
are assumed to admit a sparse representation over a pre-
specified non-adaptive dictionary, e.g. discrete consine/wavelet
transform (DCT/DWT) bases. Nevertheless, recent research
[4], [5] has shown that the recovery, denoising and classifi-
cation performance can be considerably improved by utilizing
an adaptive dictionary that is learned from the training signals
[5], [6]. This has inspired studies on dictionary learning whose
objective is to design overcompelete dictionaries that canbet-
ter represent the signals. A number of algorithms, such as K-
singular value decomposition (K-SVD) [4], method of optimal
directions (MOD) [7], dictionary learning with the majoriza-
tion method [8], and simultaneous codeword optimization
(SimCO) [9], were developed for learning overcomplete dictio-
naries for sparse representation. Most algorithms formulate the
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dictionary learning as an optimization problem and solve itvia
a two-stage iterative process, namely, a sparse coding stage and
a dictionary update stage. The main difference between these
algorithms lies in the dictionary update stage. Specifically, the
MOD method [7] updates the dictionary via solving a least
square problem which admits a closed-form for the dictionary
update. The K-SVD algorithm [4], instead, updates atoms
of the dictionary in a sequential manner and while updating
each atom, the atom is updated along with the nonzero
entries in the corresponding row vector of the sparse matrix.
The idea of this sequential atom update was later extended
to sequentially updating multiple atoms each time [9], and
recently was generalized to parallel atom-updating in order
to further accelerate the convergence of the iterative process
[10]. These methods [4], [7]–[10], although delivering state-
of-the-art performance, require the knowledge of the sparsity
level or the noise/residual variance to define the stopping
criterion for estimating the sparse codes (e.g. [4]), or select
appropriate values for the regularization parameters controlling
the tradeoff between the sparsity level and the data fitting error
(e.g. [8], [10]). In practice, however, the prior information
about the noise variance is usually unavailable and an inaccu-
rate estimation may result in substantial performance degra-
dation. To mitigate this limitation, a nonparametric Bayesian
dictionary learning method called as beta-Bernoulli process
factor analysis (BPFA) was recently developed in [11]. The
proposed method is able to automatically infer the required
number of factors (dictionary elements) and the noise variance
from the image under test, which is deemed as an important
advantage over other dictionary learning methods. For [11],
the posterior distributions cannot be derived analytically, and
a Gibbs sampler was used for Bayesian inference. We also
note that a class of online dictionary learning algorithms
were developed in [12]–[14]. Different from the above batch-
based algorithms [4], [7], [9], [10] which use the whole set
of training data for dictionary learning, online algorithms
continuously update the dictionary using only one or a small
batch of training data, which enables them to handle very large
data sets.

In this paper, we propose a new hierarchical Bayesian
model for dictionary learning, in which a Gaussian-inverse
Gamma hierarchical prior is used to promote the sparsity of the
representation. Suitable priors are also placed on the dictionary
and the noise variance such that they can be reasonably
inferred from the data. Based on the hierarchical model, a
variational Bayesian method and a Gibbs sampling method are
developed for Bayesian inference. For both inference methods,
there are two different ways to update the dictionary: we
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can update the whole set of atoms at once, or update the
atoms in a sequential manner. When updating the dictionary
as a whole, the proposed variational Bayesian method has a
dictionary update formula similar to the MOD method. Never-
theless, unlike the MOD method which alternates between two
separate stages (i.e. dictionary update and sparse coding), for
our algorithm, the dictionary and the signal are refined in an
interweaved and gradual manner, which enables the algorithm
to come to a reasonably nearby point as the optimization
progresses, and helps avoid undesirable local minima. For the
Gibbs sampler, a sequential update seems able to expedite
the convergence rate and helps achieve better performance.
Simulation results show that the proposed Gibbs sampling
algorithm presents uniform superiority over other state-of-the-
art dictionary learning methods in a number of experiments.

The rest of the paper is organized as follows. In Section II,
we introduce a hierarchical prior model for learning dictionar-
ies. Based on this hierarchical model, a variational Bayesian
method and a Gibbs sampler are developed in Section III
and Section IV for Bayesian inference. Simulation results are
provided in Section V, followed by concluding remarks in
Section VI.

II. H IERARCHICAL MODEL

Suppose we haveL training signals{yl}
L
l=1, whereyl ∈

R
M . Dictionary learning aims at finding a common sparsifying

dictionary D ∈ R
M×N such that theseL training signals

admit a sparse representation over the overcomplete dictionary
D, i.e.

yl = Dxl +wl ∀l (1)

where xl and wl denote the sparse vector and the resid-
ual/noise vector, respectively. DefineY , [y1 . . . yL], X ,

[x1 . . . xL], andW , [w1 . . . wL], the model (1) can be
re-expressed as

Y = DX +W (2)

Also, we writeD , [d1 . . . dN ], where each column of the
dictionary,dn, is called an atom.

In the following, we develop a Bayesian framework for
learning the overcomplete dictionary and sparse vectors. To
promote sparse representations, we assign a two-layer hierar-
chical Gaussian-inverse Gamma prior toX. The Gaussian-
inverse Gamma prior is one of the most popular sparse-
promoting priors which has been widely used in compressed
sensing [15]–[17]. In the first layer,X is assigned a Gaussian
prior distribution

p(X|α) =
N
∏

n=1

L
∏

l=1

p(xnl)

=

N
∏

n=1

L
∏

l=1

N (xnl|0, α
−1
nl ) (3)

wherexnl denotes the(n, l)th entry ofX, andα , {αnl} are
non-negative sparsity-controlling hyperparameters. Thesecond

Fig. 1. Hierarchical model for dictionary learning.

layer specifies Gamma distributions as hyperpriors over the
hyperparameters{αnl}, i.e.

p(α) =

N
∏

n=1

L
∏

l=1

Gamma(αnl|a, b)

=

N
∏

n=1

L
∏

l=1

Γ(a)−1baαa−1
nl e−bαnl (4)

where Γ(a) =
∫∞

0 ta−1e−tdt is the Gamma function, and
the parametersa and b used to characterize the Gamma
distribution are usually chosen to be small values, e.g.10−6.
As discussed in [18], this hyperprior allows the posterior mean
of αnl to become arbitrarily large. As a consequence, the
associated coefficientxnl will be driven to zero, thus yielding
a sparse solution. In this paper, we choose a value ofa = 0.5
in order to achieve a more sparsity-encouraging effect. Clearly,
the Gamma prior with a largera encourages large values of
the hyperparameters, and therefore promotes the sparseness of
the solution since the larger the hyperparameter, the smaller
the variance of the corresponding coefficient.

In addition, in order to prevent the dictionary from becom-
ing infinitely large, we assume the atoms of the dictionary
{dn} are mutually independent and each atom is placed a
Gaussian prior, i.e.

p(D) =

N
∏

n=1

p(dn) =

N
∏

n=1

N (dn|0, βI) (5)

where β is a parameter whose choice will be discussed
later. The noise{wl} are assumed independent multivariate
Gaussian noise with zero mean and covariance matrix(1/γ)I,
where the noise variance1/γ is assumed unknowna priori.
To estimate the noise variance, we place a Gamma hyperprior
over γ, i.e.

p(γ) = Gamma(γ|c, d) = Γ(c)−1dcγc−1e−dγ (6)

where we setc = 0.5 andd = 10−6. The proposed hierarchical
model (see Fig. 1) provides a general framework for learning
the overcomplete dictionary, the sparse codes, as well as the
noise variance. In the following, we will develop a variational
Beyesian method and a Gibbs sampling method for Bayesian
inference.

III. VARIATIONAL INFERENCE

A. Review of The Variational Bayesian Methodology

Before proceeding, we firstly provide a brief review of the
variational Bayesian methodology. In a probabilistic model, let
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y and θ denote the observed data and the hidden variables,
respectively. It is straightforward to show that the marginal
probability of the observed data can be decomposed into two
terms

ln p(y) = L(q) + KL(q||p) (7)

where

L(q) =

∫

q(θ) ln
p(y, θ)

q(θ)
dθ (8)

and

KL(q||p) = −

∫

q(θ) ln
p(θ|y)

q(θ)
dθ (9)

whereq(θ) is any probability density function, KL(q||p) is the
Kullback-Leibler divergence betweenp(θ|y) andq(θ). Since
KL(q||p) ≥ 0, it follows thatL(q) is a rigorous lower bound
on ln p(y). Moreover, notice that the left hand side of (7) is
independent ofq(θ). Therefore maximizingL(q) is equivalent
to minimizing KL(q||p), and thus the posterior distribution
p(θ|y) can be approximated byq(θ) through maximizing
L(q).

The significance of the above transformation is that it cir-
cumvents the difficulty of computing the posterior probability
p(θ|y) (which is usually computationally intractable). For a
suitable choice for the distributionq(θ), the quantityL(q)
may be more amiable to compute. Specifically, we could
assume some specific parameterized functional form forq(θ)
and then maximizeL(q) with respect to the parameters of
the distribution. A particular form ofq(θ) that has been
widely used with great success is the factorized form over the
component variables{θi} in θ [19], i.e. q(θ) =

∏

i qi(θi). We
therefore can compute the posterior distribution approximation
by finding q(θ) of the factorized form that maximizes the
lower boundL(q). The maximization can be conducted in an
alternating fashion for each latent variable, which leads to [19]

qi(θi) =
exp(〈ln p(y, θ)〉k 6=i)

∫

exp(〈ln p(t, θ)〉k 6=i)dθi
(10)

where 〈·〉k 6=i denotes an expectation with respect to the
distributionsqi(θi) for all k 6= i.

B. Proposed Variational Bayesian Method

We now proceed to perform variational Bayesian inference
for the proposed hierarchical model. Letθ , {X,α,D, γ}
denote all hidden variables. We assume posterior independence
among the variablesX, α, D andγ, i.e.

p(θ|y) ≈q(x,α,D, γ)

=qx(x)qα(α)qd(D)qγ(γ) (11)

With this mean field approximation, the posterior distribution
of each hidden variable can be computed by maximizingL(q)
while keeping other variables fixed using their most recent
distributions, which gives

ln qx(X) =〈ln p(Y ,X,D,α, γ)〉qd(D)qα(α)qγ(γ) + constant

ln qd(D) =〈ln p(Y ,X,D,α, γ)〉qx(X)qα(α)qγ(γ) + constant

ln qα(α) =〈ln p(Y ,X,D,α, γ)〉qx(X)qd(D)qγ (γ) + constant

ln qγ(γ) =〈ln p(Y ,X,D,α, γ)〉qx(X)qd(D)qα(α) + constant

where 〈〉q1(·)...qK(·) denotes the expectation with respect to
(w.r.t.) the distributions{qk(·)}Kk=1. In summary, the posterior
distribution approximations are computed in an alternating
fashion for each hidden variable, with other variables fixed.
Details of this Bayesian inference scheme are provided below.

1). Update of qx(X): The calculation ofqx(X) can be
decomposed into a set of independent tasks, with each task
computing the posterior distribution approximation for each
column ofX, i.e. qx(xl). We have

ln qx(xl) ∝〈ln[p(yl|D,xl, γ)p(xl|αl)]〉qd(D)qα(α)qγ (γ)

(12)

where αl , {αnl}Nn=1 is the sparsity-controlling hyperpa-
rameters associated withxl, p(yl|D,xl, γ) andp(xl|αl) are
respectively given by

p(yl|D,xl, γ) =
( γ

2π

)
M
2

exp

(

−
γ‖yl −Dxl‖22

2

)

p(xl|αl) =

N
∏

n=1

N (xnl|0, α
−1
nl ) (13)

Substituting (13) into (12) and after some simplifications,
it can be readily verified thatqx(xl) follows a Gaussian
distribution

qx(xl) = N (xl|µ
x
l ,Σ

x
l ) (14)

with its meanµx
l and covariance matrixΣx

l given respectively
as

µx
l =〈γ〉Σx

l 〈D〉Tyl

Σ
x
l =

(

〈γ〉〈DTD〉+ 〈Λl〉
)−1

(15)

where 〈γ〉 denotes the expectation w.r.t.qγ(γ), 〈D〉 and
〈DTD〉 denote the expectation w.r.t.qd(D), and 〈Λl〉 ,

diag(〈α1l〉, . . . , 〈αNl〉), in which 〈αnl〉 represents the expec-
tation w.r.t.qα(α).

2). Update of qd(D): The approximate posteriorqd(D) can
be obtained as

ln qd(D) ∝〈ln[p(Y |X,D, γ)p(D)]〉qx(X)qγ(γ)

∝〈−γ‖Y −DX‖2F − β−1
N
∑

n=1

dT
ndn〉

∝〈−γtr{(Y −DX)(Y −DX)T } − β−1tr{DDT }〉

∝〈tr{D(γXXT + β−1I)DT − 2γY XTDT }〉

=tr{D(〈γ〉〈XXT 〉+ β−1I)DT − 2〈γ〉Y 〈X〉TDT }
(16)

where for simplicity, we have dropped the subscript of the〈·〉
operator. Define

A ,(〈γ〉〈XXT 〉+ β−1I)−1

B ,〈γ〉Y 〈X〉T

The posteriorqd(D) can be further expressed as

ln qd(D) ∝tr{DA−1DT − 2BDT }

=

M
∑

m=1

(dm·A
−1dT

m· − 2bm·d
T
m·) (17)
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where bm· and dm· represents themth row of B and D,
respectively. It can be easily seen from (17) that the posterior
distributionqd(D) has independent rows and each row follows
a Gaussian distribution with its mean and covariance matrix
given bybm·A andA, respectively, i.e.

qd(D) =

M
∏

m=1

p(dm·) =

M
∏

m=1

N (bm·A,A) (18)

3). Update of qα(α): The variational optimization ofqα(α)
yields

ln qα(α) ∝〈ln p(X|α)p(α)〉qx(X)

=

N
∑

n=1

L
∑

l=1

〈ln p(xnl|αnl)p(αnl; a, b)〉

∝
N
∑

n=1

L
∑

l=1

{(

a−
1

2

)

lnαnl −

(

b+
〈x2

nl〉

2

)

αnl

}

(19)

Thusα has a form of a product of Gamma distributions

qα(α) =
N
∏

n=1

L
∏

l=1

Gamma(αnl; ã, b̃nl) (20)

in which the parameters̃a and b̃nl are respectively given as

ã = a+
1

2
b̃nl = b+

1

2
〈x2

nl〉 (21)

4). Update of qγ(γ): The variational optimization ofqγ(γ)
yields

ln qγ(γ) ∝〈ln p(Y |D,X, γ)p(γ)〉qd(D)qx(X)

∝〈ln
L
∏

l=1

p(yl|D,xl, γ)p(γ)〉

∝〈
ML

2
ln γ −

γ

2

L
∑

l=1

(yl −Dxl)
T (yl −Dxl)

+ (c− 1) ln γ − dγ〉

=

(

ML

2
+ c− 1

)

ln γ −

(

1

2
〈‖Y −DX‖2F 〉+ d

)

γ

(22)

Thereforeqγ(γ) follows a Gamma distribution

qγ(γ) = Gamma(γ|c̃, d̃) (23)

with the parameters̃c and d̃ given respectively by

c̃ =
ML

2
+ c

d̃ =d+
1

2
〈‖Y −DX‖2F 〉 (24)

where

〈‖Y −DX‖2F 〉 =〈tr{(Y −DX)T (Y −DX)}〉

=‖Y − 〈D〉〈X〉‖2F + tr{〈DTD〉〈XXT 〉}

− tr{〈DT 〉〈D〉〈X〉〈XT 〉} (25)

In summary, the variational Bayesian inference involves
updates of the approximate posterior distributions for hidden

variablesX, D, α, and γ. Some of the expectations and
moments used during the update are summarized as

〈x2
nl〉

(a)
=(µx

l [n])
2 +Σ

x
l [n, n]

〈XXT 〉 =〈X〉〈X〉T +

L
∑

l=1

Σ
x
l

〈D〉
(b)
=BA

〈DTD〉 =〈D〉T 〈D〉+M〈A〉

〈αnl〉 =ã/b̃nl

〈γ〉 =c̃/d̃

where in (a), µx
l [n] denotes thenth entry of µx

l , Σ
x
l [n, n]

represents thenth diagonal element ofΣx
l , and (b) follows

from (18). For clarity, we summarize our algorithm as follows.

Sparse Bayesian Dictionary Learning – A Variational
Bayesian Algorithm

1. Given the current posterior distributionsqd(D), qα(α)
and qγ(γ), update the posterior distributionqx(X)
according to (14).

2. Given qx(X), qα(α), and qγ(γ), updateqd(D) ac-
cording to (18).

3. Given qx(X), qd(D) and qγ(γ), updateqα(α) ac-
cording to (20).

4. Given qx(X), qd(D) and qα(α), updateqγ(γ) ac-
cording to (23).

4. Repeat the above steps until a stopping criterion is
reached.

Remarks: We discuss the choice of the parameterβ which
defines the variance of the dictionary atoms. We might like to
setβ equal to1/m such that the norm of each atom has unit
variance. Our experiment results, however, suggest that a very
large value ofβ, e.g.108, leads to better performance. In fact,
choosing an infinitely largeβ implies placing non-informative
priors over the atoms{dn}, in which case the update of the
dictionary is simplified as

〈D〉 = BA = Y 〈XT 〉〈XXT 〉−1 (26)

This update formula is similar to the formula used for dic-
tionary update in the MOD method, except with the point
estimateX andXXT replaced by the posterior mean〈X〉
and 〈XXT 〉, respectively. Nevertheless, unlike the MOD
method which alternates between two separate stages (i.e.
dictionary update and sparse coding), for our algorithm, the
dictionary and the signal are refined in an interweaved and
gradual manner, which enables the algorithm to come to a
reasonably nearby point as the optimization progresses, and
helps avoid undesirable local minima. This explains why our
proposed method outperforms the MOD method.

In the above algorithm, atoms are updated in a parallel
way. By assuming posterior independence among atoms{dn},
our method can also be readily adapted to update atoms in a
sequential manner, i.e. update one atom at a time while fixing
the rest atoms in the dictionary. The mean field approximation,
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in this case, can be expressed as

p(θ|y) ≈q(x,α,D, γ)

=qx(x)qα(α)
N
∏

n=1

qdn
(dn)qγ(γ) (27)

The posterior distributionqdn
(dn) can then be computed by

maximizingL(q) while keeping other hidden variables fixed
using their most recent distributions, which leads to

ln qdn
(dn) ∝〈ln p(Y ,X, {dk},α, γ)〉qx(X)

∏
N
k 6=n

qdk (dk)qα(α)qγ(γ)

∝〈ln p(Y |X, {dk}, γ)p(dn)〉qx(X)
∏

N
k 6=n

qdk (dk)qγ (γ)

(a)
∝〈ln p(Y −n|dn,xn·, γ)p(dn)〉qx(X)

∏
N
k 6=n

qdk (dk)qγ (γ)

(b)
∝
1

2
〈γtr{(Y −n − dnxn·)(Y

−n − dnxn·)
T }

+ β−1dT
ndn〉

=
1

2

[

dT
n (〈γ〉〈xn·x

T
n·〉+ β−1)−1dn − 2dn〈Y

−n〉〈xT
n·〉

]

(28)

where in(a), we define

Y −n
, Y −D−nX (29)

in which D−n is generated byD with thenth column ofD
replaced by a zero vector, andxn· denotes thenth row ofX,
(b) comes from the fact thatY −n−dnxn· = W and thus we
have

p(Y −n|dn,xn·, γ) =p(Y −n − dnxn·)

=
γ

ML
2

2π
exp

(

−
1

2
γ‖Y −n − dnxn·‖

2
F

)

(30)

From (28), it can be seen thatdn follows a Gaussian distri-
bution

qdn
(dn) = N (dn|µ

d
n,Σ

d
n) (31)

with the mean and the covariance matrix given respectively
by

µd
n =Σ

d
n〈Y

−n〉〈xT
n·〉

Σ
d
n =(〈γ〉〈xn·x

T
n·〉+ β−1)−1I (32)

where〈xn·x
T
n·〉 is thenth diagonal element of〈XXT 〉, and

〈Y −n〉 = Y −〈D−n〉〈X〉. Our proposed algorithm therefore
can be readily extended to a columnwise update procedure by
replacing the update ofqd(D) with the sequential update of
qdn

(dn), ∀n.

IV. G IBBS SAMPLER

Gibbs sampling is an effective alternative to the variational
Bayes method for Bayesian inference. In particular, different
from the variational Bayes which provides a locally-optimal,
exact analytical solution to an approximation of the posterior,
Monte Carlo techniques such as Gibbs sampling provide a
numerical approximation to the exact posterior of hidden vari-
ables using a set of samples. It has been observed in a series
of experiments (including our results) that the Gibbs sampler

provides better performance than the variational Bayesian
inference.

Let θ , {X,α,D, γ} denote all hidden variables in our
hierarchical model. We aim to find the posterior distribution
of θ given the observed dataY

p(θ|Y ) ∝ p(Y |D,X, γ)p(D)p(X |α)p(α)p(γ) (33)

To provide an approximation to the posterior distribution of the
hidden variables, the Gibbs sampler generates an instance from
the distribution of each hidden variable in turn, conditional
on the current values of the other hidden variables. It can be
shown (see, for example, [20]) that the sequence of samples
constitutes a Markov chain, and the stationary distribution of
that Markov chain is just the sought-after joint distribution.
Specifically, the sequential sampling procedure of the Gibbs
sampler is given as follows.

• SamplingX according to its conditional marginal distri-
bution p(X|Y ,D(t),α(t), γ(t));

• SamplingD according to its conditional marginal distri-
bution p(D|Y ,X(t+1),α(t), γ(t));

• Samplingα according to its conditional marginal distri-
bution p(α|Y ,D(t+1),X(t+1), γ(t));

• Samplingγ according to its conditional marginal distri-
bution p(γ|Y ,D(t+1),X(t+1),α(t+1)).

Note that the above sampling scheme is also referred to as a
blocked Gibbs sampler [21] because it groups two or more
variables together and samples from their joint distribution
conditioned on all other variables, rather than sampling from
each one individually. Details of this sampling scheme are
provided below. For simplicity, the notationp(z|−) is used
in the following to denote the distribution of variablez
conditioned on all other variables.

1). Sampling X : The samples ofX can be obtained
by independently sampling each column ofX, i.e. xl. The
conditional marginal distribution ofxl is given as

p(xl|−) ∝ p(Y |X,D, γ)p(xl|αl)

∝ p(yl|D,xl, γ)p(xl|αl) (34)

Recalling (13), it can be easily verified thatp(xl|−) follows
a Gaussian distribution

p(xl|−) = N (µx
l ,Σ

x
l ) (35)

with its meanµx
l and covariance matrixΣx

l given by

µx
l = γΣx

l D
Tyl (36)

Σ
x
l = (γDTD +Λl)

−1 (37)

whereΛl , diag(α1l, . . . , αNl).
2). Sampling D: There are two different ways to sample

the dictionary: we can sample the whole set of atoms at once,
or sample the atoms in a successive way. Here, in order to
expedite the convergence of the Gibbs sampler, we sample the
atoms of the dictionary in a sequential manner. The conditional
distribution ofdn can be written as

p(dn|−) ∝ p(dn)p(Y |D,X, γ)

∝ p(dn)p(Y
−n|dn,xn·, γ) (38)
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whereY −n is defined in (29). Recalling (30), we can show
that the conditional distribution ofdn follows a Gaussian
distribution

p(dn|−) = N (µd
n,Σ

d
n) (39)

with its mean and covariance matrix given by

µd
n = γΣd

nY
−nxT

n· (40)

Σ
d
n = (γxn·x

T
n· + β−1)−1I (41)

3). Sampling α: The log-conditional distribution ofαnl can
be computed as

ln p(αnl|−) ∝ ln p(αnl; a, b)p(xnl|αnl)

∝

(

a−
1

2

)

lnαnl −

(

b+
x2
nl

2

)

(42)

It is easy to verify thatαnl still follows a Gamma distribution

p(αnl|−) = Gamma(â, b̂nl) (43)

with the parameterŝa and b̂nl given as

â = a+
1

2
(44)

b̂nl = b+
1

2
x2
nl (45)

4). Sampling γ: The log-conditional distribution ofγ is
given by

ln p(γ|−) ∝ ln p(Y |D,X, γ)p(γ)

∝ ln

L
∏

l=1

p(yl|D,xl, γ)p(γ)

=

(

ML

2
+ c− 1

)

ln γ −

(

1

2
‖Y −DX‖2F + d

)

γ

(46)

from which we can arrive at

p(γ|−) = Gamma(ĉ, d̂) (47)

where

ĉ = a+
ML

2
(48)

d̂ = d+
1

2
‖Y −DX‖2F (49)

So far we have derived the conditional marginal distribu-
tions for hidden variables{D,X,α, γ}. Gibbs sampler suc-
cessively generates the samples of these variables according
to their conditional distributions. After a burn-in period, the
generated samples can be viewed as samples drawn from the
posterior distributionp(X ,D,α, γ|Y ). With those samples,
the dictionary can be estimated by averaging the last few
samples of the Gibbs sampler. For clarity, we now summarize
the Gibbs sampling algorithm as follows.

Sparse Bayesian Dictionary Learning – A Gibbs
Sampling Algorithm

1. Given the current samplesD(t), α(t) andγ(t). Gen-
erate a sampleX(t+1) according to (35).

2. Given the current samplesX(t+1), α(t) and γ(t).
Generate a sampleD(t+1) according to (39).

3. Given the current samplesD(t+1), X(t+1) and γ(t).
Generate a sampleα(t+1) according to (43).

4. Given the current samplesD(t+1), X(t+1) and
α(t+1). Generate a sampleγ(t+1) according to (47).

5. Repeat the above steps and collect the samples after
a burn-in period.

V. SIMULATION RESULTS

We now carry out experiments to illustrate the performance
of our proposed sparse Bayesian dictionary learning (SBDL)
methods, which are respectively referred to as SBDL-VB and
SBDL-Gibbs. Throughout our experiments, the parameters for
our proposed method are set equal toa = 0.5, b = 10−6, c =
0.5, andd = 10−6. The parameterβ is set toβ = 108 for the
SBDL-VB andβ = 1 for SBDL-Gibbs. Note that the SBDL-
Gibbs is insensitive to the choiceβ and here we simply choose
β = 1. We compare our proposed methods with other existing
state-of-the-art dictionary learning methods, namely, the K-
SVD algorithm [4], the atom parallel-updating (APrU-DL)
method [10], and the Bata-Bernoulli process factor analysis
(BPFA) method [11]. Both the synthetic data and real data are
used to test the performance of respective algorithms.

A. Synthetic Data

We generate a dictionaryD of size20×50, with each entry
independently drawn from a normal distribution. Columns of
D are then normalized to unit norm. The training signals
{yl}

L
l=1 are produced based onD, where each signalyl is

a linear combination ofKl randomly selected atoms and the
weighting coefficients are i.i.d. normal random variables.Two
different cases are considered. First, all training samples are
generated with the same number of atoms, i.e.Kl = K, ∀l,
and K is assumed exactly known to the K-SVD method.
The other case is thatKl varies from3 to 6 for different l
according to a uniform distribution. In this case, the K-SVD
assumes that the sparsity level equals to6 during the sparse
coding stage. The observation noise is assumed multivariate
Gaussian with zero mean and covariance matrixσ2I. Note
that the APrU-DL (with FISTA) method requires to set two
regularization parametersλ and λs to control the tradeoff
between the sparsity and the data fitting error. The selection
of these two parameters is always a tricky issue and an
inappropriate choice may lead to considerable performance
degradation. To show this, we use the following two different
choices:{λ, λs} = {0.2, 0.15} and {λ, λs} = {0.4, 0.4}, in
which the former set of values are carefully selected to achieve
the best performance, and the latter set of values slightly
deviate from the former set of values. We use APrU-DL-F to
denote the APrU-DL method which uses the former choice,
and APrU-DL-L to denote the APrU-DL method which uses
the latter one. For SBDL-Gibbs, the number of iterations is set
to 300 and the estimate of the dictionary is simply chosen to be
the last sample of the Gibbs sampler. For a fair comparison,
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the competing algorithms including K-SVD, APrU-DL, and
BPFA are executed sufficient numbers of iterations to achieve
their best performance.

The recovery success rate is used to evaluate the dictionary
learning performance. The success rate is computed as the
ratio of the number of successfully recovered atoms to the
total number of atoms. An atom is considered successfully
recovered if the distance between the original atom and the
estimated atom is smaller than 0.01, where the distance is
defined as

1−
|dT

i d̂i|

‖di‖‖d̂i‖
(50)

where d̂i denotes the estimated atom. Table I shows the
average recovery success rates of respective algorithms, where
we setL = 1000 andL = 2000, respectively, and the signal-
to-noise ratio (SNR) varies from 10 to 100dB. Results are
averaged over 50 independent trials. From Table I, we can see
that:

• The proposed SBDL-Gibbs method achieves the high-
est recovery success rates in most cases. The pro-
posed SBDL-VB method, although not as well as the
SBDL-Gibbs, still provides quite decent performance and
presents a clear performance advantage over the K-SVD
and APrU-DL methods when the number of training
signals is limited, e.g.L = 1000. In particular, both the
SBDL-Gibbs and the SBDL-VB outperform the BPFA
method by a big margin, although all these three methods
were developed in a Bayesian framework.

• In the low SNR regime, e.g. SNR= 10dB, the K-SVD
method suffers from a significant performance loss when
there is a discrepancy between the presumed sparsity level
and the groundtruth (see the case whereKl varies but the
presumed sparsity level is fixed to 6).

• The APrU-DL method is sensitive to the choice of the
regularization parameters. It provides superior recovery
performance when the regularization parameters are prop-
erly selected. Nevertheless, as we can see from Table I,
the APrU-DL method incurs a considerable performance
degradation when the parameters deviate from their opti-
mal choice, and there is no general guideline suggesting
how to choose appropriate values for these regularization
parameters.

B. Application To Image Denoising

We now demonstrate the results by applying the above
methods to image denoising. Suppose images are corrupted
by white Gaussian noise with zero mean and varianceσ2. We
partition a noise-corrupted image into a number of overlapping
patches of size8× 8 pixels. Note that in our simulations, not
all patches are selected for training, but only those patches
whose top-left pixels are located at[r × i, r × j] for any
i, j = 0, . . . , ⌊(Q − 8)/r⌋ are selected, whereQ denotes
the dimension of theQ × Q image, andr is chosen to
be r = {2, 4}, respectively. The selected patches are then
vectorized to generate the training signal{yl}. Also, in our
experiments, we assume that the noise variance is perfectly

TABLE I

RECOVERY SUCCESSRATES

L SNR Algorithm K = 3 K = 4 K = 5 Var. K

1000

10

K-SVD 80.52 36.36 2.52 0.80
BPFA 64.48 38.00 11.60 26.56

APrU-DL-F 85.64 64.40 33.44 53.68
APrU-DL-L 48.20 17.48 4.68 12.52
SBDL-VB 86.00 63.84 16.28 47.48

SBDL-Gibbs 91.52 62.48 6.32 41.80

20

K-SVD 93.20 93.44 92.08 84.68
BPFA 83.20 85.88 85.00 85.08

APrU-DL-F 94.04 93.32 87.76 93.48
APrU-DL-L 72.48 40.32 14.15 33.04
SBDL-VB 97.28 95.96 92.32 94.48

SBDL-Gibbs 99.64 99.16 97.52 99.12

30

K-SVD 94.24 94.32 93.92 86.64
BPFA 75.72 80.68 82.96 81.56

APrU-DL-F 94.24 94.92 88.16 93.96
APrU-DL-L 73.40 43.16 17.16 34.36
SBDL-VB 96.60 96.16 92.32 95.48

SBDL-Gibbs 99.60 99.16 98.64 99.00

100

K-SVD 94.24 94.32 93.92 85.44
BPFA 75.88 78.96 82.16 78.24

APrU-DL-F 94.36 93.84 88.68 93.64
APrU-DL-L 74.88 44.72 18.12 36.08
SBDL-VB 97.20 97.52 92.24 94.56

SBDL-Gibbs 99.32 99.24 98.24 98.96

2000

10

K-SVD 91.00 88.88 50.56 25.32
BPFA 85.44 82.84 67.92 81.24

APrU-DL-F 97.00 94.88 86.24 95.44
APrU-DL-L 84.84 68.36 42.28 64.04
SBDL-VB 92.92 81.80 55.68 77.16

SBDL-Gibbs 98.56 95.72 80.20 93.88

20

K-SVD 95.64 96.68 95.16 94.00
BPFA 84.44 87.16 88.48 86.68

APrU-DL-F 95.40 96.48 95.80 96.56
APrU-DL-L 85.32 82.44 64.48 79.84
SBDL-VB 97.64 96.56 92.12 95.04

SBDL-Gibbs 99.48 99.56 98.92 99.16

30

K-SVD 95.88 96.92 96.96 93.36
BPFA 76.84 81.00 83.60 81.64

APrU-DL-F 94.28 95.00 96.80 95.64
APrU-DL-L 86.32 82.40 66.08 80.52
SBDL-VB 96.88 96.96 92.96 94.96

SBDL-Gibbs 99.40 99.16 99.52 99.32

100

K-SVD 96.04 97.88 96.88 92.20
BPFA 75.24 80.12 83.00 81.36

APrU-DL-F 95.56 95.48 96.08 96.00
APrU-DL-L 86.36 82.92 65.76 79.56
SBDL-VB 96.84 96.56 94.32 96.36

SBDL-Gibbs 99.40 99.44 99.24 99.40

known a priori by the K-SVD method. For the APrU-DL
method, the regularization parametersλ andλs are carefully
chosen to beλ = 25 and λs = 30. After the training by
respective algorithms, the trained dictionary is then usedfor
denoising. The denoising process involves a sparse coding
of all patches (including those used for training and those
not) of size8 × 8 pixels from the noisy image. Due to its
simplicity and fast execution, the orthogonal matching pursuit
(OMP) method is employed to perform the sparse coding
of all patches. The final estimate of each pixel is obtained
by averaging the associated pixel from each of the denoised
overlapping patches in which this pixel is included.

Table II shows the peak signal to noise ratio (PSNR) results
obtained for different nature images by respective algorithms,
where the noise standard deviation is set toσ = {15, 25, 50},
respectively, and the dictionary to be inferred is assumed of
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TABLE II

PSNR RESULTS

r σ Algorithm boat cameraman couple

2

15

K-SVD 29.2802 31.4638 31.4068
BPFA 29.2988 30.8684 31.0950

APrU-DL 29.5718 31.7662 31.5304
SBDL-VB 29.3557 31.1741 31.0691

SBDL-Gibbs 29.5881 31.6978 31.4473

25

K-SVD 26.9308 28.6211 28.6949
BPFA 26.9576 28.1639 28.5825

APrU-DL 26.8998 28.7069 28.5378
SBDL-VB 26.6959 28.1587 28.4240

SBDL-Gibbs 27.1570 28.8380 28.8431

50

K-SVD 22.9499 23.9898 24.3532
BPFA 23.5059 22.8861 24.3181

APrU-DL 22.7274 23.5888 24.1901
SBDL-VB 23.0861 23.3194 24.3299

SBDL-Gibbs 23.4651 24.1899 24.7870

4

15

K-SVD 29.2585 31.3553 31.3513
BPFA 28.8131 29.7561 30.3464

APrU-DL 29.4554 31.5541 31.4276
SBDL-VB 29.3217 31.0739 31.1359

SBDL-Gibbs 29.5376 31.4931 31.5443

25

K-SVD 26.6756 28.4350 28.5580
BPFA 26.3727 26.8885 27.5139

APrU-DL 26.7240 28.4447 28.4097
SBDL-VB 26.5977 28.0960 28.3715

SBDL-Gibbs 27.0077 28.5539 28.7889

50

K-SVD 22.7708 23.2908 24.2388
BPFA 23.0100 22.0422 23.4463

APrU-DL 22.6036 23.3086 24.1107
SBDL-VB 23.0404 23.3315 24.4163

SBDL-Gibbs 23.2525 23.8610 24.6326

size64× 256. The PSNR is defined as

PSNR= 20 log10

(

255×Q2

‖Û −U‖F

)

whereÛ andU denote the denoised image and the original
image, respectively. From Table II, we see that the results
of all methods are very close to each other in general. The
proposed SBDL-Gibbs achieves a slightly higher PSNR than
other methods in most cases, particularly when less number of
signals is used for training. This result again demonstrates the
superiority of the proposed method. In Fig. 2 and 3, we present
the noise-corrupted images “cameraman” and “couple”, and
the denoised images using dictionaries trained by our proposed
algorithms. The trained dictionaries are also shown on the right
sides of Fig. 2 and 3.

VI. CONCLUSIONS

We developed a new Bayesian hierarchical model for learn-
ing the overcomplete dictionaries based on a set of training
data. This new framework can be considered as an adaptation
of the conventional sparse Beysian learning framework to deal
with the dictionary learning problem. Specifically, a Gaussian-
inverse Gamma hierarchical prior is used to promote the
sparsity of the representation. Suitable priors are also placed
on the dictionary and the noise variance such that they can be
reasonably inferred from the data. We developed a variational
Bayesian method and a Gibbs sampler for Bayesian inference.
Unlike some of previous methods, the proposed methods
do not need to assume knowledge of the noise variancea

priori, and can infer the noise variance automatically from the
data. The performance of the proposed methods is evaluated
using synthetic data. Numerical results show that the proposed
methods are able to learn the dictionary with an accuracy
considerably better than existing methods, particularly for the
case where there is a limited number of training signals. The
proposed methods are also applied to image denoising, where
superior denoising results are achieved even compared to other
state-of-the-art algorithms. Our proposed hierarchical model
is also flexible to incorporate additional prior information to
enhance the dictionary learning performance.
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