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Abstract

A framework is introduced for solving a sequence of slowly changing optimization problems, including those
arising in regression and classification applications, using optimization algorithms such as stochastic gradient descent
(SGD). The optimization problems change slowly in the sensethat the minimizers change at either a fixed or bounded
rate. A method based on estimates of the change in the minimizers and properties of the optimization algorithm is
introduced for adaptively selecting the number of samples needed from the distributions underlying each problem in
order to ensure that the excess risk, i.e., the expected gap between the loss achieved by the approximate minimizer
produced by the optimization algorithm and the exact minimizer, does not exceed a target level. Experiments with
synthetic and real data are used to confirm that this approachperforms well.

1 Introduction

Consider solving a sequence of machine learning problems such as regression or classification by minimizing the
expected value of a fixed loss functionℓ(x,z) at each timens:

min
x∈X

{

fn(x), Ezn∼pn [ℓ(x,zn)]
}

∀n≥ 1 (1)

For regression,zn corresponds to the predictors and response pair at timen andx parameterizes the regression model.
For classificationzn corresponds to the feature and label pair at timen andx parameterizes the classifier. Although,
motivated by regression and classification, our framework works for any loss functionℓ(x,z) that satisfies certain
properties discussed later. In the learning context, ataskconsists of the loss functionℓ(x,z) and the distributionpn,
and so our problem can be viewed as learning a sequence of tasks.

The problems change slowly at a constant but unknown rate in the sense that

‖x∗
n−x∗

n−1‖= ρ ∀n≥ 2 (2)

with x∗
n the minimizer offn(x). In an extended version of this paper [?], we also consider slow changes at a bounded

but unknown rate
‖x∗

n−x∗
n−1‖ ≤ ρ ∀n≥ 2 (3)

Under this model, we find approximate minimizersxn of each functionfn(x) usingKn samples from distribution
pn by applying an optimization algorithm. We evaluate the quality of our approximate minimizersxn through an
excess risk criterionεn, i.e.,

E [ fn(xn)]− fn(x
∗
n)≤ εn

∗This work was supported by the NSF under award CCF 11-11342 through the University of Illinois at Urbana-Champaign.
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which is a standard criterion for optimization and learningproblems [1]. Our goal is to determine adaptively the
number of samplesKn required to achieve a desired excess riskε for eachn with ρ unknown. Asρ is unknown, we
will construct estimates ofρ . Given an estimate ofρ , we determine selection rules for the number of samplesKn to
achieve a target excess riskε.

1.1 Related Work

Our problem has connections withmulti-task learning(MTL) and transfer learning. In multi-task learning, one tries
to learn several tasks simultaneously as in [2],[3], and [4]by exploiting the relationships between the tasks. In transfer
learning, knowledge from one source task is transferred to another target task either with or without additional training
data for the target task [5]. Multi-task learning could be applied to our problem by running a MTL algorithm each time
a new task arrives, while remembering all prior tasks. However, this approach incurs a memory and computational
burden. Transfer learning lacks the sequential nature of our problem. For multi-task and transfer learning, there are
theoretical guarantees on regret for some algorithms [6].

We can also consider theconcept driftproblem in which we observe a stream of incoming data that potentially
changes over time, and the goal is to predict some property ofeach piece of data as it arrives. After prediction, we
incur a loss that is revealed to us. For example, we could observe a featurewn and predict the labelyn as in [7].
Some approaches for concept drift use iterative algorithmssuch as SGD, but without specific models on how the data
changes. As a result, only simulation results showing good performance are available. There are also some bandit
approaches in which one of a finite number of predictors must be applied to the data as in [8]. For this approach, there
are regret guarantees using techniques for analyzing bandit problems.

Another relevant model issequential supervised learning(see [9]) in which we observe a stream of data consisting
of feature/label pairs(wn,yn) at timen, with wn being the feature vector andyn being the label. At timen, we want
to predictyn givenxn. One approach to this problem, studied in [10] and [11], is tolook at L consecutive pairs
{(wn−i,yn−i)}L

i=1 and develop a predictor at timen by applying a supervised learning algorithm to this training data.
Another approach is to assume that there is an underlying hidden Markov model (HMM) [12]. The labelyn represents
the hidden state and the pair(wn,yn) represents the observation withyn being a noisy version ofyn. HMM inference
techniques are used to estimateyn.

2 Adaptive Sequential Optimization With ρ Known

For analysis, we need the following assumptions on our functions fn(x) and the optimization algorithm:

A.1 For the optimization algorithm under consideration, thereis a functionb(d0,Kn) such that

E [ fn(xn)]− fn(x
∗
n)≤ b(d0,Kn)

with Kn the number of samples frompn andE‖xn(0)− x∗
n‖2 ≤ d0, wherexn(0) is the initial point of the

optimization algorithm at timen. Finally,b(d0,Kn) is non-decreasing ind0.

A.2 Each loss functionℓ(x,z) is differentiable inx. Eachfn(x) is strongly convex with parameterm, i.e.,

fn(y)≥ fn(x)+ 〈∇x fn(x),y−x〉+ 1
2

m‖y−x‖2

A.3 diam(X )<+∞

A.4 We can find initial pointsx1 andx2 that satisfy the excess risk criterion withε1 andε2 known, i.e.,

E [ fi(xi)]− fi(x
∗
i )≤ εi i = 1,2

2



Remarks:For assumption A.1 , we assume that the boundb(d0,Kn) depends on the number of samplesKn and not
the number of iterations. For SGD, generally the number of iterations equalsKn as each sample is used to produce a
noisy gradient. In addition, we often setxn(0) = xn−1. See Appendix A for a discussion of usefulb(d0,Kn) bounds.
For assumption A.4 , we can fixKi and setεi = b(diam(X )2,Ki) for i = 1,2.

Now, we examine the case when the change in minimizers,ρ in (2) or (3), is known. For the analysis of the section,
whether (2) or (3) holds does not affect the analysis. Later we will estimateρ and in this case whether (2) or (3) holds
matters substantially.

We want to find a boundεn on the excess risk at timen in terms ofKn andρ , i.e.,εn such thatE[ fn(xn)]− fn(x∗
n)≤ εn.

The idea is to start with the bounds from assumption A.4 and proceed inductively using the previousεn−1 andρ
from (2). Suppose thatεn−1 bounds the excess risk at timen−1. Using the triangle inequality, strong convexity, and
(2) we have

E‖xn−1−x∗
n‖2 ≤

(

‖xn−1−x∗
n−1‖+ ‖x∗

n−x∗
n−1‖

)2

≤
(

√

2
m
E [ fn−1(xn−1)]− fn−1(x∗

n−1)+ ‖x∗
n−x∗

n−1‖
)2

≤
(

√

2εn−1

m
+ρ

)2

(4)

In comparison, we could use the estimate diam2(X ) to boundE‖xn−1−x∗
n‖2 and selectKn. If the bound in (4) is

much smaller than diam(X )2, then we need significantly fewer samplesKn to guarantee a desired excess risk. Now,
by using the boundb(d0,Kn) from assumption A.1 , we can set

εn = b





(

√

2εn−1

m
+ρ

)2

,Kn



 ∀n≥ 3

which yields a sequence of bounds on the excess risk. Note that this recursion only relies on the immediate past at
timen−1 throughεn−1. To achieveεn ≤ ε for all n, we set

K1 = min{K ≥ 1 | b
(

diam(X )2,K
)

≤ ε}

andKn = K∗ for n≥ 2 with

K∗ = min







K ≥ 1

∣

∣

∣

∣

∣

b





(

√

2ε
m

+ρ

)2

,K



≤ ε







(5)

3 Estimating ρ
In practice, we do not knowρ , so we must construct an estimateρ̂n using the samples from each distributionpn. We
introduce two approaches to estimateρ at one time step,‖x∗

i −x∗
i−1‖, and methods to combine these estimates under

assumptions (2) and (3). We show that for our estimateρ̂n and appropriately chosen sequences{tn} for all n large
enoughρ̂n+ tn ≥ ρ almost surely. With this property, analysis similar to thatin Section 2 holds.

3.1 Allowed Ways to ChooseKn

One of the sources of difficulty in estimatingρ is that we will allowKn to be selected in a data dependent way, soKn

is itself a random variable. We make the assumption thatKn is selected using only information available at the end of
time n−1. To make this precise we define a filtration of sigma algebrasto describe the available information. First,
we define the sigma algebraK0 containing all the information on the initial conditions ofour algorithm. For example,
we may start at a random pointx0 and then

K0 = σ(x0)

3



The sigma algebraK0 may also contain information aboutK1 andK2. Next, we define the filtration

Kn = σ
(

{zn(k)}Kn
k=1

)

∨Kn−1 ∀n≥ 1 (6)

where
F ∨G = σ (F ∪G )

is the merge operator for sigma algebras. The sigma algebraKn contains all the information available to us at the
end of timen. We assume thatKn is Kn−1-measurable to capture the idea thatKn is chosen only using information
available at the end of timen−1.

3.2 Estimating One Step Change

First, we estimate the one step changes‖x∗
i −x∗

i−1‖ denoted byρ̃i . Implicitly, we assume that all one step estimates
are capped by diam(X ), since trivially‖x∗

n−x∗
n−1‖ ≤ diam(X ).

3.2.1 Direct Estimate

First, we construct an estimatẽρi of the one step changes‖x∗
i −x∗

i−1‖. Using the triangle inequality and variational
inequalities from [13] yields

‖x∗
i −x∗

i−1‖ ≤ ‖xi −xi−1‖+ ‖xi −x∗
i ‖+ ‖xi−1−x∗

i−1‖

≤ ‖xi −xi−1‖+
1
m
‖∇x fi(xi)‖+

1
m
‖∇x fi(xi−1)‖

We then approximate‖∇x fi(xi)‖= ‖Ezi∼pi [∇xℓ(xi ,zi)]‖ by

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi ,zi(k))

∥

∥

∥

∥

to yield the following estimate that we call thedirect estimate:

ρ̃i , ‖xi −xi−1‖+
1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi,zi(k))

∥

∥

∥

∥

∥

+
1
m

∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

∇xℓ(xi−1,zi−1(k))

∥

∥

∥

∥

∥

3.2.2 Vector Integral Probability Metric Estimate

Given a class of functionsF where eachf ∈F mapsZ →R, an integral probability metric (IPM) [14] between two
distributionsp andq is defined to be

γF (p,q), sup
f∈F

∣

∣Ez∼p[ f (z)]−Ez̃∼q[ f (z̃)]
∣

∣

We consider an extension of this idea, which we call avector IPM, in which the class of functionsF mapsZ → X :

γV
F (p,q), sup

f∈F

‖Ez∼p[ f (z)]−Ez̃∼q[ f (z̃)]‖ (7)

Lemma 1 shows that a vector IPM can be used to bound the change in minimizer at timei and follows from variational
inequalities in [13] and the assumption that{∇xℓ(x, ·) : x ∈ X } ⊂ F .

Lemma 1. Assume that{∇xℓ(x, ·) : x ∈ X } ⊂ F . Then‖x∗
i −x∗

i−1‖ ≤ 1
mγV

F
(pi , pi−1).
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Proof. By exploiting variational inequalities from [13], we can show that

‖x∗
i −x∗

i−1‖ ≤ 1
m
‖∇x fi(x

∗
i−1)−∇x fi−1(x

∗
i−1)‖

=
1
m
‖Ezi∼pi

[

∇xℓ(x
∗
i−1,zi)

]

−Ezi−1∼pi−1

[

∇xℓ(x
∗
i−1,zi−1)

]

‖

By assumption{∇xℓ(x
∗
i−1, ·) : x ∈ X } ⊂ F , so

‖∇x fi(x
∗
i−1)−∇x fi−1(x

∗
i−1)‖ = ‖Ezi∼pi

[

ℓ(x∗
i−1,zi)

]

−Ezi−1∼pi−1

[

ℓ(x∗
i−1,zi−1)

]

‖
≤ sup

f∈F

‖Ezi∼pi [ f (zi)]−Ezi−1∼pi−1 [ f (zi−1)]‖

= γV
F (pi , pi−1)

We cannot compute this vector IPM, since we do not know the distributions pi and pi−1. Instead, we plug in
the empiricals ˆpi and p̂i−1 to yield the estimate1

mγV
F
(p̂i , p̂i−1). This estimate is biased upward, which ensures that

‖x∗
i −x∗

i−1‖ ≤ E
[

1
mγV

F
(p̂i , p̂i−1)

]

.
Our estimate is still not in a closed form since there is a supremum overF in the computation ofγV

F
(p̂i , p̂i−1).

For the class of functions
F =

{

f
∣

∣ ‖ f (z)− f (z̃)‖ ≤ r(z, z̃)
}

. (8)

we can compute an upper boundΓi on γV
F
(p̂i , p̂i−1) yielding a computable estimatẽρi =

1
mΓi . Set z̃i(k) = zi(k) if

1≤ k≤ Ki andz̃i(k) = zi−1(k) if Ki +1≤ k≤ Ki +Ki−1. From (7), we have

γV
F (p̂i , p̂i−1) = sup

f∈F

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

f (z̃i(k))−
1

Ki−1

Ki−1

∑
k=1

f (z̃i(Ki + k))

∥

∥

∥

∥

∥

We can relax this supremum by maximizing over the function value f (z̃i(k)) denoted byαk in the following non-
convex quadratically constrained quadratic program (QCQP):

maximize

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

αk−
1

Ki−1

Ki−1

∑
k=1

αKi+k

∥

∥

∥

∥

∥

subject to‖αk−α j‖ ≤ r(z̃i(k), z̃i( j)) ∀k< j

The constraints are imposed to ensure that the function valuesαk can correspond to a function inF from (8). The
value of this QCQP exactly may not equal the vector IPM but at least provides an upper bound. Finally, we note that
this QCQP can be converted to its dual form to yield an SDP, which is often easier to solve.

3.2.3 Comparison of Estimates

The direct estimate is easier to compute but may be loose if‖xn−x∗
n‖ is large. If‖xn−x∗

n‖ is large, then the vector
IPM approach is in general tighter. However, the vector IPM is more difficult to compute due to need to solve a QCQP
or SDP and check the inclusion conditions in Lemma 1. Also, the number of constraints in the QCQP or SDP grows
quadratically in the number of samples.

3.3 Combining One Step Estimates For Constant Change

Assuming that‖x∗
i −x∗

i−1‖= ρ from (2), we average the one step estimatesρ̃i to yield a better estimate

ρ̂n =
1

n−1

n

∑
i=2

ρ̃i

of ρ at each timen under (2). To analyze the behavior of our combined estimates, we use sub-Gaussian concentration
inequalities detailed in Appendix B. Lemma 22 is of particular importance to our analysis.
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3.3.1 Direct Estimate

The difficulty in analyzing the direct estimate comes because in approximating1
m‖∇ fi(xi)‖ by

1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi ,zi(k))

∥

∥

∥

∥

∥

xi is dependent on all the samples{zi(k)}Ki
k=1. To illustrate the problem further, consider drawing two independent

copies{zi(k)}Ki
k=1

iid∼ pi and{z̃i(k)}Ki
k=1

iid∼ pi of the samples. Suppose that we use the second copy{z̃i(k)}Ki
k=1 to

computexi using our optimization algorithm of choice starting fromxi−1. Then we approximate1m‖∇ fi(xi)‖ by

1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi ,zi(k))

∥

∥

∥

∥

∥

Now, sincexi is independent of{zi(k)}Ki
k=1 the quantity

1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi ,zi(k))

∥

∥

∥

∥

∥

is the norm of an average of independent random variables conditioned onxi . This allows us to apply standard
concentration inequalities for norms of random variables as in [15]. In this section, we argue that re-using the samples
{zi(k)}Ki

k=1 to computexi is not too far from using a second independent draw{z̃i(k)}Ki
k=1.

For analysis, we need the following additional assumptions:

B.1 The loss functionℓ(x,z) has uniform Lipschitz continuous gradients inx with modulusL, i.e.

‖∇xℓ(x,z)−∇xℓ(x̃,z)‖ ≤ L‖x− x̃‖ ∀z ∈ Z

B.2 AssumingX is d-dimensional, each componentj of the gradient error∇xℓ(x,zn)− fn(x) satisfies

E

[

exp
{

s(∇xℓ(x,zn)−∇ fn(x)) j

}

∣

∣

∣

∣

x

]

≤ exp

{

1
2

Cg

d2 s2
}

Assumption B.1 is reasonable if the spaceZ containingz is compact. Although in practice, the distribution of
gradient error could depend onx, we assume that the boundCg does not depend onx. We can view this as a
pessimistic assumption corresponding to choosing the worst case bound as a function ofx and the resultingCg. This
is a common assumption for in high probability analysis of optimization algorithms as in [16] for example.

To proceed, we first define two other useful estimates forρ . As discussed before, suppose that we make a second
independent draw of samples{z̃i(k)}Ki

k=1 from pi . We use these samples to compute ˜xi in the same manner asxi

starting fromxi−1 except with{z̃i(k)}Ki
k=1 used in place of{zi(k)}Ki

k=1. Then define

ρ̃ (2)
i , ‖x̃i − x̃i−1‖+

1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(x̃i,zi(k))

∥

∥

∥

∥

∥

+
1
m

∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

∇xℓ(x̃i−1,zi−1(k))

∥

∥

∥

∥

∥

This is the same form as the direct estimate with ˜xi in place ofxi . Next, define

ρ̃ (3)
i , ‖x̃i − x̃i−1‖+

1
m
‖∇ fi(xi)‖+

1
m
‖∇ fi−1(xi−1)‖

This is in fact the bound that inspired the direct estimate. We also define the averaged estimates

ρ̂ (2)
n ,

1
n−1

n

∑
i=2

ρ̃ (2)
i

6



and

ρ̂ (3)
n ,

1
n−1

n

∑
i=2

ρ̃ (3)
i

We know thatρ̂ (3)
n ≥ ρ . Thus, if we can control the gap between the pairρ̂n andρ̂ (2)

n and the pair̂ρ (2)
n andρ̂ (3)

n , then
we can ensure that̂ρn plus an appropriate constant upper boundsρ for all n large enough as desired.

First, we show that̂ρ (2)
n upper boundsρ eventually.

Lemma 2. Suppose that the following conditions hold:

1. B.1 -B.2 hold

2. The sequence{tn} satisfies
∞

∑
n=2

exp

{

− (n−1)m2t2
n

72Cg

}

< ∞

Then for all n large enough it holds thatρ̂ (2)
n +Ĉ(2)

n + tn ≥ ρ almost surely with

Ĉ(2)
n ,

1
dm(n−1)

(

√

Cg

K1
+2

n

∑
i=1

√

Cg

Ki
+

√

Cg

Kn

)

Proof. First, we have by the triangle equality and reverse triangleinequality

m|ρ̃ (2)
i − ρ̃ (3)

i |

=

∣

∣

∣

∣

∣

(∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(x̃i,zi(k))

∥

∥

∥

∥

∥

−‖∇x fi(x̃i)‖
)

+

(∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

∇xℓ(x̃i−1,zi−1(k))

∥

∥

∥

∥

∥

−‖∇x fi−1(x̃i−1)‖
)∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(x̃i ,zi(k))

∥

∥

∥

∥

∥

−‖∇x fi(x̃i)‖
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

∇xℓ(x̃i−1,zi−1(k))

∥

∥

∥

∥

∥

−‖∇x fi−1(x̃i−1)‖
∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

(∇xℓ(x̃i−1,zi−1(k))−∇x fi−1(x̃i−1))

∥

∥

∥

∥

∥

Then by the triangle inequality, we have

|ρ̂ (2)
n − ρ̂ (3)

n | ≤ 1
m(n−1)

n

∑
i=2

(∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

(∇xℓ(x̃i−1,zi−1(k))−∇x fi−1(x̃i−1))

∥

∥

∥

∥

∥

)

≤ 1
m(n−1)

(∥

∥

∥

∥

∥

1
K1

K1

∑
k=1

(∇xℓ(x̃1,z1(k))−∇x f1(x̃1))

∥

∥

∥

∥

∥

+2
n−1

∑
i=2

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1
Kn

Kn

∑
k=1

(∇xℓ(x̃n,zn(k))−∇x fn(x̃n))

∥

∥

∥

∥

∥

)

(9)

We will analyze the behavior of this bound on|ρ̂ (2)
i − ρ̂ (3)

i | using Lemma 22 in Appendix B. Define the filtration

Fi = σ

(

i
⋃

j=1

{z j(k)}K j
k=1∪

i+1
⋃

j=1

{z̃ j(k)}K j
k=1

)

∨K0 i = 0, . . . ,n (10)

7



with K0 from (6). Note thatKi−1 ⊂ Fi−1, soKi is Fi−1-measurable. In addition, ˜xi but notxi is Fi−1-measurable.
Define the random variables

Vi =

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

−E

[∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

Fi−1

]

i = 1, . . . ,n

Clearly,Vi is Fi -measurable, sinceVi is a function ofx̃i , Ki , and{zi(k)}Ki
k=1 all of which areFi-measurable. Condi-

tioned onFi−1, the sum
1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i)) (11)

is a sum of iid random variables. We now work with the conditional measureP{· | Fi−1} to compute sub-Gaussian
norms of (11) define in (24) and (25) of Appendix B. By assumption B.2 , we have

τ2
(

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i)) j

)

≤ Cg

d2

Therefore, applying Lemma 24 yields

B

(

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

)

≤
√

Cg

Ki

due to the independence conditioned onFi−1. By applying Lemma 25 from [17] to the conditional distribution
P{·|Fi−1}, we have

P

{∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

> t

∣

∣

∣

∣

∣

Fi−1

}

≤ 2exp

{

− t2

2(
√

Cg/Ki)2

}

= 2exp

{

−Kit2

2Cg

}

Since

E

[∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

Fi−1

]

≥ 0,

we have

P

{

Vi > t

∣

∣

∣

∣

∣

Fi−1

}

= P

{∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

−E

[∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

Fi−1

]

> t

∣

∣

∣

∣

∣

Fi−1

}

≤ P

{∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

> t

∣

∣

∣

∣

∣

Fi−1

}

≤ 2exp

{

−Kit2

2Cg

}

≤ 2exp

{

− t2

2Cg

}
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SinceE[Vi | Fi−1] = 0, we can apply Lemma 26 withc= 1/(2Cg) to yield

E
[

esVi
∣

∣Fi−1
]

≤ exp

{

1
2
(18Cg)s2

}

This shows that the collection of random variables{Vi}n
i=1 and the filtration{Fi}n

i=0 satisfies the conditions of
Lemma 22. Before applying Lemma 22, we bound the conditionalexpectations

E





∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

2 ∣
∣

∣

∣

∣

Fi−1





By a straightforward calculation conditioned onFi−1, we have

E





∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

2 ∣
∣

∣

∣

∣

Fi−1





=
1

K2
i

Ki

∑
k=1

Ki

∑
j=1

E [〈∇xℓ(x̃i,zi(k))−∇x f (x̃i),∇xℓ(x̃i ,zi( j))−∇x f (x̃i)〉 | Fi−1]

=
1

K2
i

Ki

∑
k=1

E
[

‖∇xℓ(x̃i ,zi(k))−∇x f (x̃i)‖2 | Fi−1
]

(a)
=

1

K2
i

Ki

∑
k=1

d

∑
q=1

E
[

(∇xℓ(x̃i ,zi(k))−∇x f (x̃i))
2
q | Fi−1

]

(b)
≤ 1

K2
i

Ki

∑
k=1

d
Cg

d2

≤ Cg

dKi

where (a) is a decomposition into each component of the vector and (b) follows since a centered sub-Gaussian random
variable with parameterCg/d2 satisfies

E
[

(∇xℓ(x̃i ,zi(k))−∇x f (x̃i))
2
q | Fi−1

]

≤ Cg

d2

Then by Jensen’s inequality

E

[∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

Fi−1

]

≤
√

Cg

dKi

Define the constants

a1 = an =
1

m(n−1)

a2 = · · ·= an−1 =
2

m(n−1)

resulting in

‖a‖2
2 =

2
m2(n−1)

9



Using the bound in (9) and Lemma 22 from Appendix B with this choice ofa, it holds that

P

{

|ρ̂ (2)
n − ρ̂ (3)

n |>
n

∑
i=1

ai

√

Cg

dKi
+ t

}

≤ P

{

n

∑
i=1

ai

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

>
n

∑
i=1

aiE

[∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇x fi(x̃i))

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

Fi−1

]

+ t

}

= P

{

n

∑
i=1

aiVi > t

}

≤ exp

{

−m2(n−1)t2

72Cg

}

Combining this bound witĥρ (3)
n ≥ ρ yields

∞

∑
n=2

P

{

ρ̂ (2)
n < ρ −

n

∑
i=1

ai

√

Cg

dKi
− tn

}

≤
∞

∑
n=2

P

{

ρ̂ (2)
n < ρ̂ (3)

n −
n

∑
i=1

ai

√

Cg

dKi
− tn

}

≤
∞

∑
n=2

P

{

|ρ̂ (2)
n − ρ̂ (3)

n |>
n

∑
i=1

ai

√

Cg

dKi
+ tn

}

≤
∞

∑
n=2

exp

{

−m2(n−1)t2
n

72Cg

}

< ∞

The result follows from the Borel-Cantelli lemma. Note thatas claimed

Ĉ(2)
n =

1
dm(n−1)

(

√

Cg

K1
+2

n−1

∑
i=2

√

Cg

Ki
+

√

Cg

Kn

)

Next, we show that̂ρn upper boundŝρ (2)
n eventually with a general assumption on the optimization algorithm.

When the conditions of Lemmas 2 and 3 are satisfied, it holds that ρ̂n plus a constant upper boundsρ .

Lemma 3. Suppose the following conditions hold:

1. B.1-B.2 hold

2. There exist bounds
E
[

‖xi − x̃i‖
∣

∣Fi−1
]

≤C(Ki) i = 1, . . . ,n

3. The sequence{tn} satisfies
∞

∑
n=2

exp

{

− (n−1)2t2
n

2n
(

1+ L
m

)2
diam2(X )

}

<+∞

Then for all n large enough it holds thatρ̂n+Ĉn+ tn ≥ ρ̂ (2)
n almost surely with

Ĉn ,

(

1+ L
m

)

n−1

(

C(K1)+2
n−1

∑
i=2

C(Ki)+C(Kn)

)

10



Proof. We have by the triangle inequality, reverse triangle inequality, and the Lipschitz continuity of∇xℓ(x,z) in x

from assumption B.1

|ρ̃i − ρ̃ (2)
i | ≤

∣

∣‖xi −xi−1‖−‖x̃i − x̃i−1‖
∣

∣

+

∣

∣

∣

∣

∣

1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi ,zi(k))

∥

∥

∥

∥

∥

− 1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(x̃i,zi(k))

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1
m

∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

∇xℓ(xi−1,zi−1(k))

∥

∥

∥

∥

∥

− 1
m

∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

∇xℓ(x̃i−1,zi−1(k))

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

≤ ‖(xi − x̃i)− (xi−1− x̃i−1)‖

+
1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(xi,zi(k))−∇xℓ(x̃i ,zi(k)))

∥

∥

∥

∥

∥

+
1
m

∥

∥

∥

∥

∥

1
Ki−1

Ki−1

∑
k=1

(∇xℓ(xi−1,zi−1(k))−∇xℓ(x̃i−1,zi−1(k)))

∥

∥

∥

∥

∥

≤
(

1+
L
m

)

(‖xi − x̃i‖+ ‖xi−1− x̃i−1‖)

so

|ρ̂n− ρ̂ (2)
n | ≤ 1

n−1

n

∑
i=2

|ρ̃i − ρ̃ (2)
i |

≤
(

1+ L
m

)

n−1

n

∑
i=2

(‖xi − x̃i‖+ ‖xi−1− x̃i−1‖)

=

(

1+ L
m

)

n−1

(

‖x1− x̃1‖+2
n−1

∑
i=2

‖xi − x̃i‖+ ‖xn− x̃n‖
)

We will again apply Lemma 22 of Appendix B to analyze this upper bound using the sigma algebra

Fi = σ

(

i
⋃

j=1

{z j(k)}K j
k=1∪

i
⋃

j=1

{z̃ j(k)}K j
k=1

)

∨K0 i = 0, . . . ,n (12)

Define the random variable
Vi = ‖xi − x̃i‖−E

[

‖xi − x̃i‖
∣

∣Fi−1
]

Clearly,Vi is Fi -measurable. Since
−diam(X )≤Vi ≤ diam(X ),

andE [Vi | Fi−1] = 0, we can apply the conditional version Hoeffding’s Lemma from Lemma 23 to yield

E
[

esVi
∣

∣Fi−1
]

≤ exp

{

1
2

diam2(X )s2
}

The collection of random variables{Vi}n
i=1 and the filtration{Fi}n

i=0 satisfy the conditions of Lemma 22. Before
applying Lemma 22, we bound the conditional expectations

E
[

‖xi − x̃i‖
∣

∣Fi−1
]

By assumption, we have
E
[

‖xi − x̃i‖
∣

∣Fi−1
]

≤C(Ki) i = 1, . . . ,n

11



and so
(

1+ L
m

)

n−1

(

E
[

‖x1− x̃1‖
∣

∣F0
]

+2
n−1

∑
i=2

E
[

‖xi − x̃i‖
∣

∣Fi−1
]

‖+E
[

‖xn− x̃n‖
∣

∣Fn−1
]

)

≤
(

1+ L
m

)

n−1

(

C(K1)+2
n−1

∑
i=2

C(Ki)+C(Kn)

)

, Ĉn

Set

a1 = an =

(

1+ L
m

)

n−1

and

a2 = · · ·= an−1 =

(

1+ L
m

)

n−1

resulting in

‖a‖2
2 =

n
(

1+ L
m

)2

(n−1)2

Applying our bound in (12) and Lemma 22 with this choice ofa yields

P

{

|ρ̂n− ρ̂ (2)
n |> Ĉn+ t

}

≤ P

{

(

1+ L
m

)

n−1

(

‖x1− x̃1‖+2
n−1

∑
i=2

‖xi − x̃i‖+ ‖xn− x̃n‖
)

>

(

1+ L
m

)

n−1

(

E
[

‖x1− x̃1‖
∣

∣F0
]

+2
n−1

∑
i=2

E
[

‖xi − x̃i‖
∣

∣Fi−1
]

‖+E
[

‖xn− x̃n‖
∣

∣Fn−1
]

)

+ t

}

= P

{

(

1+ L
m

)

n−1

(

V1+2
n−1

∑
i=2

Vi +Vn

)

> t

}

= P

{

n

∑
i=1

aiVi > t

}

≤ exp

{

− (n−1)2t2

2n
(

1+ L
m

)2
diam2(X )

}

Finally, we have

∞

∑
n=2

P

{

ρ̂n < ρ̂ (2)
n −Ĉn− tn

}

≤
∞

∑
n=2

P

{

|ρ̂n− ρ̂ (2)
n |> Ĉn+ tn

}

≤
∞

∑
n=2

exp

{

− (n−1)2t2
n

2n
(

1+ L
m

)2
diam2(X )

}

<+∞

The claim follows from the Borel-Cantelli Lemma.

If Lemmas 2 and 3 hold for the sequence{tn/2}, then for alln large enough it holds that

ρ̂n+Ĉn+Ĉ(2)
n + tn ≥ ρ

almost surely.
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Lemma 4. It always holds that

E
[

‖xi − x̃i‖
∣

∣Fi−1
]

≤ 2

√

1
m

b
(

diam2(X ),Ki
)

Therefore, the choice

C(Ki), 2

√

2
m

b
(

diam2(X ),Ki
)

satisfies the conditions of Lemma 3.

Proof. Using the sigma algebras defined in (12) yields

E [‖xi − x̃i‖ | Fi−1] ≤ E [‖xi −x∗
i ‖ | Fi−1]+E [‖x̃i −x∗

i ‖ | Fi−1]

≤ E

[

√

2
m
( fi(xi)− fi(x∗

i )) | Fi−1

]

+E

[

√

2
m
( fi(x̃i)− fi(x∗

i )) | Fi−1

]

≤
√

2
m
E [( fi(xi)− fi(x∗

i )) | Fi−1]+

√

2
m
E [( fi(x̃i)− fi(x∗

i )) | Fi−1]

≤ 2

√

2
m

b(diam2(X ),Ki)

where the third inequality follows from Jensen’s inequality.

This choice ofC(Kn)works for any algorithm with the associatedb(d0,K). For any particular algorithm, we believe
that we can produce tighter bounds independent of diam(X ) by copying the Lyapunov analysis used to analyze SGD
as in Appendix A. The analysis becomes algorithm dependent in this case and is omitted.

Finally, we state an overall theorem for the direct estimatethat gives general combined conditions under whichρ̂n

upper boundsρ .

Theorem 1. If B.1 -B.2 hold and the sequence{tn} satisfies∑∞
n=2e−Cnt2n < ∞ for all C > 0, then for a sequence of

constants{Cn} and for all n large enough it holds that̂ρn+Cn+ tn ≥ ρ almost surely.

Proof. Combine Lemmas 2 and 3 to yield the result with

Cn = Ĉn+Ĉ(2)
n

3.3.2 Vector IPM Estimate

We first derive a version of Hoeffding’s inequality that allows for some dependence among the random variables. We
use this concentration inequality to analyzeρ̂n for the IPM estimate. Given an integerW, we construct a cover of
{1,2, . . . ,n} by dividing the set intoW groups of integers spaced byW, i.e.,

A j =

{

j, j +W, j +2W . . . , j +

⌊

n− j
W

⌋

W

}

j = 1, . . . ,W (13)

Note that

{1,2, . . . ,n}=
W
⋃

j=1

A j

andAi ∩A j = /0 for i 6= j. The proof of Lemma 5 is nearly identical to the proof of the extension of Hoeffding’s
inequality from [18] with Lemma 22 used instead. We assume that if we refer to a filtrationFi with i < 0, then we
implicitly refer toF0.
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Lemma 5 (Dependent Hoeffding’s Inequality). Suppose we are given a collection of random variable{Vi}n
i=1 and a

filtration {F}n
i=0 such that

1. ai ≤Vi ≤ bi for constants ai and bi i = 1, . . . ,n

2. Vi is Fi -measurable i= 1, . . . ,n

3. Given an integer W and a cover{A j}W
j=1 as in(13) for each j it holds that

E

[

Vj+iW

∣

∣

∣F j+(i−1)W

]

= 0 i = 1, . . . ,

⌊

n− j
W

⌋

and
E

[

Vj

∣

∣

∣F0

]

= 0

Then it holds that

P

{

n

∑
i=1

Vi > t

}

≤ exp

{

− 2t2

W∑n
i=1(bi −ai)2

}

and

P

{

n

∑
i=1

Vi <−t

}

≤ exp

{

− 2t2

W∑n
i=1(bi −ai)2

}

Proof. Define

U j ,

⌊

n− j
W

⌋

∑
i=0

Vj+iW

for j = 1, . . . ,W. Let {p j}W
j=1 be a probability distribution on{1, . . . ,W} to be specified later. By Jensen’s inequality,

we have

exp

{

s
n

∑
i=1

Vi

}

= exp

{

W

∑
j=1

p j
s
p j

U j

}

≤
W

∑
j=1

p j exp

{

s
p j

U j

}

Then it holds that

E

[

exp

{

s
n

∑
i=1

Vi

}]

≤
W

∑
j=1

p jE

[

exp

{

s
p j

U j

}]

Now consider one term

E

[

exp

{

s
p j

U j

}]

= E






exp











s
p j

⌊

n− j
W

⌋

∑
i=0

Vj+iW

















Sincea j+iW ≤Vj+iW ≤ b j+iW and

E

[

Vj+iW

∣

∣

∣F j+(i−1)W

]

= 0,

we can apply the conditional version Hoeffding’s Lemma fromLemma 23 to yield

E
[

esVj+iW
∣

∣F j+(i−1)W
]

≤ exp

{

1
8
(b j+iW −a j+iW)2s2

}
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Then we can apply Lemma 22 to{Vj+iW}
⌊

n− j
W

⌋

i=0 and{F j+iW}
⌊

n− j
W

⌋

i=0 to yield

E

[

exp

{

s
p j

U j

}]

≤ exp











s2

8p2
j

⌊

n− j
W

⌋

∑
i=0

(b j+iW −a j+iW)2











=

⌊

n− j
W

⌋

∏
i=0

exp

{

s2

8p2
j

(bα −aα)
2

}

Then we have

E

[

exp

{

s
n

∑
i=1

Vi

}]

≤
W

∑
j=1

p j

⌊

n− j
W

⌋

∏
i=0

exp

{

s2

8p2
j

(bα −aα)
2

}

=
W

∑
j=1

p j exp

{

s2c j

8p2
j

}

with

c j =

⌊

n− j
W

⌋

∑
i=0

(b j+iW −a j+iW)2

Let p j =
√

c j/T and

T =
W

∑
j=1

√
c j .

Therefore, we have

E

[

exp

{

s
n

∑
i=1

Vi

}]

≤ exp

{

1
8

T2s2
}

Applying the Chernoff bound [19] and optimizing yields

P

{

n

∑
i=1

Vi > t

}

≤ exp
{

−2t2/T2}

BoundingT with Cauchy-Schwarz yields

T2 ≤
(

W

∑
j=1

1

)(

W

∑
j=1

c j

)

=W
n

∑
i=1

(bi −ai)
2

and the results follows. The proof for the other tail is nearly identical.

If we do not have the condition 3 of Lemma 5, then it holds that

P











n

∑
i=1

Vi >
W

∑
j=1

⌊

n− j
W

⌋

∑
i=0

E
[

Vj+iW
∣

∣F j+(i−1)W
]

+ t











≤ exp

{

− 2t2

W∑n
i=1(bi −ai)2

}

If we can bound the conditional expectation

E
[

Vj+iW
∣

∣F j+(i−1)W
]

≤Cj+iW ,
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by aF j+(i−1)W-measurable random variable, then we have

P

{

n

∑
i=1

Vi >
n

∑
i=1

Ci + t

}

= P











n

∑
i=1

Vi >
W

∑
j=1

⌊

n− j
W

⌋

∑
i=0

Cj+iW + t











≤ P











n

∑
i=1

Vi >
W

∑
j=1

⌊

n− j
W

⌋

∑
i=0

E
[

Vj+iW
∣

∣F j+(i−1)W
]

+ t











≤ P











W

∑
j=1

⌊

n− j
W

⌋

∑
i=0

(

Vj+iW −E
[

Vj+iW
∣

∣F j+(i−1)W
])

> t











≤ exp

{

− 2t2

W∑n
i=1(bi −ai)2

}

We have the following lemma characterizing the performanceof the IPM estimate.

Lemma 6. For the IPM estimate and any sequence{tn} such that

∞

∑
n=2

exp

{

− nt2n
4diam(X )2

}

< ∞

for all n large enough it holds that̂ρn+ tn ≥ ρ almost surely.

Proof. Define the random variables
Vi = ρ̃i −E [ρ̃i | Ki−2]

with {Ki}n
i=1 defined in (6). We have

−diam(X )≤Vi ≤ diam(X )

Clearly,Vi is Ki-measurable andE[Vi | Ki−2] = 0. Now, we can apply Lemma 5 withW = 2 to yield

P

{

n

∑
i=1

Vi <−nt

}

≤ exp

{

− 2(nt)2

(2)
(

4ndiam2(X )
)

}

= exp

{

− nt2

4diam2(X )

}

None of the random variables{zi(k)}Ki
k=1 and{zi−1(k)}Ki−1

k=1 areKi−2 measurable. Also, regardless of how many
samplesKi andKi−1 are taken, the IPM estimate is biased upward. Thus, it holds that

E [ρ̃i | Ki−2]≥ ρ

Therefore, it follows that

P{ρ̂n < ρ − t} ≤ P

{

n

∑
i=1

ρ̃i <
n

∑
i=1

E [ρ̃i | Ki−2]−nt

}

= P

{

n

∑
i=1

Vi <−nt

}

≤ exp

{

− nt2

4diam2(X )

}
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Note that we pay a price of two in the exponent due toρ̃i andρ̃i−1 both depending on the samples frompi−1. Since

∞

∑
n=2

exp

{

− nt2n
4diam(X )2

}

< ∞

it follows that
∞

∑
n=2

P{ρ̂n+ t < ρ}<+∞,

This in turn guarantees by way of the Borel-Cantelli Lemma that forn large enough

ρ̂n+ tn ≥ ρ

almost surely.

3.4 Combining One Step Estimates For Bounded Change

We now look at estimatingρ in the case that
‖x∗

n−x∗
n−1‖ ≤ ρ .

We set
ρi , ‖x∗

i −x∗
i−1‖

B.3 Assume that we have estimatorsĥW : RW → R such that

1. E[ĥW(ρ j , . . . ,ρ j−W+1)]≥ ρ for all j ≥ 1 andW ≥ 1

2. For any random variables{ρ̃i} such thatE[ρ̃i ]≥ E[ρi ], we have

E
[

ĥW(ρ̃ j , . . . , ρ̃ j−W+1)
]

≥ E
[

ĥW(ρ j , . . . ,ρ j−W+1)
]

For example, ifρi
iid∼ Unif[0,ρ ], then

ĥW (ρi ,ρi+1, . . . ,ρi+W−1) =
W+1

W
max{ρi,ρi+1, . . . ,ρi+W−1}

is an estimator ofρ with the required properties. Also, note that the two conditions on the estimator in B.3 imply that

E
[

ĥW(ρ̃ j , . . . , ρ̃ j−W+1)
]

≥ E
[

ĥW(ρ j , . . . ,ρ j−W+1)
]

≥ ρ

Given an estimator satisfying assumption B.3 , we compute

ρ̃ (i) = ĥW(ρ̃i , ρ̃i−1, . . . , ρ̃i−W+1)

and set

ρ̂n =
1

n−1

n

∑
i=2

ρ̃ (i) =
1

n−1

n

∑
i=2

ĥmin{W,i−1}(ρ̃i , ρ̃i−1, . . . , ρ̃max{i−W+1,2}) (14)

We have

E[ρ̂n] =
1

n−1

n

∑
i=2

E[ρ̃ (i)]≥ ρ

Lemma 7 (IPM Single Step Estimates). For the estimator in(14) computed using the IPM estimate forρ̃i and any
sequence{tn} such that

∞

∑
n=2

exp

{

− 2(n−1)t2
n

(W+1)diam(X )2

}

< ∞

it holds that for all n large enougĥρn+ tn ≥ ρ almost surely.
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Proof. We copy the proof of Lemma 6 withW+1 in place of 2 and note thatρ̃ (i) andρ̃ ( j) with |i− j|>W+1 do not
depend on the same samples. Lemma 5 and some simple algebra yields

P{ρ̂n < ρ − t} ≤ exp

{

− 2(n−1)t2

(W+1)diam(X )2

}

We pay a price ofW+1 in the denominator of the exponent due to the dependence of the ρ̃ (i). By the Borel-Cantelli
Lemma, for alln large enough it holds that̂ρn+ tn ≥ ρ almost surely as long as

∞

∑
n=2

exp

{

− 2(n−1)t2
n

(W+1)diam(X )2

}

< ∞

To analyze the direct estimate, we need the following assumption

B.4 Suppose that there exists absolute constants{bi}W
i=1 for any fixedW such that

|ĥW(p1, . . . , pW)− ĥW(q1, . . . ,qW)| ≤
W

∑
i=1

bi |pi −qi| ∀p,q ∈R
W
≥0

For the uniform case, we have
∣

∣

∣

W+1
W

max{p1, . . . , pW}− W+1
W

max{q1, . . . ,qW}
∣

∣

∣ ≤ W+1
W

max{|p1−q1|, . . . , |pW −qW|}

≤ W+1
W

W

∑
i=1

|pi −qi|

so

b1 = · · ·= bW =
W+1

W
Under assumption B.4 , we can then show that

ρ̂n =
1

n−W

n

∑
i=W+1

ρ̃ (i)

eventually upper boundsρ by copying the proofs of the lemmas behind Theorem 1.

Lemma 8 (Direct Single Step Estimates). Suppose that the following conditions hold:

1. B.1 -B.4 hold

2. The sequence{tn} satisfies

∞

∑
n=W+1

exp











− (n−W)2t2
n

32n
(

1+ L
m

)2
(

∑W
j=1b j

)2
diam2(X )











<+∞

and

∞

∑
n=W+1

exp











− (n−W)2m2t2
n

144nCg

(

∑W
j=1b j

)2











<+∞

3. There are bounds C(K) such that
E [‖xi − x̃i‖ | Fi−1]≤C(Ki)

18



Then for all n large enough it holds thatρ̂n+Ûn+ V̂n+ tn ≥ ρ almost surely with

Ûn =
2
(

1+ L
m

)

∑W
j=1b j

n−W

n

∑
i=1

C(Ki)

and

V̂n =
2∑W

j=1b j

m(n−W)

n

∑
i=1

√

Cg

dKi

Proof. Defineρ̃ (2)
i , ρ̃ (3)

i , ρ̂ (2)
i , andρ̂ (3)

i as in Lemmas 2 and 3. First, we have

|ρ̂n− ρ̂ (3)
n | ≤ 1

n−W

n

∑
i=W+1

|ρ̃ (i)− ρ̃ (i)
3 |

≤ 1
n−W

n

∑
i=W+1

i

∑
j=i−W+1

b j |ρ̃ j − ρ̃ (3)
j |

≤ 1
n−W

n

∑
i=W+1

i

∑
j=i−W+1

b j

(

|ρ̃ j − ρ̃ (2)
j |+ |ρ̃ (2)

j − ρ̃ (3)
j |
)

≤ ∑W
j=1b j

n−W

n

∑
i=2

(

|ρ̃i − ρ̃ (2)
i |+ |ρ̃ (2)

i − ρ̃ (3)
i |
)

Second, define
Ui , ‖xi − x̃i‖

and

Vi ,

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇ fi(x̃i))

∥

∥

∥

∥

∥

Then we have

|ρ̃i − ρ̃ (2)
i | ≤ ‖xi − x̃i‖+

1
m

∥

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(xi ,zi(k))−∇xℓ(x̃i ,zi(k)))

∥

∥

∥

∥

∥

≤
(

1+
L
m

)

(Ui +Ui−1)

and

|ρ̃ (2)
i − ρ̃ (3)

i | ≤ 1
m
(Vi +Vi−1)

Then it follows that

|ρ̂n− ρ̂ (3)
n | ≤ ∑W

j=1b j

n−W

n

∑
i=2

(

|ρ̃i − ρ̃ (2)
i |+ |ρ̃ (2)

i − ρ̃ (3)
i |
)

≤
2
(

1+ L
m

)

∑W
j=1b j

n−W

n

∑
i=1

Ui +
2∑W

j=1b j

m(n−W)

n

∑
i=1

Vi

Suppose that
2
(

1+ L
m

)

∑W
j=1b j

n−W

n

∑
i=1

E [Ui | Fi−1]≤ Ûn

and
2∑W

j=1b j

m(n−W)

n

∑
i=1

E [Vi | Fi−1]≤ V̂n
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Then it holds that

P

{

|ρ̂n− ρ̂ (3)
n |> Ûn+ V̂n+ t

}

≤ P

{

2
(

1+ L
m

)

∑W
j=1b j

n−W

n

∑
i=1

Ui +
2∑W

j=1b j

m(n−W)

n

∑
i=1

Vi > Ûn+ V̂n+ t

}

≤ P

{

2
(

1+ L
m

)

∑W
j=1b j

n−W

n

∑
i=1

Ui > Ûn+
t
2

}

+P

{

2∑W
j=1b j

m(n−W)

n

∑
i=1

Vi > V̂n+
t
2

}

We can apply Lemma 22 to each term to yield

P

{

2
(

1+ L
m

)

∑W
j=1b j

n−W

n

∑
i=1

Ui > Ûn+
t
2

}

≤ exp











− (n−W)2t2

32n
(

1+ L
m

)2
(

∑W
j=1b j

)2
diam2(X )











and

P

{

2∑W
j=1b j

m(n−W)

n

∑
i=1

Vi > V̂n+
t
2

}

≤ exp











− (n−W)2m2t2

144nCg

(

∑W
j=1b j

)2











Then it holds that

P

{

|ρ̂n− ρ̂ (3)
n |> Ûn+ V̂n+ t

}

≤ exp











− (n−W)2t2

32n
(

1+ L
m

)2
(

∑W
j=1b j

)2
diam2(X )











+exp











− (n−W)2m2t2

144nCg

(

∑W
j=1b j

)2











We have by straightforward computation

Ûn =
2
(

1+ L
m

)

∑W
j=1b j

n−W

n

∑
i=1

C(Ki)

and

V̂n =
2∑W

j=1b j

m(n−W)

n

∑
i=1

√

Cg

dKi

Then it holds that
∞

∑
n=W+1

P
{

ρ̂n < ρ −Ûn− V̂n− tn
}

≤
∞

∑
n=W+1

P

{

ρ̂n < ρ̂ (3)
n −Ûn− V̂n− tn

}

≤
∞

∑
n=W+1

P

{

|ρ̂n− ρ̂ (3)
n |> Ûn+ V̂n+ tn

}

≤
∞

∑
n=W+1

exp











− (n−W)2t2
n

32n
(

1+ L
m

)2
(

∑W
j=1b j

)2
diam2(X )











+
∞

∑
n=W+1

exp











− (n−W)2m2t2
n

144nCg

(

∑W
j=1b j

)2











< ∞

By the Borel-Cantelli lemma, it follows that for alln large enough

ρ̂n+Ûn+ V̂n+ tn ≤ ρ

almost surely.
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3.5 Parameter Estimation

We may need to estimate parameters of the functions{ fn} such as the strong convexity parameterm to compute
b(d0,K). We need the following assumption on our bound:

D.1 Suppose that our boundb(d0,K,ψ) is parameterized byψ , which depends on properties of the functionℓ(x,z)
and the distributions{pn}∞

n=1. Suppose that

ψ1 ≤ ψ2 ⇔ b(d0,K,ψ1)≤ b(d0,K,ψ2)

D.2 There exists a true set of parametersψ∗ such that

ψn = ψ∗ ∀n≥ 1

D.3 The spacesX andZ are compact

D.4 There exists a constantL such that

‖∇xℓ(x,z)−∇xℓ(x̃,z)‖ ≤ L‖x− x̃‖

D.5 Suppose that we know that the parametersψ ∈ P with P compact

D.6 Suppose that∇ fn(xn) has Lipschitz continuous gradients with modulusM

As a consequence of Assumption D.4 , it follows that there exists a constantG such that there exists a constantG such
that

‖∇xℓ(x,z)‖ ≤ G ∀x ∈ X ,z ∈ Z

Satisfying Assumption D.5 is usually easy due to the compactness assumptions in Assumption D.4 .
In most cases, we have

ψ =









−m
M
A
B









wherem is the parameter of strong convexity,M is the Lipschitz gradient modulus, and the pair(A,B) controls gradient
growth, i.e.,

E‖∇xℓ(x,z)‖2 ≤ A+B‖x−x∗‖2

We parameterize using−m, since smallerm increase the boundb(d0,K). We present several general methods for
estimating these parameters, although in practice, problem specific estimators based on the form of the function may
offer better performance. As an example, we present problemspecific estimates for

ℓ(x,z) =
1
2

(

y−w⊤x
)2

+
1
2

λ‖x‖2

As in estimatingρ , we produce one time instant estimates ˜mi , M̃i , Ãi , andB̃i at timei and combine them. We only
examine the case under Assumption D.4 , although we could examine an inequality constraints as with estimatingρ .
We combine estimates by averaging to yield

1. m̂n =
1
n ∑n

i=1m̃i

2. M̂n =
1
n ∑n

i=1M̃i

3. Ân =
1
n ∑n

i=1 Ãi

4. B̂n =
1
n ∑n

i=1 B̃i
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3.5.1 Estimating Strong Convexity Parameter and LipschitzGradient Modulus

We seek one step estimators ˜mn andM̃n such that

E[m̃n | Kn−1]≤ m

and
E[M̃n | Kn−1]≥ M

with {Kn} defined in (6).
Hessian Method:We exploit the fact that

∇2
xx

fn(x)� mI ∀x ∈ X

This in turn implies that
λmin

(

∇2
xx

fn(x)
)

≥ m ∀x ∈ X

This suggests that given{zn(k)}Kn
k=1 we set

m̃n , min
x∈X

λmin

(

1
Kn

Kn

∑
k=1

∇2
xx

ℓ(x,zn(k))

)

Since
λmin(A) = min

v:‖v‖=1
〈Av,v〉 ,

λmin(A) is a concave function ofA. Then by Jensen’s inequality, we have

E[m̃n] = E

[

min
x∈X

λmin

(

1
Kn

Kn

∑
k=1

∇2
xx

ℓ(x,zn(k))

)

∣

∣

∣

∣

Kn−1

]

≤ min
x∈X

E

[

λmin

(

1
Kn

Kn

∑
k=1

∇2
xx

ℓ(x,zn(k))

)

∣

∣

∣

∣

Kn−1

]

≤ min
x∈X

λmin

(

E

[

1
Kn

Kn

∑
k=1

∇2
xx

ℓ(x,zn(k))

∣

∣

∣

∣

Kn−1

])

= min
x∈X

λmin
(

∇2
xx

fn(x)
)

= m

Similarly, we can set

M̃n , max
x∈X

λmax

(

1
Kn

Kn

∑
k=1

∇2
xx

ℓ(x,zn(k))

)

Since
λmax(A) = max

v:‖v‖=1
〈Av,v〉 ,

λmax(A) is a convex function ofA. By Jensen’s inequality, it holds that

E[M̃n | Kn−1]≥ M

Gradient Method To Computẽmn: To actually minimize overx, we can use gradient descent. To apply gradient
descent, we use eigenvalue perturbation results [20]. Suppose that we have a base matrixT0 with eigenvectorsv0i and
eigenvaluesλ0i . We want to find the eigenvectorsvi and eigenvaluesλi of a perturbed matrixT:

T0v0i = λ0iv0i

Tvi = λivi
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In particular, we want to relateλ0i to λi . With
δT , T −T0,

we have
δλi = v⊤

0i (δT )v0i

and
∂λi

∂Ti j
= v0i(i)v0 j (2− δi j )

Suppose we are given a matrix-valued functionT (x) with

T (x)v(x) = λmin(x)v(x)

Then it holds that

∇xλmin (T (x)) = ∑
i, j

∂λmin

∂Ti j
∇xTi j (x)

= ∑
i, j

vi(x)v j(x)(2− δi j )∇xTi j (x)

Then we can use gradient descent to solve

min
x∈X

λmin

(

1
Kn

Kn

∑
k=1

∇xℓ(x,zn(k))

)

Starting from anyx(0), we can compute

x(p) = ΠX

[

x(p−1)− µ∇xλmin

(

1
Kn

Kn

∑
k=1

∇2
xx

ℓ(x,zn(k))

)]

p= 1, . . . ,P

and set

m̂n , λmin

(

1
Kn

Kn

∑
k=1

∇2
xx

ℓ(x(P),zn(k))

)

(15)

Heuristic Method:For any two pointsx andy, we have by strong convexity

fn(y)≥ fn(x)+ 〈∇ fn(x),y−x〉+ 1
2

m‖y−x‖2

Suppose that we haveN pointsx(1), . . . ,x(N). Then we know that for any two distinct pointsxi andx j

m≤ fn(x(i))− fn(x( j))−〈∇ fn(x( j)),x(i)−x( j)〉
1
2‖x(i)−x( j)‖2

This suggests the estimator

m̂n , min
i 6= j

1
Kn

∑Kn
k=1ℓ(x(i),zn(k))− 1

Kn
∑Kn

k=1ℓ(x( j),zn(k))−
〈

1
Kn

∑Kn
k=1 ∇xℓ(x( j),zn(k)),x(i)−x( j)

〉

1
2‖x(i)−x( j)‖2

(16)
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for the strong convexity parameter. Then we have

E[m̂n]

= E



min
i 6= j

1
Kn

∑Kn
k=1ℓ(x(i),zn(k))− 1

Kn
∑Kn

k=1ℓ(x( j),zn(k))−
〈

1
Kn

∑Kn
k=1 ∇xℓ(x( j),zn(k)),x(i)−x( j)

〉

1
2‖x(i)−x( j)‖2





≤ min
i 6= j

E





1
Kn

∑Kn
k=1ℓ(x(i),zn(k))− 1

Kn
∑Kn

k=1ℓ(x( j),zn(k))−
〈

1
Kn

∑Kn
k=1 ∇xℓ(x( j),zn(k)),x(i)−x( j)

〉

1
2‖x(i)−x( j)‖2





≤ min
i 6= j

fn(x(i))− fn(x( j))−〈∇ fn(x( j)),x(i)−x( j)〉
1
2‖x(i)−x( j)‖2

It is difficult to compare this estimator tom exactly. All we can say is that

m≤ min
i 6= j

fn(x(i))− fn(x( j))−〈∇ fn(x( j)),x(i)−x( j)〉
1
2‖x(i)−x( j)‖2

as well. In practice, this method produces estimates close to m.
Similarly, we can set

M̂n , max
i 6= j

1
Kn

∑Kn
k=1ℓ(x(i),zn(k))− 1

Kn
∑Kn

k=1ℓ(x( j),zn(k))−
〈

1
Kn

∑Kn
k=1 ∇xℓ(x( j),zn(k)),x(i)−x( j)

〉

1
2‖x(i)−x( j)‖2

(17)

Problem Specific:For the penalized quadratic, we have

∇2
xx

ℓ(x,z) = λI+ww⊤

so
∇2

xx
fn(x) = λI+E[wnw

⊤
n ]

This suggests the simple closed-form estimates

m̃n = λ +λmin

(

1
Kn

Kn

∑
k=1

wn(k)wn(k)
⊤
)

and

M̃n = λ +λmax

(

1
Kn

Kn

∑
k=1

wn(k)wn(k)
⊤
)

Again, by Jensen’s inequality, it holds that
E[m̃n | Kn−1]≤ m

and
E[M̃n | Kn−1]≥ M

Combining Estimates:We now look at combining the single time instant estimates ofthe strong convexity parameter
and the Lipschitz gradient modulus.

Lemma 9. Choose tn such that for all C> 0 it holds that

∞

∑
n=1

e−Cnt2n <+∞

Then for all n large enough it holds that
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1. m̂n− tn ≤ m

2. M̂n+ tn ≥ M

almost surely.

Proof. By the compactness of the spaceP containingψ , we can apply the dependent version of Hoeffding’s lemma
(Lemma 23) to yield

E
[

esm̃i
∣

∣Ki−1
]

≤ exp

{

1
2

σ2
ms2
}

and

E

[

esM̃i
∣

∣Ki−1

]

≤ exp

{

1
2

σ2
Ms2
}

for some constantsσ2
m andσ2

M derived from Hoeffding’s lemma. Then applying Lemma 22, it follows that

P

{

m̂n >
1
n

n

∑
i=1

E[m̃i | Ki−1]+ tn

}

≤ exp

{

− nt2n
2σ2

m

}

We know that
1
n

n

∑
i=1

E[m̃i | Ki−1]> m

so it follows that

P{m̂n > m+ tn} ≤ exp

{

− nt2n
2σ2

m

}

Similarly, for the Lipschitz gradient modulus, it holds that

P
{

M̂n < M− tn
}

≤ exp

{

− nt2n
2σ2

M

}

As before, we have
∞

∑
n=1

P{m̂n > m+ tn} ≤
∞

∑
n=1

exp

{

− nt2n
2σ2

m

}

<+∞

and
∞

∑
n=1

P
{

M̂n < M− tn
}

≤
∞

∑
n=1

exp

{

− nt2n
2σ2

M

}

<+∞

to ensure that almost surely for alln large enough it holds that

m̂n− tn ≤ m

and
M̂n+ tn ≥ m

For Lemma 9, we needtn to decay no faster thatO(n−1/2).
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3.5.2 Estimating Gradient Parameters

From Assumption D.6 , it holds that

E‖∇xℓ(x,z)‖2 = E‖∇xℓ(x
∗,z)+ (∇xℓ(x,z)−∇xℓ(x

∗,z))‖2

≤ 2E‖∇xℓ(x
∗,z)‖2+2E‖∇xℓ(x,z)−∇xℓ(x

∗,z)‖2

≤ 2E‖∇xℓ(x
∗,z)‖2+2M2‖x−x∗‖2

Thus, we can set
B= 2M2

and
A= 2E‖∇xℓ(x

∗,z)‖2

This suggests that given an estimateM̃n for M, we set

B̃n = 2M̃2
n

Then by Jensen’s inequality, we have

E[B̃n | Kn−1] = 2E[M̃2
n | Kn−1]

≥ 2
(

E[B̃n | Kn−1]
)2

≥ 2M2

= B

Lemma 10. Choose tn such that for all C> 0 it holds that

∞

∑
n=1

e−Cnt2n <+∞

Then for all n large enough it holds that
B̂n+ tn ≥ B

almost surely.

Proof. By identical reasoning for the strong convexity and Lipschitz continuous gradients, it holds that

P
{

B̂n < B− tn
}

≤ exp

{

− nt2n
2σ2

B

}

Since we have
∞

∑
n=1

exp

{

− nt2n
2σ2

B

}

<+∞

for all n large enough it holds that
B̂n+ tn ≥ B

almost surely.

To estimateA, consider using a pointx to approximatex∗. It holds that

E‖∇xℓ(x
∗,z)‖2 = E‖∇xℓ(x,z)+ (∇xℓ(x

∗,z)−∇xℓ(x,z))‖2

≤ 2E‖∇xℓ(x,z)‖2+2E‖∇xℓ(x
∗,z)−∇xℓ(x,z)‖2

≤ 2E‖∇xℓ(x,z)‖2+2M2
E‖x−x∗‖2

≤ 2E‖∇xℓ(x,z)‖2+2

(

M
m

)2

‖∇ f (x)‖2

≤ 2E‖∇xℓ(x,z)‖2+2

(

M
m

)2

‖∇ f (x)‖2
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This suggests the estimate

Ãn(x) =
2
Kn

Kn

∑
k=1

‖∇xℓ(x,zn(k))‖2+4

(

M̃n−1+ tn−1

m̃n−1− tn−1

)2∥
∥

∥

∥

1
Kn

Kn

∑
k=1

∇xℓ(x,zn(k))

∥

∥

∥

∥

2

Lemma 11. For anyx possibly random but not a function of{zn(k)}Kn
k=1 and all n large enough, it holds that

E[Ãn | Kn−1]≥ A

Proof. For anyx possibly random but not a function of{zn(k)}Kn
k=1, it holds that

E[Ãn | Kn−1]

= E

[

2
Kn

Kn

∑
k=1

‖∇xℓ(x,zn(k))‖2+4

(

M̃n−1+ tn−1

m̃n−1− tn−1

)2∥
∥

∥

∥

1
Kn

Kn

∑
k=1

∇xℓ(x,zn(k))

∥

∥

∥

∥

2 ∣
∣

∣

∣

Kn−1

]

= E

[

2
Kn

Kn

∑
k=1

‖∇xℓ(x,zn(k))‖2

∣

∣

∣

∣

Kn−1

]

+4

(

M̃n−1+ tn−1

m̃n−1− tn−1

)2

E

[

∥

∥

∥

∥

1
Kn

Kn

∑
k=1

∇xℓ(x,zn(k))

∥

∥

∥

∥

2 ∣
∣

∣

∣

Kn−1

]

≥ 2E‖∇xℓ(x,zn)‖2+4

(

M̃n−1+ tn−1

m̃n−1− tn−1

)2

‖∇ fn(x)‖2

The last inequality uses Jensen’s inequality. Then by our prior analysis, almost surely for alln sufficiently large it
holds that

M̃n−1+ tn−1

m̃n−1− tn−1
≥ M

m

and so for alln sufficiently large

E[Ãn | Kn−1] ≥ 2E‖∇xℓ(x,zn)‖2+4

(

M
m

)2

‖∇ fn(x)‖2

= 2E‖∇xℓ(x
∗
n,zn)‖2

= A

Therefore, for alln sufficiently large (dependent on estimation ofm andM), it holds that

E[Ãn | Kn−1]≥ A

Combining Estimates for A:In practice, we usẽAn(xn), which complicates the analysis due to the fact thatxn is
computed using the same samples{zn(k)}Kn

k=1.

Lemma 12. Choose tn such that for all C> 0 it holds that

∞

∑
n=1

e−Cnt2n <+∞

Then for all n large enough it holds that
Ân+ tn ≥ A

almost surely.
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Proof. Consider the following three estimates ofA all computed with knowledge ofm andM andx̃n as in Lemma 2:

Ã(2)
i =

2
Ki

Ki

∑
k=1

‖∇xℓ(xi ,zi(k))‖2+4

(

M
m

)2∥
∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi,zi(k))

∥

∥

∥

∥

2

Ã(3)
i =

2
Ki

Ki

∑
k=1

‖∇xℓ(x̃i ,zi(k))‖2+4

(

M
m

)2∥
∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(x̃i,zi(k))

∥

∥

∥

∥

2

Ã(4)
i = 2E‖∇xℓ(x̃i,zi)‖2+4

(

M
m

)2

‖∇ fi(x̃i)‖2

Define the averaged estimates

Â(2)
n =

1
n

n

∑
i=1

Ã(2)
i

Â(3)
n =

1
n

n

∑
i=1

Ã(3)
i

Â(4)
n =

1
n

n

∑
i=1

Ã(4)
i

We always have

Ã(4)
i ≥ A

so
Â(4)

n ≥ A

First, we show that̂A(2)
n is close toA(3)

n . We have

|Ã(2)
i − Ã(3)

i |

≤ 2

∣

∣

∣

∣

1
Ki

Ki

∑
k=1

(

‖∇xℓ(xi ,zi(k))‖2−‖∇xℓ(x̃i,zi(k))‖2)
∣

∣

∣

∣

+4

(

M
m

)2 ∣
∣

∣

∣

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi ,zi(k))

∥

∥

∥

∥

2

−
∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(x̃i ,zi(k))

∥

∥

∥

∥

2∣
∣

∣

∣

≤ 4G
1
Ki

Ki

∑
k=1

‖∇xℓ(xi ,zi(k))−∇xℓ(x̃i ,zi(k))‖+8G

(

M
m

)2∥
∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(xi ,zi(k))−∇xℓ(x̃i ,zi(k)))

∥

∥

∥

∥

2

≤
(

4+8

(

M
m

)2
)

GM‖xi − x̃i‖

yielding

|Â(2)
n − Â(3)

n | ≤
(

4+8

(

M
m

)2
)

GM

(

1
n

n

∑
i=1

‖xi − x̃i‖
)

Second, we have

|Â(3)
n − Â(4)

n |

≤
∣

∣

∣

∣

1
n

n

∑
i=1

(

2
Ki

Ki

∑
k=1

(

‖∇xℓ(x̃i,zi(k))‖2−E
[

‖∇xℓ(x̃i,zi)‖2 | Fn−1
])

)

∣

∣

∣

∣

+8

(

M
m

)2

G
1
n

n

∑
i=1

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇ fi(x̃i))

∥

∥

∥

∥
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Combining both inequalities, we know that

|Â(2)
n − Â(4)

n |

≤
(

4+8

(

M
m

)2
)

GM

(

1
n

n

∑
i=1

‖xi − x̃i‖
)

+

∣

∣

∣

∣

1
n

n

∑
i=1

(

2
Ki

Ki

∑
k=1

(

‖∇xℓ(x̃i,zi(k))‖2−E
[

‖∇xℓ(x̃i,zi)‖2 | Fn−1
])

)

∣

∣

∣

∣

+8

(

M
m

)2

G
1
n

n

∑
i=1

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

(∇xℓ(x̃i ,zi(k))−∇ fi(x̃i))

∥

∥

∥

∥

The first and third terms in this bound can be controlled by theanalysis of the direct estimate and the second term by
Lemma (22). This shows that

P

{

Â(2)
n < A− 1

n

n

∑
i=1

Ci√
Ki

− tn

}

≤ P

{

Â(2)
n < Â(4)

n − 1
n

n

∑
i=1

Ci√
Ki

− tn

}

≤ P

{

|Â(2)
n − Â(4)

n |> 1
n

n

∑
i=1

Ci√
Ki

tn

}

≤ 2exp

{

− nt2n
2σ2

A2

}

Since
∞

∑
n=1

P

{

Â(2)
n < A− 1

n

n

∑
i=1

Ci√
Ki

− tn

}

≤
∞

∑
n=1

Cexp

{

− nt2n
2σ2

A2

}

<+∞

almost surely for alln large enough, it holds that

Â(2)
n +

1
n

n

∑
i=1

Ci√
Ki

+ tn ≥ A

In addition, we have

Â(2)
n +

1
n

n

∑
i=1

Ci√
Ki

+2tn ≥ A

There exists a random variableÑ such that

n≥ Ñ ⇒ Mn+ tn
mn− tn

≥ M
m

Then forn≥ Ñ, it holds that

Ân− Â(2)
n

=
4
n

n

∑
i=1

[

(

M̂i−1+ ti−1

m̂i−1− ti−1

)2

−
(

M
m

)2
]

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi,zi(k))

∥

∥

∥

∥

2

≥ 4
n

Ñ−1

∑
i=1

[

(

M̂i−1+ ti−1

m̂i−1− ti−1

)2

−
(

M
m

)2
]

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi ,zi(k))

∥

∥

∥

∥

2
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Since our choice oftn can decay only as fast asC/
√

n, it follows that

4
n

Ñ−1

∑
i=1

[

(

M̂i−1+ ti−1

m̂i−1− ti−1

)2

−
(

M
m

)2
]

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi,zi(k))

∥

∥

∥

∥

2

− tn < 0

for all n large enough. This implies that

Ân+
1
n

n

∑
i=1

Ci√
Ki

+ tn

≥ Ân−
(

4
n

Ñ−1

∑
i=1

[

(

M
m

)2

−
(

M̂i−1+ ti−1

m̂i−1+ ti−1

)2
]

∥

∥

∥

∥

1
Ki

Ki

∑
k=1

∇xℓ(xi ,zi(k))

∥

∥

∥

∥

2

− tn

)

+
1
n

n

∑
i=1

Ci√
Ki

+ tn

≥ Â(2)
n +

1
n

n

∑
i=1

Ci√
Ki

+2tn

≥ A

for n large enough.

Using these estimates, we have constructed estimatesψ̂n such that for alln large enough it holds that

ψ̂n+Cn+ tn1≥ ψ∗

for appropriate constantsCn almost surely. Therefore, by assumption for alln large enough it holds that

b(d0,K,ψ∗)≤ b(d0,K, ψ̂n+ tn)

3.5.3 Effect onρ Estimation

Our analysis of estimatingρ assumes that we know the parameters of the function and in particular the strong convexity
parameterm. We now argue that the effect of using estimated parameters instead is minimal. This happens because
we know that for alln large enough it holds that

ψ̂n ≥ ψ∗

almost surely.

Lemma 13. We want to estimate a non-negative parameterφ∗ by producing a sequence of estimatesφi for all i ≥ 1
and averaging to produce

φ̂n =
1
n

n

∑
i=1

φi

where the estimatesφi are dependent on an auxiliary sequenceψi in the sense thatφi(ψi). Suppose that the following
conditions hold:

1. Suppose that there exists a random variableÑ such that n≥ Ñ implies thatψ̂n ≥ ψ∗

2. E[φi(ψ∗)]≥ φ∗

Then it follows that

lim inf
n→∞

E

[

1
n

n

∑
i=1

φi

]

≥ φ∗
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Proof. It holds that

1
n

n

∑
i=1

φi =
1
n

Ñ−1

∑
i=1

φi(ψi)+
1
n

n

∑
i=Ñ

φi(ψi)

≥ 1
n

Ñ−1

∑
i=1

φi(ψi)+
1
n

n

∑
i=Ñ

φi(ψ∗
i ) (18)

Therefore, it follows that

liminf
n→∞

E

[

1
n

n

∑
i=1

φi

]

≥ lim inf
n→∞

E

[

1
n

n

∑
i=Ñ

φi(ψ∗
i )

]

≥ φ∗

We can extend all the concentration inequalities for estimating ρ as well by extending the inequality in (18) to
yield

1
n

n

∑
i=1

φi =
1
n

Ñ−1

∑
i=1

φi(ψi)+
1
n

n

∑
i=Ñ

φi(ψi)

≥ 1
n

Ñ−1

∑
i=1

φi(ψi)+
1
n

n

∑
i=Ñ

φi(ψ∗
i )

≥ 1
n

Ñ−1

∑
i=1

(φi(ψi)−φi(ψ∗))+
1
n

n

∑
i=1

φi(ψ∗
i )

=
1
n

n

∑
i=1

φi(ψ∗
i )+o(1)

Before, we have analyzed
1
n

n

∑
i=1

φi(ψ∗
i )

so for large enoughn, we recover previous results, since theo(1) term goes to 0.

4 Adaptive Sequential Optimization With ρ Unknown

We now examine the case withρ unknown. We extend the work of Section 2 using the estimates of ρ in Section 3.
Our analysis depends on the following crucial assumption:

C.1 For appropriate sequences{tn}, for all n sufficiently large it holds that̂ρn+ tn ≥ ρ almost surely.

C.2 b(d0,Kn) factors asb(d0,Kn) = α(Kn)d0+β (Kn)

We have demonstrated that assumption C.1 that holds for the direct and IPM estimates ofρ under (2) and (3). Note
that whether we assume (2) or (3) does not matter for analysis.

4.1 General Condition onKn

We start with a general result showing that for any choice ofKn such thatKn ≥ K∗ for all n large enough the excess
risk is controlled in the sense that

limsup
n→∞

(E[ fn(xn)]− fn(x
∗
n))≤ ε
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We then apply this result to two different selection rules for Kn.
Consider the function

φK(v) = α(K)

(

√

2
m

v+ρ

)2

+β (K)

derived from assumption C.2. Note that as a function ofv, φK(v) is clearly increasing and strictly concave. First,
suppose that we selectK∗ defined in (5). Then by definition it holds that

φK∗(ε)≤ ε

We study fixed points of the functionφK∗(v):

Lemma 14. The functionφK∗(v) has a unique positive fixed pointv̄ with

1. v̄= φK∗(v̄)≤ ε

2. φ ′
K∗(v̄)< 1

Proof. We have
φK∗(0) = α(K∗)ρ2+β (K∗)> 0

Since
lim
v→0

φK∗(v) = φK∗(0)

andφK∗(0)> 0, there exists a positivea sufficiently small that

φK∗(a)> a

Next, expandingφK(v) yields

φK(v) =
2
m

α(K)v+2α(K)ρ
√

2
m

√
v+α(K)ρ2+β (K)

SinceφK∗(ε)≤ ε, we obviously must have2mα(K∗)≤ 1. Suppose that

2
m

α(K∗) = 1

Then it holds that
φK∗(ε) = ε +

√
2mρ

√
ε +

m
2

ρ2+β (K)> ε

This is a contradiction, so it holds that
2
m

α(K∗)< 1

It is thus readily apparent that
v−φK∗(v)→ ∞

asv→ ∞. Therefore, there exists a pointb> a such that

φK∗(b)< b

It is easy to check thatφK∗(v) is increasing and strictly concave. Therefore, we can applyTheorem 3.3 from [21] to
conclude that there exists a unique, positive fixed point ¯v of φK∗(v).

Next, suppose thatφ ′
K∗(v̄)> 1. Then by Taylor’s Theorem forv> v̄ sufficiently close to ¯v, we have

φK∗(v)> v

32



However, we know that asv→ ∞, it holds thatv−φK∗(v)→ ∞. By the Intermediate Value Theorem, this implies that
there is another fixed point on[v,∞). This is a contradiction, since ¯v is the unique, positive fixed point. Therefore, it
holds thatφ ′

K∗(v̄)≤ 1. Now, suppose thatφ ′
K∗(v̄) = 1. SinceφK∗(v) is strictly concave, its derivative is decreasing [22].

Therefore, on[0, v̄), it holds that
φ ′

K∗(v)> 1

This implies that

φK∗(v̄) = φK∗(0)+
∫ v̄

0
φ ′

K∗(v)dx

≥ φK∗(0)+ v̄

> v̄

This is a contradiction, so it must be thatφ ′
K∗(v̄)< 1.

As a simple consequence of the concavity ofφK∗(v), we can study a fixed point iteration involvingφK(v). Define
then-fold composition mapping

φ (n)
K (v), (φK ◦ · · · ◦φK)(v)

Lemma 15. For any v> 0, it holds that

lim
n→∞

φ (n)
K∗ (v) = v̄

Proof. Following [23], for any fixed point ¯v, it holds that

|φK∗(v)− v̄| ≤ φ ′
K∗(v̄)|v− v̄|

Therefore, applying the fixed point property repeatedly yields

|φ (n)
K∗ (v)− v̄| ≤ (φ ′

K∗(v̄))n|v− v̄|

By Lemma 14, it holds that
φ ′

K∗(v̄)< 1

and so the result follows.

Now, we show that we appropriately control the excess risk when we estimateρ . The extension of this argument
to the case when we also estimate function parametersψ is straightforward. If we have

p({zn(k)}Kn
k=1 | xn−1,Kn) =

Kn

∏
k=1

pn(zn(k))

then

E [ fn(xn) | xn−1,Kn]− fn(x
∗
n)≤ b





(

√

2
m

(

fn−1(xn−1)− fn−1(x∗
n−1)

)

+ρ

)2

,Kn





Therefore, it holds that

E [ fn(xn)]− fn(x
∗
n)≤ E



b





(

√

2
m

(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

+ρ

)2

,Kn









Suppose that we set
K∞ = σ ({Kn}∞

n=1∪{ρ̂n}∞
n=2)
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This sigma algebra contains all the information about{ρ̂n} and thus{Kn}. Then, we do not have

p({zn(k)}Kn
k=1 | K∞) =

Kn

∏
k=1

pn(zn(k))

sinceKn+1,Kn+2, . . . are a function of{Kn}Kn
k=1. We do not even have

E [ fn(xn) | K∞]− fn(x
∗
n)≤ b





(

√

2
m

(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

+ρ

)2

,Kn





However, we would expect that this is not too far from true. Conceptually, we consider running our approach twice on
independent samples. The first run determines the required number of samples{Kn}∞

n=1. We then run our process for
a second run with these fixed choices of{Kn}∞

n=1and independent samples as in Figure 1. For the second run, itis true
that

p({z(2)
n (k)}Kn

k=1 | K∞) =
Kn

∏
k=1

pn(z
(2)
n (k))

and

E

[

fn(x
(2)
n ) | K∞

]

− fn(x
∗
n)≤ b





(

√

2
m

(

fn−1(x
(2)
n−1)− fn−1(x

∗
n−1)

)

+ρ

)2

,Kn





In practice, we do not need to run our process twice. This is only a proof technique. Now, for the second run the
recursion

ε(2)n = b





(

√

2
m

ε(2)n−1+ρ

)2

,Kn



 ∀n≥ 3 (19)

with ε1 andε2 from Assumption A.4 bounds the excess risk of the second run

E[ fn(x
(2)
n ) | K∞]− fn(x

∗
n)≤ ε(2)n

Then it follows that
E[ fn(x

(2)
n )]− fn(x

∗
n)≤ E[ε(2)n ]

Receive

{zn−1(k)}Kn−1
k=1

Optimize

xn−1

Compute

ρ̂n−1

Choose

Kn

Receive

{z(2)
n (k)}Kn

k=1

Optimize

x
(2)
n

Compute
excess risk

bound

First Run -n−1

Second Run -n

Figure 1: Two Run Process

We now argue thatE[ε(2)n ] also bounds the excess risk of the first run.
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Lemma 16. For the first run, it holds that

E[ fn(xn)]− fn(x
∗
n)≤ E[ε(2)n ]

Proof. We proceed by induction. Forn= 1,2, we know that

E[ fn(xn)]− fn(x
∗
n)≤ E[ε(2)n ]

by definition. Next, suppose that

E[ fn−1(xn−1)]− fn−1(x
∗
n−1)≤ E[ε(2)n−1]

We have

E[ fn(xn)]− fn(x
∗
n)≤ E

[

α(Kn)
(√

fn−1(xn−1)− fn−1(x∗
n−1)+ρ

)2
+β (Kn)

]

so it holds that

E[ε(2)n ]− (E[ fn(xn)]− fn(x
∗
n))

≥ E

[

α(Kn)

(
√

ε(2)n−1+ρ
)2

−α(Kn)
(√

fn−1(xn−1)− fn−1(x∗
n−1)+ρ

)2
]

= E

[

α(Kn)
(

ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

)]

+E

[

2ρα(Kn)

(
√

ε(2)n−1−
√

fn−1(xn−1)− fn−1(x∗
n−1)

)]

By the Monotone Convergence Theorem, it holds that

E

[

α(Kn)
(

ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

)]

= lim
q→∞

E

[

max{α(Kn),1/q}
(

ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

)]

≥ lim inf
q→∞

1
q
E

[

ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

]

≥ 0

where the last line follows, since by hypothesis

E[ fn−1(xn−1)]− fn−1(x
∗
n−1)≤ E[ε(2)n−1]
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Similarly, it holds that

E

[

2ρα(Kn)

(
√

ε(2)n−1−
√

fn−1(xn−1)− fn−1(x
∗
n−1)

)]

= E






2ρα(Kn)

ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

√

ε(2)n−1+
√

fn−1(xn−1)− fn−1(x
∗
n−1)







= lim
q→∞

E






2ρ max{α(Kn),1/q}

ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

√

ε(2)n−1+
√

fn−1(xn−1)− fn−1(x∗
n−1)







≥ limsup
q→∞

2ρ
q
E







ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

√

ε(2)n−1+
√

fn−1(xn−1)− fn−1(x
∗
n−1)







≥ limsup
q→∞

2ρ
q

lim
τ→∞

E







ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

√

ε(2)n−1+
√

fn−1(xn−1)− fn−1(x∗
n−1)

1

{
√

ε(2)n−1+
√

fn−1(xn−1)− fn−1(x
∗
n−1)≤τ}







≥ limsup
q→∞

2ρ
q

limsup
τ→∞

1
τ
E

[

ε(2)n−1−
(

fn−1(xn−1)− fn−1(x
∗
n−1)

)

]

≥ 0

Therefore, we conclude that
E[ fn(xn)]− fn(x

∗
n)≤ E[ε(2)n ]

Theorem 2. Under assumptions C.1 - C.2 and with Kn ≥ K∗ for all n large enough almost surely with K∗ from (20),
we have

limsupn→∞ (E[ fn(xn)]− fn(x∗
n))≤ ε

Proof. Let v̄ be the fixed point associated withφK∗(v) from Lemma 14. We know that

v̄= φK∗(v̄)≤ ε

and
φ (n)

K∗ (v)→ v̄≤ ε

with v̄≤ ε. Since we haveKn ≥ K∗ for all n large enough almost surely, there exists a random variableÑ such that

n≥ Ñ ⇒ Kn ≥ K∗

Then we have almost surely

limsup
n→∞

ε(2)n ≤ limsup
n→∞

(φKn ◦ · · · ◦φKÑ
)(εÑ−1)

≤ limsup
n→∞

φ (n−Ñ+1)
K∗ (εÑ−1)

= v̄

≤ ε
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Finally, applying Lemma 19 and Fatou’s lemma yields

limsup
n→∞

(E[ fn(xn)]− fn(x
∗
n)) ≤ limsup

n→∞
E

[

ε(2)n

]

≤ E

[

limsup
n→∞

ε(2)n

]

≤ ε

4.2 Update Past Excess Risk Bounds

We first consider updating all past excess risk bounds as we go. At time n, we plug-inρ̂n−1+ tn−1 in place ofρ and
follow the analysis of Section 2. Define fori = 1, . . . ,n

ε̂(n)i = b





(

√

2
m

ε̂(n)i−1+(ρ̂n−1+ tn−1)

)2

,Ki





If it holds thatρ̂n−1+ tn−1 ≥ ρ , thenE [ fn(xn)]− fn(x∗
n)≤ ε̂(i)n for i = 1, . . . ,n. Assumption C.1 guarantees that this

holds for alln large enough almost surely. We can thus setKn equal to the smallestK such that

b





(

√

2
m

max{ε̂(n−1)
n−1 ,ε}+(ρ̂n−1+ tn−1)

)2

,K



≤ ε

for all n≥ 3 to achieve excess riskε. The maximum in this definition ensures that whenρ̂n−1+ tn−1 ≥ ρ , Kn ≥ K∗

with K∗ from (5). We can therefore apply Theorem 2.

4.3 Do Not Update Past Excess Risk Bounds

Updating all past estimates of the excess risk bounds from time 1 up ton imposes a computational and memory burden.
Suppose that for alln≥ 3 we set

Kn = min







K ≥ 1

∣

∣

∣

∣

∣

b





(

√

2ε
m

+(ρ̂n−1+ tn−1)

)2

,K



≤ ε







(20)

This is the same form as the choice in (5) withρ̂n−1+ tn−1 in place ofρ . Due to assumption C.1 , for alln large enough
it holds thatρ̂n+ tn ≥ ρ almost surely. Then by the monotonicity assumption in A.1 , for all n large enough we pick
Kn ≥ K∗ almost surely. We can therefore apply Theorem 2.

5 Experiments

We focus on two regression applications for synthetic and real data as well as two classification applications for
synthetic and real data. For the synthetic regression problem, we can explicitly computeρ andx∗

n and exactly evaluate
the performance of our method. It is straightforward to check that all requirements in A.1 -A.4 are satisfied for the
problems considered in this section. We apply the do not update past excess risk choice ofKn here.
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5.1 Synthetic Regression

Consider a regression problem with synthetic data using thepenalized quadratic loss

ℓ(x,z) =
1
2

(

y−w⊤x
)2

+
1
2

λ‖x‖2

with z = (w,y) ∈R
d+1. The distribution ofzn is zero mean Gaussian with covariance matrix

[

σ2
w
I rwn,yn

r⊤
wn,yn

σ2
yn

]

Under these assumptions, we can analytically compute minimizersx∗
n of fn(x) = Ezn∼pn [ℓ(x,zn)]. We change only

rwn,yn andσ2
yn

appropriately to ensure that‖x∗
n−x∗

n−1‖ = ρ holds for alln. We find approximate minimizers using
SGD withλ = 0.1. We estimateρ using the direct estimate.

We letn range from 1 to 20 withρ = 1, a target excess riskε = 0.1, andKn from (20). We average over twenty runs
of our algorithm. Figure 2 showŝρn, our estimate ofρ , which is aboveρ in general. Figure 3 shows the number of
samplesKn, which settles down. We can exactly computefn(xn)− fn(x∗

n), and so by averaging over the twenty runs
of our algorithm, we can estimate the excess risk (denoted “sample average estimate”). Figure 4 shows this estimate
of the excess risk, the target excess risk, and our bound on the excess risk from Section 4.3. We achieve at least our
targeted excess risk
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Figure 4: Excess Risk

5.2 Panel Study on Income Dynamics Income - Regression

The Panel Study of Income Dynamics (PSID) surveyed individuals every year to gather demographic and income
data annually from 1981-1997 [24]. We want to predict an individual’s annual income (y) from several demographic
features (w) including age, education, work experience, etc. chosen based on previous economic studies in [25]. The
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idea of this problem conceptually is to rerun the survey process and determine how many samples we would need if
we wanted to solve this regression problem to within a desired excess risk criterionε.

We use the same loss function, direct estimate forρ , and minimization algorithm as the synthetic regression
problem. The income is adjusted for inflation to 1997 dollarswith mean $20,294. We average over twenty runs of our
algorithm by resampling without replacement [26]. We compare to taking an equivalent number of samples up front.
Figure 5 shows the test losses over time evaluated over twenty percent of the available samples. The test loss for our
approach is substantially less than taking the same number of samples up front. The square root of the average test
loss over this time period for our approach and all samples upfront are $1153±352 and $2805±424 respectively in
1997 dollars.
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Figure 5: Test Loss

5.3 Synthetic Classification

Consider a binary classification problem usingℓ(x,z) = 1
2(1− y(w⊤x))2

++ 1
2λ‖x‖2 with z = (w,y) ∈ R

d ×R and
(y)+ = max{y,0}. This is a smoothed version of the hinge loss used in support vector machines (SVM) [26]. We
suppose that at timen, the two classes have features drawn from a Gaussian distribution with covariance matrixσ2I

but different meansµ (1)
n andµ (2)

n , i.e.,wn | {yn = i} ∼ N (µ (i)
n ,σ2I). The class means move slowly over uniformly

spaced points on a unit sphere inRd as in Figure 6 to ensure that (2) holds. We find approximate minimizers using
SGD withλ = 0.1. We estimateρ using the direct estimate withtn ∝ 1/n3/8.

Figure 6: Evolution of Class Means

We letn range from 1 to 20 and target a excess riskε = 0.1. We average over twenty runs of our algorithm. As
a comparison, if our algorithm takes{Kn}20

n=1 samples, then we consider taking∑20
n=1Kn samples up front atn = 1.

This is what we would do if we assumed that our problem is not time varying. Figure 7 showŝρn, our estimate ofρ .
Figure 8 shows the average test loss for both sampling strategies. To compute test loss we drawTn additional samples
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{ztest
n (k)}Tn

k=1 from pn and compute1
Tn

∑Tn
k=1ℓ(xn,z

test
n (k)). We see that our approach achieves substantially smaller

test loss than taking all samples up front.
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Figure 8: Test Loss

5.4 General Social Survey - Classification

The General Social Survey (GSS) surveyed individuals everyyear to gather socio-economic data annually from 1981-
2013 [27]. We want to predict an individual’s marital status(y) from several demographic features (w) including age,
education, etc. We model this as a binary classification problem using loss

ℓ(x,z) =
1
2
(1− y(w⊤x))2

++
1
2

λ‖x‖2

with z = (w,y) ∈ R
d ×R and(y)+ = max{y,0}. This is a smoothed version of the hinge loss used in support vector

machines [26]. We find approximate minimizers using SGD withλ = 0.1. Figure 9 shows the test loss. We see that
our approach achieves smaller test loss than taking all samples up front. We also plot receiver operating characteristics
(ROC) [26] to characterize the performance of our classifiers. In particular we plot the ROC for 1974 in Figure 10 and
the ROC for 2012 in Figure 11. By examining the ROC, we see thattaking all samples up front is much better in 1974
but much worse in 2012.

6 Conclusion

We introduced a framework for adaptively solving a sequenceof optimization problems with applications to machine
learning. We developed estimates of the change in the minimizers used to determine the number of samplesKn needed
to achieve a target excess riskε. Experiments with synthetic and real data demonstrate thatthis approach is effective.
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A Examples ofb(d0,K):

For this section, we drop then index for convenience. The bounds of this form depend on the strong convexity
parametermand an assumption on how the gradients grow. In general, we assume that

Ez∼p‖∇xℓ(x,z)‖2 ≤ A+B‖x−x∗‖2

The base algorithm we look at is SGD. First, we generate iteratesx(0), . . . ,x(K) through SGD as follows:

x(ℓ+1) = ΠX [x(ℓ)− µ(ℓ+1)∇xℓ(x(ℓ),z(ℓ))] ℓ= 0, . . . ,K −1

with x(0) fixed. We then combine the iterates to yield a final approximate minimizer

x̄(K) = φ(x(0), . . . ,x(K))

For our choice ofφ , we look at two cases:
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1. No iterate averaging, i.e.,
φ(x(0), . . . ,x(K)) = x(K)

2. Iterate averaging, i.e, for a convex combination{λ (ℓ)}K
ℓ=0

φ(x(0), . . . ,x(K)) =
K

∑
ℓ=0

λ (ℓ)x(ℓ)

Define
d(ℓ), ‖x(ℓ)−x∗‖2 (21)

First we boundE[d(ℓ)] in Lemma 17.

Lemma 17. Suppose that the function f(x) has Lipschitz continuous gradients. Then it holds that

E[d(ℓ)]≤
ℓ

∏
k=1

(1−2mµ(ℓ)+Bµ2(ℓ))+
ℓ

∑
k=1

ℓ

∏
i=k+1

(1−2mµ(i)+Bµ2(i))µ2(k)

Proof. Following the standard SGD analysis (see [16]), it holds that

d(ℓ) ≤ ‖x(ℓ−1)−x∗− µ(ℓ)∇xℓ(x(ℓ−1),z(ℓ))‖2

≤ d(ℓ−1)−2µ(ℓ)〈x(ℓ−1)−x∗,∇xℓ(x(ℓ−1),z(ℓ))〉+ µ2(ℓ)‖∇xℓ(x(ℓ−1),z(ℓ))‖2

Then it follows that

E[d(ℓ) | x(ℓ−1)]

≤ d(ℓ−1)−2µ(ℓ)〈x(ℓ−1)−x∗,∇ f (x(ℓ−1))〉+ µ2(ℓ)E[‖∇xℓ(x(ℓ−1),z(ℓ))‖2 | x(ℓ−1)]

≤ (1−2mµ(ℓ)+Bµ2(ℓ))d(ℓ−1)+ µ2(ℓ−1)A

and
E[d(ℓ)]≤ (1−2mµ(ℓ)+Bµ2(ℓ))E[d(ℓ−1)]+ µ2(ℓ−1)A

SinceB> m, we have

2mµ −Bµ2 ≤ 2

√

B
2

µ

(

1−
√

B
2

µ

)

≤ 2
1
4
=

1
2

and so

1−2mµ(ℓ)+Bµ2(ℓ)≥ 1− 1
2
=

1
2

Since this quantity is non-negative, we can unwind this recursion to yield

E[d(ℓ)]≤
ℓ

∏
k=1

(1−2mµ(ℓ)+Bµ2(ℓ))+
ℓ

∑
k=1

ℓ

∏
i=k+1

(1−2mµ(i)+Bµ2(i))µ2(k)

The bound in Lemma 17 can be further bounded into a closed formas follows from [28]: Define

ϕβ (t) =

{

tβ−1
β , if β 6= 0

log(t), if β = 0

Then withµ(ℓ) =Cℓ−α , it holds that

E[d(ℓ)]≤
{

2exp
{

2BC2ϕ1−2α(ℓ)
}

exp
{

−mC
4 ℓ1−α}(

E[d(0)]+ A
B

)

+ 2AC
mℓα , if 0 ≤ α < 1

exp{BC2}
ℓmC

(

E[d(0)]+ A
B

)

+AC2 ϕmC/2−1(ℓ)

ℓmC/2 , if α = 1
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Note that this bound is a closed form but is substantially looser than Lemma 17. In the case that the functions in
question have Lipschitz continuous gradients, we introduce a bound on the excess risk using Lemma 17. This case
corresponds to choosing

φ(x(0), . . . ,x(K)) = x(K)

Lemma 18. With arbitrary step sizes and assuming that f(x) has Lipschitz continuous gradients with modulus M, it
holds that

E[ f (x)]− f (x∗)≤ 1
2

ME[d(K)]

and therefore, we set

b(d0,K) =
1
2

M

(

K

∏
ℓ=1

(1−2mµ(ℓ)+Bµ2(ℓ))+
K

∑
ℓ=1

K

∏
i=ℓ+1

(1−2mµ(i)+Bµ2(i))µ2(ℓ)

)

Proof. Using the descent lemma from [29], it holds that

E[ f (x)]− f (x∗)≤ 1
2

ME[d(K)]

Plugging in the bound from Lemma 17 yields the boundb(d0,K).

Next, we introduce a bound inspired by [30] for the case whereφ(x(0), . . . ,x(K)) corresponds to forming a convex
combination of the iterates.

Lemma 19. With a constant step size and averaging with

λ (ℓ) =

{ γ(ℓ)
∑K

τ=1γ(τ) , if ℓ > 0

0, if ℓ= 0

where
γ(ℓ) = (1−mµ +Bµ2)−ℓ

it holds that

b(d0,K) =
d0

2µ ∑K
ℓ=0 γ(ℓ)

+
1
2

Aµ

Proof. By strong convexity, it holds that

−〈x(ℓ−1)−x∗,∇ f (x(ℓ−1))〉 ≤ −m‖x(ℓ−1)−x∗‖2− ( f (x(ℓ−1))− f (x∗))

Following the Lyapunov-style analysis of Lemma 17, it holdsthat

E[d(ℓ)]≤ (1−mµ +Bµ2)E[d(ℓ−1)]−2µ (E[ f (x(ℓ−1))]− f (x∗))+Aµ2

Rearranging, using the telescoping sum, and using convexity, it holds that

E[ f (x)]− f (x∗)≤ d0

2µ ∑K
τ=0 γ(τ)

+
1
2

Aµ

If we setµ = 1√
K

, then it holds that

b(d0,K) = O

(

1√
K

)

for Lemma 19.
We consider an extension of the averaging scheme in [31]. Thebound in this paper only works withB= 0, so we

extend it slightly to handleB> 0.
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Lemma 20. Consider the choice of step sizes given by

µ(ℓ) =
1

mℓ
∀ℓ≥ 1

Then

b(d0,K) =
1
2d(0)+ 1

2(K+1)A+ 1
2B∑K

ℓ=0 γ(ℓ)
1+ 1

2m(K +1)(K+2)

where
E[d(ℓ)]≤ γ(ℓ)

Note that we can use the bound in Lemma 17 here.

Proof. We have using Lyapunov style analysis

E[d(ℓ)]≤ (1−2mµ(ℓ)+Bµ2(ℓ))E[d(ℓ−1)]−2µ(ℓ)(E[ f (x(ℓ))]− f (x∗))+Aµ2(ℓ)

Then we have

1
µ2(ℓ)

E[d(ℓ)]≤
(

1−2mµ(ℓ)
µ2(ℓ)

+B

)

E[d(ℓ−1)]− 2
µ(ℓ)

(E[ f (x(ℓ))]− f (x∗)+A

It holds that

1−2mµ(ℓ)
µ2(ℓ)

− 1
µ2(ℓ−1)

=
1

µ2(ℓ)
−2m

1
µ(ℓ)

− 1
µ2(ℓ−1)

=
ℓ2

C2 −
2mℓ

C
− (ℓ−1)2

C2

=
2(mC−1)L−1

C2

As long as we have

mC−1≤ 1 ⇔ C≤ 2
m

then we get

1
µ2(ℓ)

E[d(ℓ)]− 1
µ2(ℓ−1)

E[d(ℓ−1)]≤ BE[d(ℓ−1)]− 2
µ(ℓ)

(E[ f (x(ℓ))]− f (x∗)+A

Summing an rearranging yields

K

∑
ℓ=0

1
µ(ℓ)

(E[ f (x(ℓ))]− f (x∗))≤ 1
2

d(0)+
1
2
(K +1)A+

1
2

B
K

∑
ℓ=0

E[d(ℓ)]

with µ(0) = 1 by convention. With the weights

γ(ℓ) =
1

µ(ℓ)

∑ℓ
j=0

1
µ( j)

we have

E[ f (x̄(K))]− f (x∗)≤
1
2d(0)+ 1

2(K +1)A+ 1
2B∑K

ℓ=0E[d(ℓ)]

∑K
τ=0

1
µ(τ)

Then it holds that
K

∑
τ=0

= 1+
K

∑
τ=1

mτ = 1+
1
2

m(K+1)(K+2)
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so

E[ f (x̄(K))]− f (x∗)≤
1
2d(0)+ 1

2(K +1)A+ 1
2B∑K

ℓ=0E[d(ℓ)]

1+ 1
2m(K +1)(K+2)

For the choice of step sizes in Lemma 20 from Lemma 17, it holdsthat

E[d(ℓ)] = O

(

1
ℓ

)

Since
K

∑
ℓ=1

1
ℓ
= O (logK)

it holds that

E[ f (x̄(K))]− f (x∗) = O

(

d(0)
K2 +

log(K)

K2 +
1
K

)

Note that a rate ofO( 1
K ) is minimax optimal for stochastic minimization of a strongly convex function [32].

Next, we look at a special case of averaging for functions such that

E‖∇xℓ(x,z)−∇xℓ(x̃,z)−∇2
xx

ℓ(x̃,z)(x− x̃)‖2 = 0

from [28]. For example, quadratics satisfy this condition.

Lemma 21. Assuming that

E‖∇xℓ(x,z)−∇xℓ(x̃,z)−∇2
xx

ℓ(x̃,z)(x− x̃)‖2 = 0,

we select step sizes
µ(ℓ) =Cℓ−α

with α > 1/2, and

λ (ℓ) =

{

1
K , if ℓ > 0

0, if ℓ= 0

it holds that

(

E[d̄(K)]
)1/2

≤ 1

m1/2

K−1

∑
k=1

∣

∣

∣

∣

1
µ(k+1)

− 1
µ(k)

∣

∣

∣

∣

(E[d(k)])1/2+
1

m1/2µ(1)
(E[d(0)])1/2+

1

m1/2µ(K)
(E[d(K)])1/2

+

√

A
mK

+

√

2B
mK2

K

∑
k=1

E[d(k−1)]

with d̄(K) = ‖x̄(K)−x∗‖2. If in addition f has Lipschitz continuous gradients with modulus M, then it holds that

E[ f (x̄(K))]− f (x∗)≤ 1
2

ME[d̄(K)]

Proof. Suppose that we set

x̄(K) =
1
n

K

∑
k=1

x(k)
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Then it holds that

∇2
xx

f (x∗)(x(k)−x∗) = ∇xℓ(x(k−1),z(k−1))−∇xℓ(x
∗,z(k−1))

+
[

∇2
xx

f (x∗)−∇2
xx

ℓ(x∗,z(k−1))
]

(x(k−1)−x∗)

yielding

∇2
xx

f (x∗)(x̄(k)−x∗) =
1
K

K

∑
k=1

∇xℓ(x(k−1),z(k−1))− 1
K

K

∑
k=1

∇xℓ(x
∗,z(k−1))

+
1
K

K

∑
k=1

[

∇2
xx

f (x∗)−∇2
xx

ℓ(x∗,z(k−1))
]

(x(k−1)−x∗)

First, we have

1
K

K

∑
k=1

∇xℓ(x(k−1),z(k−1)) =
1
K

K

∑
k=1

∇xℓ(x(ℓ−1),z(ℓ−1))

=
1
K

K

∑
k=1

1
µ(k)

(x(ℓ−1)−x(ℓ))

=
1
K

K

∑
k=1

1
µ(k)

(x(ℓ−1)−x∗)− 1
K

K

∑
k=1

1
µ(k)

(x(ℓ)−x∗)

=
1
K

K−1

∑
k=1

(

1
µ(k+1)

− 1
µ(k)

)

(x(ℓ)−x∗)+
1

µ(1)
(x(0)−x∗)

− 1
µ(K)

(x(K)−x∗)

Second, we have

E

∥

∥

∥

∥

1
K

K

∑
k=1

∇xℓ(x
∗,z(k−1))

∥

∥

∥

∥

2

=
1

K2

K

∑
k=1

E‖∇xℓ(x
∗,z(k−1))‖2

≤ A
n2

Third, we have

E

∥

∥

∥

∥

1
K

K

∑
k=1

[

∇2
xx

f (x∗)−∇2
xx

ℓ(x∗,z(k−1))
]

(x(k−1)−x∗)

∥

∥

∥

∥

2

≤ 2B
K2

K

∑
k=1

E[d(k−1)]

Combining these bounds with Minkowski’s inequality yields

(

mE[d̄(K)]
)1/2

≤
(

E‖∇2
xx

f (x∗)(x̄(K)−x∗)‖2)1/2

≤
K−1

∑
k=1

∣

∣

∣

∣

1
µ(k+1)

− 1
µ(k)

∣

∣

∣

∣

(E[d(k)])1/2+
1

µ(1)
(E[d(0)])1/2+

1
µ(K)

(E[d(K)])1/2

+

√

A
K
+

√

2B
K2

K

∑
k=1

E[d(k−1)]
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Then we have
(

E[d̄(K)]
)1/2

≤ 1

m1/2

K−1

∑
k=1

∣

∣

∣

∣

1
µ(k+1)

− 1
µ(k)

∣

∣

∣

∣

(E[d(k)])1/2+
1

m1/2µ(1)
(E[d(0)])1/2+

1

m1/2µ(K)
(E[d(K)])1/2

+

√

A
mK

+

√

2B
mK2

K

∑
k=1

E[d(k−1)]

This decays at rateO
(

1
K

)

as long asµ(ℓ) =Cℓ−α with 1
2 ≤ α ≤ 1.

B Useful Concentration Inequalities

For our analysis of both the direct and IPM estimates, we needthe following key technical lemma from [33]. This
lemma controls the concentration of sums of random variables that are sub-Gaussian conditioned on a particular
filtration {Fi}n

i=0. Such a collection of random variables is referred to as asub-Gaussian martingale sequence. We
include the proof for completeness.

Lemma 22(Theorem 7.5 of [33]). Suppose we have a collection of random variables{Vi}n
i=1 and a filtration{Fi}n

i=0
such that for each random variable Vi it holds that

1. E
[

esVi
∣

∣Fi−1
]

≤ e
1
2σ2

i s2
with σ2

i a constant

2. Vi is Fi -measurable

Then for everya ∈R
n it holds that

P

{

n

∑
i=1

aiVi > t

}

≤ exp

{

− t2

2ν

}

∀t > 0

and

P

{

n

∑
i=1

aiVi <−t

}

≤ exp

{

− t2

2ν

}

∀t > 0

with

ν =
n

∑
i=1

σ2
i a2

i

Proof. We bound the moment generating function of∑n
i=1aiVi by induction. As a base case, we have

E
[

esa1V1
]

= E

[

E

[

esa1V1

∣

∣

∣F0

]]

≤ e
1
2σ2

1 a2
1s2

Assume for induction that we have

E

[

exp

{

s
j

∑
i=1

aiVi

}]

≤ exp

{

1
2

(

j

∑
i=1

σ2
i a2

i

)

s2

}
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Then we have

E

[

exp

{

j+1

∑
i=1

aiVi

}]

= E

[

exp

{

s
j

∑
i=1

aiVi

}

esaj+1Xj+1

]

= E

[

E

[

exp

{

s
j

∑
i=1

aiVi

}

esaj+1Xj+1

∣

∣

∣F j+1

]]

(a)
= E

[

exp

{

s
j

∑
i=1

aiVi

}

E

[

esaj+1Xj+1

∣

∣

∣F j+1

]

]

(b)
≤ E

[

exp

{

s
j

∑
i=1

aiVi

}]

e
1
2σ2

j+1a2
j+1s2

(c)
≤ exp

{

1
2

(

j+1

∑
i=1

σ2
i a2

i

)

s2

}

where (a) follows since∑ j
i=1aiVi is F j measurable, (b) follows since

E

[

esaj+1Xj+1

∣

∣

∣F j+1

]

≤ e
1
2σ2

j+1a2
j+1s2

,

and (c) is the inductive assumption. This proves that

E

[

exp

{

s
n

∑
i=1

aiVi

}]

≤ exp

{

1
2

(

n

∑
i=1

σ2
i a2

i

)

s2

}

≤ exp

{

1
2

νs2
}

Using the Chernoff bound [19], we have

P

{

n

∑
i=1

aiVi > t

}

≤ e−st
E

[

exp

{

s
n

∑
i=1

aiVi

}]

≤ exp

{

−st+
1
2

νs2
}

Optimizing the bound oversyields

P

{

n

∑
i=1

aiVi > t

}

≤ exp

{

− t2

2ν

}

The proof for the other tail is similar.

If the random variables instead satisfy

1. E
[

exp
{

s
(

Vi −E
[

Vi
∣

∣Fi−1
])} ∣

∣Fi−1
]

≤ e
1
2σ2

i s2
with σ2

i a constant

2. Vi is Fi -measurable

then Lemma 22 can be applied to{Vi −E
[

Vi
∣

∣Fi−1
]

}n
i=1 to yield

P

{

n

∑
i=1

aiVi >
n

∑
i=1

aiE
[

Vi
∣

∣Fi−1
]

+ t

}

≤ exp

{

− t2

2ν

}

If we can upper bound the conditional expectations

E
[

Vi
∣

∣Fi−1
]

≤Ci ,

by Fi−1-measurable random variablesCi , then we have

P

{

n

∑
i=1

aiVi >
n

∑
i=1

aiCi + t

}

≤ P

{

n

∑
i=1

aiVi >
n

∑
i=1

aiE
[

Vi
∣

∣Fi−1
]

+ t

}

≤ exp

{

− t2

2ν

}

For our analysis, we generally cannot computeE
[

Vi
∣

∣Fi−1
]

, but we can find “nice”Ci .
To find σ2

i for use in Lemma 22, we frequently use the following conditional version of Hoeffding’s Lemma.
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Lemma 23(Conditional Hoeffding’s Lemma). If a random variable V and a sigma algebraF satisfy a≤V ≤ b and
E[V|F ] = 0, then

E
[

esV | F
]

≤ exp

{

1
8
(b−a)2s2

}

Proof. We follow standard proof of Hoeffding’s Lemma from [19]. Sinceesx is convex, it follows that

esx≤ b− x
b−a

esa+
x−a
b−a

esb a≤ x≤ b

Therefore, taking the conditional expectation with respect to F yields

E
[

esV
∣

∣F
]

≤ b−E [V | F ]

b−a
esa+

E [V | F ]−a
b−a

esb (22)

Let h= s(b−a), p=− a
b−a, andL(h) =−hp+ log(1− p+ peh). Then we have

eL(h) =
b

b−a
esa+

−a
b−a

esb

=
b−E [V | F ]

b−a
esa+

E [V | F ]−a
b−a

esb (23)

sinceE [V | F ] = 0. SinceL(h) = L′(h) = 0 andL′′(h)≤ 1
4,, it holds thatL(h)≤ 1

8(b−a)2s2. Combining this bound
onL(h) with (22) and (23) yields the result.

Before proceeding with our analysis, we need to introduce a few useful concentration inequalities for sub-Gaussian
vector-valued random variables. First, for a scalar randomvariableξ , define the sub-Gaussian norm

τ(ξ ) = inf

{

a> 0

∣

∣

∣

∣

E[esξ ]≤ e
1
2a2s2 ∀s≥ 0

}

(24)

Clearly, if τ(ξ )<+∞, thenξ is sub-Gaussian. Second, for a random vectorv in R
d, define

B(v) =
d

∑
i=1

τ((v)i) (25)

where(v)i is theith component ofv. We definev to be sub-Gaussian ifB(v)<+∞.
Of crucial importance in our analysis is analyzing the norm of an average of vector-valued sub-Gaussian random

variables. The following lemma describes how to control thesub-Gaussian norm in such a situation.

Lemma 24. Suppose that{vi}K
i=1 is a collection of independent sub-Gaussian random variables inRd. Then it holds

that

B

(

1
K

K

∑
i=1

vi

)

≤ 1
K

d

∑
j=1

√

K

∑
i=1

τ2((vi) j)

If in addition the random variables{vi}K
i=1 satisfy

max
i=1,...,K

max
j=1,...,d

τ2((vi) j)≤ τ2

then it holds that

B

(

1
K

K

∑
i=1

vi

)

≤ τd√
K
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Proof. We analyze one component of the sum1
K ∑K

i=1vi . It holds that

E



exp







s

(

1
K

K

∑
i=1

vi

)

j









 = E

[

exp

{

s
K

K

∑
i=1

(vi) j

}]

=
K

∏
i=1

E

[

exp
{ s

K
(vi) j

}]

≤
K

∏
i=1

exp

{

1
2

1
K2 τ2((vi) j)s

2
}

= exp

{

1
2

(

1
K2

K

∑
i=1

τ2((vi) j)

)

s2

}

This implies that

τ





(

1
K

K

∑
i=1

vi

)

j



≤ 1
K

√

K

∑
i=1

τ2((vi) j )

and so

B

(

1
K

K

∑
i=1

vi

)

≤ 1
K

d

∑
j=1

√

K

∑
i=1

τ2((vi) j)

Finally, if τ2((vi) j)≤ τ2, then we have

B

(

1
K

K

∑
i=1

vi

)

≤ 1
K

d

∑
j=1

√

K

∑
i=1

τ2((vi) j )

≤ d
K

√

K

∑
i=1

τ2

=
τd√

K

Example 3.2 from [17], a consequence of Theorem 3.1 in [17], is useful for the concentration of the norm of
sub-Gaussian vector random variables.

Lemma 25(Example 3.2 of [17]). If v is a random vector inRd with B(v)<+∞, then

P{‖v‖> t} ≤ 2exp

{

− t2

2B2(v)

}

Finally, we will also need to deal with dependent random variables that are sub-Gaussian with respect to a particular
filtration.

Lemma 26. Suppose that a random variable V and a sigma algebraF satisfies

1. E [V | F ] = 0

2. P
{

|V|> t
∣

∣F
}

≤ 2e−ct2 with c a constant.

Then it holds that

E[esV
∣

∣F ] ≤ exp

{

1
2

(

9
c

)

s2
}

for all s≥ 0.
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Proof. Adapted from the characterization of sub-Gaussian random variables in [15]. First, we have for anya< c that

E

[

eaV2
∣

∣

∣F

]

≤ 1+
∫ ∞

0
2ateat2

P{|V|> t | F}dt

≤ 1+
∫ ∞

0
2ate−(c−a)t2dt

= 1+
2a

c−a

Settinga= c
3 yields the bound

E

[

eaV2
∣

∣

∣F

]

≤ 2

SinceE [V | F ] = 0, by a Taylor expansion we have

E
[

esV
∣

∣F
]

= 1+
∫ ∞

0
(1− y)E

[

(sV)2eysV
∣

∣

∣F

]

dy

≤
(

1+
s2

a

)

e
s2
2a

≤ exp

{

5s2

2a

}

= exp

{

1
2

(

9
c

)

s2
}
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