arXiv:1509.07422v1 [cs.LG] 24 Sep 2015

Adaptive Sequential Optimization with Applications to Mue
Learning

Craig Wilson and Venugopal V. Veeravalli
Coordinated Science Lab and Electrical and Computer Ergimg
University of lllinois at Urbana-Champaign
Urbana, IL 61801, USA

{wilson60,vvv}@illinois.edu

October 25, 2018

Abstract

A framework is introduced for solving a sequence of slowlamting optimization problems, including those
arising in regression and classification applications)gisptimization algorithms such as stochastic gradientetgs
(SGD). The optimization problems change slowly in the séhnaethe minimizers change at either a fixed or bounded
rate. A method based on estimates of the change in the mimisnand properties of the optimization algorithm is
introduced for adaptively selecting the number of sampéssiad from the distributions underlying each problem in
order to ensure that the excess risk, i.e., the expectedgmgén the loss achieved by the approximate minimizer
produced by the optimization algorithm and the exact min@nidoes not exceed a target level. Experiments with
synthetic and real data are used to confirm that this appreadbrms well.

1 Introduction

Consider solving a sequence of machine learning problertis as regression or classification by minimizing the
expected value of a fixed loss functiéfx, z) at each timans:

min {fn(m) 2E, o [e(w,zn)]} vn>1 Q)
xzed
For regressionz, corresponds to the predictors and response pair attiamelxz parameterizes the regression model.
For classificatiore,, corresponds to the feature and label pair at tmaandx parameterizes the classifier. Although,
motivated by regression and classification, our framewookke for any loss functior(x, z) that satisfies certain
properties discussed later. In the learning contetasiiconsists of the loss functiof{x, z) and the distributiorpy,
and so our problem can be viewed as learning a sequence sf task

The problems change slowly at a constant but unknown ratesisénse that

ln—2n_all = p n>2 )

with x;, the minimizer off,(x). In an extended version of this pap&t,[we also consider slow changes at a bounded
but unknown rate
[en— 24l <p vn>2 ®)

Under this model, we find approximate minimizarsof each functionf,(x) usingK, samples from distribution
pn by applying an optimization algorithm. We evaluate the dyailf our approximate minimizers, through an
excess risk criteriowp, i.e.,

E[fa(2n)] — fn(zn) < &n
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which is a standard criterion for optimization and learnprgblems|[[1]. Our goal is to determine adaptively the
number of samplek, required to achieve a desired excess aghr eachn with p unknown. Asp is unknown, we
will construct estimates gb. Given an estimate gb, we determine selection rules for the number of samigle®
achieve a target excess risk

1.1 Related Work

Our problem has connections withulti-task learningMTL) and transfer learning In multi-task learning, one tries
to learn several tasks simultaneously as In[[2],[3], andAéxploiting the relationships between the tasks. In fiams
learning, knowledge from one source task is transferreddoher target task either with or without additional traimi
data for the target taskl[5]. Multi-task learning could beléx to our problem by running a MTL algorithm each time
a new task arrives, while remembering all prior tasks. Hawethis approach incurs a memory and computational
burden. Transfer learning lacks the sequential nature opmblem. For multi-task and transfer learning, there are
theoretical guarantees on regret for some algorithims [6].

We can also consider tlmncept driftproblem in which we observe a stream of incoming data tharyiatlly
changes over time, and the goal is to predict some propemadi piece of data as it arrives. After prediction, we
incur a loss that is revealed to us. For example, we couldrebsefeaturew, and predict the labe}, as in [1].
Some approaches for concept drift use iterative algoritsunt as SGD, but without specific models on how the data
changes. As a result, only simulation results showing garfbpmance are available. There are also some bandit
approaches in which one of a finite number of predictors meistdplied to the data as in/[8]. For this approach, there
are regret guarantees using techniques for analyzing tyamdilems.

Another relevant model isequential supervised learnirfgee [9]) in which we observe a stream of data consisting
of feature/label pairéwn,yn) at timen, with wy, being the feature vector arng being the label. At time), we want
to predicty, givenx,. One approach to this problem, studied(in][10] and [11], i¢otik at L consecutive pairs
{(wn,i,yn,i)}}-:1 and develop a predictor at tirmeby applying a supervised learning algorithm to this tragnitata.
Another approach is to assume that there is an underlyirdghi®larkov model (HMM)[[1R]. The labsi, represents
the hidden state and the p#ipy,y,,) represents the observation withbeing a noisy version of,. HMM inference
techniques are used to estimgte

2 Adaptive Sequential Optimization With p Known
For analysis, we need the following assumptions on our fanstf,(x) and the optimization algorithm:
A.1 For the optimization algorithm under consideration, thisre functionb(do, Kn) such that

E[fa(zn)] = fn(zy) < b(do,Kn)

with K, the number of samples from, andE||zn(0) — x}||? < do, wherez,(0) is the initial point of the
optimization algorithm at time. Finally, b(do,Ky) is non-decreasing idp.

A.2 Each loss functior(x, z) is differentiable inz. Eachfy(x) is strongly convex with parametar, i.e.,
1
fa(y) > fn(z) + (Oa fu(e),y — ) + émlly—acl\2

A3 diam(Z') < 4o
A.4 We can find initial pointse; andx; that satisfy the excess risk criterion wthande, known, i.e.,

Elfi(z)]—fi(z)<g i=12



RemarksFor assumptiof AL , we assume that the bobfuld, Kn) depends on the number of sampiesand not
the number of iterations. For SGD, generally the numberesittons equalk,, as each sample is used to produce a
noisy gradient. In addition, we often set(0) = xz,_1. See AppendikA for a discussion of usehftp, K,,) bounds.
For assumption A% , we can fi§ and set = b(diam(27)2,K;) fori = 1,2.

Now, we examine the case when the change in minimigeirs(2) or (3), is known. For the analysis of the section,
whether[(2) or[(B) holds does not affect the analysis. Latewill estimateo and in this case whethér (2) @i (3) holds
matters substantially.

We want to find a boung, on the excess risk at tintein terms ofK,, andp, i.e., &, such thaiE[f,(zn)] — fa(x},) < &n.
The idea is to start with the bounds from assumplion]A.4 amdged inductively using the previogs 1 and p
from (2). Suppose tha,_; bounds the excess risk at time- 1. Using the triangle inequality, strong convexity, and
() we have

A

2
< (lzna—apoall+llen— 25 4])

2
<\/%E [fi—1(zn-1)] — fn—l(wﬁfl) + |lxy— w;l”>

2
2en_1
<\/ m P) 4)

In comparison, we could use the estimate diafi) to boundE|z,_1 — x| and selecK,. If the bound in[[#) is
much smaller than dia(®")?, then we need significantly fewer samplgsto guarantee a desired excess risk. Now,
by using the bound(dp, K,,) from assumption’/A.l , we can set

2
& = b((y/zimu—p) ,Kn) vn>3

which yields a sequence of bounds on the excess risk. Notehilsaecursion only relies on the immediate past at
timen— 1 throughe, 1. To achieveg, < ¢ for all n, we set

Elln-1— 2|

IN

Ki=min{K > 1| b(diam(2")% K) < €}

(/o) o)<

andK, = K* for n > 2 with

K*_min{Kzl

3 Estimating p

In practice, we do not know, so we must construct an estimateusing the samples from each distributipn We
introduce two approaches to estimatat one time stegjx; — «;" 4||, and methods to combine these estimates under
assumptiond{2) andl(3). We show that for our estinfgtand appropriately chosen sequenégs for all n large
enoughd, +tn > p almost surely. With this property, analysis similar to tlaSectiorl 2 holds.

3.1 Allowed Ways to Choos&,

One of the sources of difficulty in estimatiggis that we will allowKp, to be selected in a data dependent wayKso
is itself a random variable. We make the assumptionkhas selected using only information available at the end of
time n— 1. To make this precise we define a filtration of sigma algetwraescribe the available information. First,
we define the sigma algebré, containing all the information on the initial conditionsair algorithm. For example,
we may start at a random poinag and then

o = a(xo)



The sigma algebrafg may also contain information abokif andK,. Next, we define the filtration
_ Kn
H=0 ({zn(k)}kzl) VA1 W¥n>1 (6)

where
FNYG=0(FUY)

is the merge operator for sigma algebras. The sigma algghreontains all the information available to us at the
end of timen. We assume thd{, is .#,_1-measurable to capture the idea tKatis chosen only using information
available at the end of time— 1.

3.2 Estimating One Step Change

First, we estimate the one step chanfjes— x; ;|| denoted byp;. Implicitly, we assume that all one step estimates
are capped by diaf#®"), since trivially ||z}, — x;,_;|| < diam(.2Z").

3.2.1 Direct Estimate

First, we construct an estimafe of the one step changés; — ;" ,||. Using the triangle inequality and variational
inequalities from([13] yields

) — 21| <l — il + |z — i + @1 — 4]

1 1
< @i —@ioal + 0 i) | + = |Be fi(zi-a)|

We then approximaty, fi(xi)|| = || Ez~p [D2f(xi, zi)] || by

|
J
8
=
8
IS
=
~

to yield the following estimate that we call tidérect estimate

bi 2 ||z — 1| + = i S Oz f(xi, 2i (k) —|—l iKHD U(xi—1,zi-1(k))
Pi = || i i—1 e 2 x is2i ml K1 kzl x i—1,%i—1

3.2.2 Vector Integral Probability Metric Estimate

Given a class of functiong where each € .# mapsZ” — R, an integral probability metric (IPM) [14] between two
distributionsp andq is defined to be

V7 (P, ) = SUp|Ezp[f(2)] — Ezvql f (2)]]
feF
We consider an extension of this idea, which we catator IPM in which the class of function& mapsZ — 2":

v(p.q) & §€u£||Ez~p[f(z)] —Ezq[f(2)]ll ()

Lemmd shows that a vector IPM can be used to bound the changiaiimizer at time and follows from variational
inequalities in[[13] and the assumption tfét,¢(x,) : x € 2°} C Z.

Lemma 1. Assume thaf(.¢(x,-) : x € Z'} C Z. Then||z{ —z] 4| < %y}(pi, pi-1)-



Proof. By exploiting variational inequalities from [13], we cancstthat

1 . \
< SlBefi(@iy) - Uafia(aiy)]

A

i — x4
1 * *
= EHEZiNPi [Oel(@f 1, 2i)] =Bz yopy [Dal(@ig,zi-0)] |
By assumptioq O ¢(x 4,-) : x € 2} C .F, S0

0 fi(xiq) — Oz fia(xig)| = HEzini [f(wﬁl,zi)] —Ez 1opg [Z(w;‘fl,zi,l)} |
< f€U£||Ezi~pi [F(zi)] = Ezi_yopg [F(zic)] ]

V% (Pi, Pi1)
0

We cannot compute this vector IPM, since we do not know theribligions p; and p;_1. Instead, we plug in
the empiricalsp”and g1 to yield the estimatg}ly}(f)i, Bi—1). This estimate is biased upward, which ensures that

| — 4| <E[ Vy(plaﬂ )]
Our estimate is still not in a closed form since there is asupm over# in the computation of% (i, pi—1).

For the class of functions

F={t]f() - 13 <r(z.2)}. ®)
we can compute an upper boufidon y¥ (i, fi—1) yielding a computable estimafi = nlql'i. Setzi(k) = zi(k) if
1<k<Kjandz(k) = zj_1(k) if Ki+1<k<K;+K;_1. From [T), we have

We can relax this supremum by maximizing over the functioluevd (2 (k)) denoted byoy in the following non-
convex quadratically constrained quadratic program (QCQP

Ki-1

z ax— m z O +k

subject to|\ak—a,-|| <r(Z(k),z(j)) Vk<]j

1 Ki-1

K Z f(2 F(Z (K +K)

, )=su
y% (B, Bi-1) p K

fes

maximize|| —

The constraints are imposed to ensure that the functioresalucan correspond to a function i from (8). The
value of this QCQP exactly may not equal the vector IPM bugeast provides an upper bound. Finally, we note that
this QCQP can be converted to its dual form to yield an SDP¢kvis often easier to solve.

3.2.3 Comparison of Estimates

The direct estimate is easier to compute but may be lodgenif- ;|| is large. If|xn — || is large, then the vector
IPM approach is in general tighter. However, the vector IBIvhore difficult to compute due to need to solve a QCQP
or SDP and check the inclusion conditions in Lenitha 1. Alse,rthmber of constraints in the QCQP or SDP grows
guadratically in the number of samples.

3.3 Combining One Step Estimates For Constant Change

Assuming that|z; —x; ;|| = p from (@), we average the one step estimgiet® yield a better estimate

R 1 2.
Pnzmizzpi

of p at each timen under[[2). To analyze the behavior of our combined estimatesise sub-Gaussian concentration
inequalities detailed in AppendiX B. Leminal 22 is of partasimportance to our analysis.



3.3.1 Direct Estimate

The difficulty in analyzing the direct estimate comes beeauapproximating%ﬂ Ofi(xi)|| by

1] 1 K H

a E kzl Dmé($| s Zj (k))

x; is dependent on all the sampl{esi(k)}fizl. To illustrate the problem further, consider drawing twdependent
copies{zi(k)}f;l e pi and {Ei(k)}fi:l e pi of the samples. Suppose that we use the second £8fk) Ei:l to
computer; using our optimization algorithm of choice starting fratn 1. Then we approximatéHDfi (xi)|| by

18
— Y Oxl(xi, zi(K
S

is the norm of an average of independent random variabledittmmed onx;. This allows us to apply standard
concentration inequalities for norms of random variablemd15]. In this section, we argue that re-using the samples
{zi(k)}fi:1 to computer; is not too far from using a second independent df&wk) Ei:l.

For analysis, we need the following additional assumptions

1
m

Now, since; is independent of z; (k)}fi:1 the quantity

1K

1
— z 0.4 Tj, Zj k

m

B.1 The loss functior(x, z) has uniform Lipschitz continuous gradientszdrwith modulusL, i.e.

|0zl(x, 2) — Oxl(%,2)|| < Lz —&|| Vz€ 2

B.2 AssumingZ’ is d-dimensional, each componejnof the gradient errofl, ¢(x, zn) — fr(x) satisfies

m} < exp{l%g}

E [exp{s(Dmé(m,zn) - Dfn(fc))j} 232

Assumptior[ B.1 is reasonable if the spag¢econtainingz is compact. Although in practice, the distribution of
gradient error could depend ar, we assume that the boui@j does not depend om. We can view this as a
pessimistic assumption corresponding to choosing thetwase bound as a function @fand the resultin€q. This
is a common assumption for in high probability analysis dfrofzation algorithms as in [16] for example.

To proceed, we first define two other useful estimateofois discussed before, suppose that we make a second
independent draw of sample"i(k)}Ei:1 from p;. We use these samples to computen™the same manner as

starting fromx;_, except With{ii(k)}fi:1 used in place O{zi(k)}fizl. Then define

1 Ki-1

K1 Dmé(iilazil(k))”

1 K
P O L(Zi, zi(K))
I k=1

1
+ =
m

A &3 =l +

This is the same form as the direct estimate witlin"place ofx;. Next, define

.~ 1 1
B 2 & —&iall + [ 0fi(@)] + = | Ofia(ai-a)]

This is in fact the bound that inspired the direct estimate.algo define the averaged estimates

s2a 1 2
Pn _n—li;p'



and L o
~(3) & ~(3)
pn” = —— 1;;3.

We know that[),(F) > p. Thus, if we can control the gap between the gfaiand[)rﬁz) and the pai;ﬁéz) and[)r(fq’), then
we can ensure that, plus an appropriate constant upper boupndsr all n large enough as desired.

First, we show tha/br(,z) upper boundp eventually.
Lemma 2. Suppose that the following conditions hold:
1. hold

2. The sequencfi,} satisfies

3 ol <o

Then for all n large enough it holds théﬁz) +¢P +t, > p almost surely with

S <\T+ZZ\/;. ﬁ)

Proof. First, we have by the triangle equality and reverse triangdgquality

m|ﬁi(2) _ ~_(3)|
1 Ki 1 Ki_1 N
= ( K, 2 O £($|,Z|( )) | HD ) <Hi kz D é .’13, 1,Zi— 1( )) |— |Dmfi1(cci1)||> ‘
1 K Ki_1 i
< Ek:1Dmé(w.,zl( ))H—ID fi(Zi)||| + jl(z O l(%i 1,2 1( ))H_Hmwfil(wil”‘
1 Ki . 3 1 Kia N i
S E kzl(Dmé(-’Bi,Zi(k)) I:lm f| (CE|)) + E kzl (Dmé(wifl,zi,l(k)) — Dm fifl(mi,l)) ||

n Ki
o - b < ﬁ%(‘ éz(ﬂ U(&,zi(K) - Dwfi@i))H

k_

1 Ki-1 . .
+ K1 k; (Ozl(Zi-1,2i-1(K) — Oz fi_1(£i-1)) H)
1 1 I k fi (2
min—1) K—lk;(ﬂmﬁ(wlvzl( ) — Ox f1(#1))
n-1 1 Ki
+2% |l > (Hal(&i, zi(k) — Oz fi(Ei))
i; K; kZ]_ iy Zi i(ZLi
15
+lie > (Oal(En, zn(k)) — Oz fn(Zn)) ©)
nK=1
We will analyze the behavior of this bound m{” - ﬁi(3)| using Lemma?22 in Appendix|B. Define the filtration
i+1
’%—0<U{Z1 }k 1UU{ZJ }k 1>\/%/0 i=0,...,n (10)



with %5 from (6). Note that#{_1 C .%_1, soK; is .%;_1-measurable. In additiom; but notz; is .%;_1-measurable.
Define the random variables

Ki
Kiikzl([lmg(iiazi(k)) - Dm fi (-’il)) || ‘ 3‘71‘| i = 1,...,[’]

\/i:

— . O l(Zi, zi(K)) — Og fi (2 —E
K kzl( (@i, zi (k) ( ))H

Clearly,V; is .Zj-measurable, sincdg is a function ofzj, K;, and{zi(k)}fi:1 all of which are.%#-measurable. Condi-
tioned on.%;_1, the sum

1s O l(Fi, 2 (K) — O i (& 11
Kik;( (Zi,2i (k) (&) (11)

is a sum of iid random variables. We now work with the conditibmeasur@®{- | .%;_1} to compute sub-Gaussian
norms of [11) define if.(24) an@ (25) of Appenfix B. By assumii.2], we have

72 ((Dmﬁ(féi,zi(k)) — O fi (53.))]) < %
Therefore, applying LemmaP4 yields
Ki

B<z (Oal(E, () — Oa fi<ca>>> <\

k=1 i

due to the independence conditioned.@n ;. By applying Lemmad 25 from[[17] to the conditional distritmnt
P{:|.%_1}, we have

18 3 ) ) .
P{ Ekgl(ﬂmé(mi,zi(k))—Dmfi(mi)) >t Jil} < ZeXp{_W}
12
= 2exp{_|§'_ctg}
Since
15 ) ~
IE[ Kkzl(Dmﬁ(ml,zi(k))—Dmfl(m,))H Jlll o
we have




SinceE[V, | #_1] = 0, we can apply Lemnfa 26 with= 1/(2Cy) to yield

B[] 7ia) <enn{ 3 18002

This shows that the collection of random variabl@$}! ; and the filtration{.%}{ , satisfies the conditions of
LemmdZ2. Before applying Lemrhal22, we bound the conditierpéctations

1k . P
E K z (Ol(&i, zi(k) — O fi (&) Fi1

i k=1

By a straightforward calculation conditioned ¢f_;, we have

1 Ki 3 ) 2 i
]E[ Kk;(Dmf(wiaZi(k))—Dmfi(wi)) Jil]
1 Ki K
— ﬁkzl E[(Ol(&, 2 (K) — Og f (&), 0 0(&i, 2i(j) — Oz f (&) | Fi_1]
1 =1]=
1%

=2 kzlE [102£(&i, 2i(K) — Oz £ (&)[1? | Zia]

i k=
1K

d
K2, quE [(Ool(#i,2i(K) — Oo f(21))2 | Fi_a]

where (@) is a decomposition into each component of the vaatb (b) follows since a centered sub-Gaussian random
variable with parameteZy/d? satisfies

E [(Oel(&, zi(K)) — Oz f (&))5 | Fi-1] < %

Then by Jensen’s inequality

LS (ot a00) - O fi@ || 2ia| <[
K| kZ;L x iy =i x i\ Li -1 > dKi
Define the constants
4 - B 1
to- an_m(n—l)
@ — B 2
2 - _anfl_m(n—l)
resulting in
2 2
”aHZ: rnZ(n_l)



Using the bound in{9) and Lemrhal22 from Apperidix B with thisick ofa, it holds that

n
P{Iﬁéz)—ﬁr§3>l>ziam/d%+t}

1K
> (Oe ﬁ(whzl(k))—ﬂmfi(ii))||

Ki K=1

1K
|| Fi-1

> (Oab(@.2i(K) — Do fi(@))

i k=1

4

Combining this bound Witlﬁ)r@ > pyields

m]P) [)(2><p “aM/Cg t
n - Qv n
n; izi dk n=2
oo n
< SR -p1> a2
2 { n n 2 dK@ n

< Fen{ )

The result follows from the Borel-Cantelli lemma. Note thatclaimed

&= D 1([”%& \/r?)

Next, we show thap, upper boundsﬁr(,z) eventually with a general assumption on the optimizatigoadhm.
When the conditions of Lemmas 2 ddd 3 are satisfied, it ho&tgthplus a constant upper bounds

IN
M
=
——
o
S
n
A
o))
S
@
|
I S
QS
o
24
|
5*
——

O

Lemma 3. Suppose the following conditions hold:
1. B.1-B.2 hold

2. There exist bounds
E[||lzi — @il | #i1] <C(K) i=1,...,n

3. The sequenc,} satisfies

) 122
%exp{_ (nL 21). t } <t
= 2n(1+ &) dian?(2)

Then for all n large enough it holds that + Cn + t, > [)r(lz) almost surely with

n—-1

L
G, 2 (1n+fr1ﬂ) <C(K1) +2i;C(Ki) +C(Kn)>

10



Proof. We have by the triangle inequality, reverse triangle indigyand the Lipschitz continuity ofl,¢(x, z) in x
from assumptioh B.1

Bi—p2 < |ll@i—aial — [|F — &4l
11 K& 1)1 %
+ KI pa I:l é($|,2|(k))H KI pa I:l [(w|,Z| H‘
1| 1 K'fl 1] 1 K2
2= S Ol 2 1K) = = Oul(&i 1,2 1(K
m{|K_; & (CC| 1, i 1( ))| KI LA (CE| 1, Zj 1( )) H
< (@i = &) — (i1 —Zi-1) ||
+1 L S (0t 21 (K)) — Dul(E 21 (K)
K| kz 1y ~I1 x 15 ~I
1] 1 Kz N
milk k; (Ozl(xi-1,2zi-1(K) — O (Zi -1, zi-1(K)))
L - -
< (14E) G-l + o a-aral)
m
SO
~ ~(2 1 e
PP < = 15— 52
1+L5) . .
< (n_T) 2 ([lzi — il + [|zi-1— Zi-al])
]__l’_L n-1
- (n T) <|m1—m1|+2%|m| C‘5|||‘|'|f'3n—35‘n||>

We will again apply LemmBa22 of AppendiX B to analyze this uppeund using the sigma algebra

Fi=0 <U{zJ }k_luu{zJ }k_>\/%i_0,...,n (12)

Define the random variable
Vi = [|lzi — & - E ||z — &| | Fi-1]

Clearly,V; is %#-measurable. Since
—diam(2") <V < diam(.Z"),

andE V; | % _1] = 0, we can apply the conditional version Hoeffding’s LemnuanfrlLemmd 2B to yield
E [eSVI | Zi_1] < exp{%diamz(%)sz}

The collection of random variablgd/}! ; and the filtration{.%; }{, satisfy the conditions of Lemnial22. Before
applying Lemma&22, we bound the condmonal expectations
E [|lai — & | Zi-1]
By assumption, we have
E[||lzi — @il | #i-1] <C(K) i=1,...,n

9

11



and so

(1+
n_

)

3|

[

n-1
Set

and

resulting in

laf13 =

n—-1

n—-1

CMﬂ+zgqmwcmm>é@

n(1+%)2
(n—1)2

Applying our bound in[{I2) and Lemnhal2?2 with this choicenofields

]P{|[)n—[)r(,2>|>én+t}

Sp{a+m

n-1

(1+5)

>0 <E [llaza = &4] | Fo] +2;E [llzi —&il| | Zi-a] | +E[|lzn—&nll | Fn-1]
n-1 &

:p{%_?:) <v1+2?ivi +vn> >t}
:P{iiajvi >t}

{ (n—1)2? }
S expd - 2
2n(1+ L) dian?(2")

Finally, we have

[

;P{ﬁn < ﬁrgz) —én—tn} <
e

The claim follows from the Borel-Cantelli Lemma.

n—-1
<||w1—531| +2 Z i = &i| + [|n — cTcn|>
i=

n—-1

i]}b{mn—ﬁ,ﬁzH >Cotta)
pA

(n— D)7

<]E[||w1—531|| | Zo] +2_ZE[||wi — & | Fia] | +E[llen—&n | Fna]
i=

n;exp{ 2n (1+L)%dian?

}<+m
(27)

If Lemmad2 anfi3 hold for the sequen{tg/2}, then for alln large enough it holds that

pn+Ca+CP +ta>p

almost surely.

12

)

)]



Lemma 4. It always holds that

E[[|zi - & | Zi4] < 2\/%b(diamz(%)v|<i)

Therefore, the choice

C(Kj) & 2\/%0 (dian?(27),Ki)
satisfies the conditions of Lemina 3.

Proof. Using the sigma algebras defined[in](12) yields

Ellei -l | #i1 < Ellzi—aill | Fia] +E[|2i — 2| | Fi]

\/%(fi(wi)— fi(z})) | Zi1 \/%(fi(ii)—fi(wi*))lﬁzil

IN

E +E

IN

Y 2BIhG@) - (e | Fal+ ) 2EI ) - fla) |

< 2\/%b(diam?(3£”),Ki)

where the third inequality follows from Jensen’s inequalit O

This choice of£(Kn)works for any algorithm with the associate@ly, K). For any particular algorithm, we believe
that we can produce tighter bounds independent of i&mby copying the Lyapunov analysis used to analyze SGD
as in Appendix’A. The analysis becomes algorithm dependehts case and is omitted.

Finally, we state an overall theorem for the direct estintladée gives general combined conditions under whiigh
upper boundp.

Theorem 1. If hold and the sequen¢i } satisfiesz:fzze*Cnﬁ < oo for all C > 0, then for a sequence of
constant§C,} and for all n large enough it holds thgt, + C, + t, > p almost surely.

Proof. Combine Lemmas|2 amnd 3 to yield the result with

Cn=Ch+CP

3.3.2 \Vector IPM Estimate

We first derive a version of Hoeffding’s inequality that al®for some dependence among the random variables. We
use this concentration inequality to analyzefor the IPM estimate. Given an integ#f, we construct a cover of
{1,2,...,n} by dividing the set int&V groups of integers spaced B, i.e.,

%j—{j,jJrW,j—l-Z\N...,j—l-{%JW} j:l,...,W (13)

Note that
w
{1,2,....n} = | @
j=1

and.«f N.a/; = 0 fori # j. The proof of Lemmal5 is nearly identical to the proof of théemsion of Hoeffding’s
inequality from [18] with Lemm&22 used instead. We assunatiftwe refer to a filtration%; with i < 0, then we
implicitly refer to .%.

13



Lemma 5 (Dependent Hoeffding’s InequalitySuppose we are given a collection of random varighg ; and a
filtration {.# }]' , such that

1. g <V <bforconstantspandh i=1,...,n
2. Mfis #-measurable +1,...,n

3. Given an integer W and a covéry| \j’":l as in(@3)for each j it holds that

E {VjJriW ‘ ijr(ifl)W} =0 i= :I.,...7 \‘%J

and
E|V; | #o] =0

Then it holds that

P{ZV >t} <oo{ o)
P{i“<‘t} <oo{ - wranar)

and

Proof. Define
]
U= i; Vi tiw

forj=1,...,W. Let{p; }‘j’\’:l be a probability distribution ofi1,..., W} to be specified later. By Jensen’s inequality,

we have
n
exps s ) Vi
by

|
(¢
X
©
——
M=
°
2|
=
——

Then it holds that

i

Now consider one term

S s L]
E exp{—_UjH = |exps — ZJ Vjiw
L i=

P

Sinceajiw < Vj+w < bjw and
E {VjJriW ‘ 3‘\j+(i71)w} =0,

we can apply the conditional version Hoeffding’s Lemma frioemmd 23 to yield

E [ [ 7], ow] < exp{ g P aj+iW)232}

14



n—j n—j
Then we can apply LemniaR2 {(\)’Hiw}iL:gV J and{inW}iL:gV J to yield

fen{ )

,_
>
[
[E—

(bjiw — aj+iw)?

IA
D
X
o
(0]
B
M

|

_ (ba —aa)z}

Il
1]
[©]
X
©
—N—
0]
i®]
—N

Then we have

n w LH{VLJ
E |exp SZVi < ij r!) exp 8—pz(ba—aa)2
i= = = j
_ §p-exp £e
Ao ee
with '
n—j
cj = LVg}J(bjﬂw —ajw)?
i=
Letp; = ,/Cj/T and
w
T=Y /G
=1
Therefore, we have
n 1
E|expdsS Vi gexp{—Tzsz}
PRIREE

Applying the Chernoff bound [19] and optimizing yields
n
P Z‘Vi >t <exp{-2t?/T?}
i=
BoundingT with Cauchy-Schwarz yields

and the results follows. The proof for the other tail is ng&dentical.

If we do not have the condition 3 of Lemmh 5, then it holds that

£

n W { 212
P |;VI > le E [Vj+iW ‘ yjﬂifl)w] +t, < exp{—m}

W

i
If we can bound the conditional expectation

E [Visw | Zisi-nyw] <Cjrw,

15



by a.7 i_1w-measurable random variable, then we have

P{ii\/i>iici+t} = P 2 Vi>j§l i; Citiw +t

IN

=

<

Vv
M =

IN
=
M=

Z} (Visiw —E [Visw | Zjsi-yw]) >t

IN

2t2
expy —c—————
p{ W3, bi - a)z}
We have the following lemma characterizing the performaridche IPM estimate.

Lemma 6. For the IPM estimate and any sequer{¢g} such that

3 ex ntﬁ < o
2. P\ “Zdam 7
for all n large enough it holds thah, +t, > p almost surely.

Proof. Define the random variables
Vi=p—E[pi | A 2

with {7}, defined in[(6). We have
—diam(.2") <V; < diam(2")

Clearly,V; is #-measurable an8|V; | 2% _»] = 0. Now, we can apply Lemnid 5 with = 2 to yield

e 2(nt)?
P{izv'<_m} = eXp{_(z) (4ndiamz(5{))}
nt

- exp{—mz(%)}

None of the random variable{&i(k)}fizl and{zj_1( )}k are.%;_, measurable. Also, regardless of how many
sample¥; andK;_; are taken, the IPM estimate is biased upward Thus, it hokts t

E[fi | A2 >p

Therefore, it follows that

P{pn<p-t} < {i ZEpllﬁif ]—nt}

< r{en]
- {4dam2 }

16



Note that we pay a price of two in the exponent du@itandg;_; both depending on the samples fr@mn,. Since
[+ ntg }
exp{—.i < o
nZz 4diam(27)2

P{pn+t<p} < +oo,

it follows that

This in turn guarantees by way of the Borel-Cantelli Lemna fbrn large enough
Pnt+th>p

almost surely. O

3.4 Combining One Step Estimates For Bounded Change

We now look at estimating in the case that
ln — @5 _qll < p.

We set
pi = 2 — x4

B.3 Assume that we have estimatd;m :RW — R such that

1. Elbw(pj,...,pj-w+1)] > pforall j > 1andw > 1
2. For any random variabld®; } such that[5;] > E[pi], we have

E [rw(pj,- -, Bj-w+1)] > E [Pw(pj,- -, pj-wi1)]

For example, ifo; g Unif[0, p], then

W+1
h\N (piapi+17 e api+Wfl) = T max{piapiJrla e api+W*l}
is an estimator op with the required properties. Also, note that the two cdodit on the estimator [ BI3 imply that
E [Pw(pj, -, Pj-w+1)] = E [Pw(pj, ..., p-ws1)] > p
Given an estimator satisfying assumpfion B.3 , we compute
pY =tw(piBi-1,....Bi-wi1)
and set
~ |) 1 n 'l ~ ~ ~
pl = — i;hmin{w,ifl} (BisPi-15- - s Pmax{i—-w-+1,2}) (14)
We have

E[pn] = rll_iw“] >p

Lemma 7 (IPM Single Step Estimates)or the estimator in(I4) computed using the IPM estimate farand any

sequencéty} such that
ad 2(n—1)t?
n;exp{‘ W+ damz )2 f =

it holds that for all n large enougpn +t, > p almost surely.

17



Proof. We copy the proof of Lemnid 6 witW + 1 in place of 2 and note th@®) and(}) with |i — j| > W+ 1 do not
depend on the same samples. Leriina 5 and some simple algeldsa yi

2(n—1)t?
W 1)diarr(3£”)2}

P{pn<p—t} Sexp{—

We pay a price ofV + 1 in the denominator of the exponent due to the dependenbe pf't. By the Borel-Cantelli
Lemma, for alln large enough it holds tha@, +t, > p almost surely as long as

> 2(n—1)t?
anXP{— W 1)diarr(3{')2} <

To analyze the direct estimate, we need the following assomp

B.4 Suppose that there exists absolute constﬁmﬁil for any fixedW such that

w
lhw(p1,-- -, Pw) = Pw(d, -, aw)| < _Zlbi|pi —d| VYp,geRY
i=

For the uniform case, we have

W+1 W+1 W+1
TmaX{pl,.--,mv}—TmaX{ql,.--7qw}‘ < TmaX{lpl—qll,--.,lnN—q\Nl}
W41 W
< — 5 Ipi—ai
W2,
S0 wW+1
blz"':b\N:T
Under assumption B} , we can then show that
1 n ;
A — 50)
Pn = p
n-W; &

eventually upper bounds by copying the proofs of the lemmas behind Theorém 1.
Lemma 8 (Direct Single Step Estimatespuppose that the following conditions hold:
1. [B.IEB.4 hold
2. The sequencfi,} satisfies

© n—W)>2t2
expl — ( )1 < 400

071 32n (1+r£n)2(zYV:lbj)2diam2(%)

and
0 _ 2 2
% expd (n—W)2n?t3 i
n{:1 144Gy (541

< 4w

3. There are bounds(®) such that
Bl — &l | #i-1] < C(Ki)

18



Then for all n large enough it holds thaf + U, + Vi +tn > p almost surely with
2R
= Tm 2=

and

Proof. DefinepI pI p andpI as in LemmakI2 arld 3. First, we have

N
=
=]
i)
|
3

1n— Y|
nW +1

n-— W %+1J |%V+1 le] pj
1

n—W; nglJ |%/+1bJ (|pJ pJ |+|p1 (3>|)

Sieabi &l ) A2 A
< 5w 2 (B-51+157 - A7)

IN

IN

Second, define
Ui £ @i — il

and

\/iA

1K
K Z (Oe ﬁ(wl,zu(k))—Dfi(iiDH

k_
Then we have

- 1
|lxi — Zi|| + =
m

o
I
o
©
A

Ozf(xi, zi(K)) — O 0(Zi, zi (K
K k;( (i, zi(k)) (@i, 2i(K))

1 KI H

< <1+ %) (Ui+Ui_1)

and
- - 1
B - < Z(M+Viy)
Then it follows that
W b n
5503 o 2i=1Di x (2, 22 =
I = A R RS R

2(1+5) 3Lk 2 25Y,bj 2

= n—w i;UiJr m(n—W) i;Vi

Suppose that
2(1+ ZJ 1P iﬂ«: 1] < U,
and
ZJ Y L
ZLE[VI | Fi1]

19



Then it holds that
P{|ﬁn—p§3)|>0n+\7n+t}
<P{2(1+%)ZYV1bJ A ZJ 1bj

n—-W i;U'+ Zl\/l >Un+Vn+t}
SP{ ax z’ ! J21U|>Un+ }+]P’{ 2‘ 10y 21\/|>Vn+2}

We can apply Lemmia22 to each term to yield

]P’{ (1+ 21 1 JZU|>Un+ }gexp B (n—W)2t22
32n(1+4)? (sW1by ) dian?(2)

and
2 W) 2242
P{ ZJ 1b) Zlvl>vn+2}§exp (-t
144Gy (54 b))
Then it holds that

P{|ﬁn—ﬁr§3>|>0n+\7n+t}

(n—W)2t? (n—W)2mPt?
< exp{ — +expl —

3on(1+ L) (z\f\’:lbj)zdiarr?(%') 144nG, (Z‘J-N:lbj)z

We have by straightforward computation

Un ZC I<I
and
v 221 b 2
w2,

Then it holds that

g ]P){fjn<P_Un—\7n—tn}

=\Wt1

< P{ﬁn<f5r(13)—0n—\7n_tn}

n=W+1

[ee]

< %Jrlp{mn—ﬁr(ls” > Ljn‘|'\7n‘i‘tn}

< (n—wW)*2 & (n—W)2m2t2
% expl — > 5 XpY — 5
n=+1 32n(1+5)* (sWaby) dian?(2) | T 140Gy (5,b;)

<

<

By the Borel-Cantelli lemma, it follows that for alllarge enough
Pn+Un+Vh+thn<p

almost surely.
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3.5 Parameter Estimation

We may need to estimate parameters of the functidia$ such as the strong convexity paramateto compute
b(dy,K). We need the following assumption on our bound:

D.1 Suppose that our bourx{dy, K, ) is parameterized by, which depends on properties of the functide, =)
and the distribution§pn}y_;. Suppose that

Y1 < yp < b(do,K, ) <b(do, K, )

D.2 There exists a true set of parametgrssuch that

D.3 The spaces?” andZ are compact

D.4 There exists a constahtsuch that

10zl(, 2) — Oz6(Z, 2)|| < L[|z — 2|

D.5 Suppose that we know that the parametgrs & with &2 compact
D.6 Suppose thall fa(xn) has Lipschitz continuous gradients with modulis

As a consequence of AssumptlonD.4 , it follows that therstex constar® such that there exists a const&such
that
|0gl(xz,2)|| <G Ve Z,zeZ

Satisfying Assumption D.b is usually easy due to the comyesst assumptions in Assumption D.4 .

In most cases, we have
—m

wheremis the parameter of strong convexity,is the Lipschitz gradient modulus, and the g#irB) controls gradient
growth, i.e.,
E|Oeb(z,2)|? < A+ Blla —a*|?

We parameterize usingm, since smallem increase the bounb(dy,K). We present several general methods for
estimating these parameters, although in practice, pmobjeecific estimators based on the form of the function may
offer better performance. As an example, we present probparific estimates for

1 2 1
e,z = 3 (y-w'e) "+ DA o2
(.2) =5 (y-w'2) +3Aa|

As in estimatingo, we produce one time instant estimatasM;, A;, andB; at timei and combine them. We only
examine the case under Assumpfion D.4 , although we couldiexsan inequality constraints as with estimatmg
We combine estimates by averaging to yield

2. Mn= 3301 My
3 An:%iunzl'&l
4 én:%zin:]_Bl

21



3.5.1 Estimating Strong Convexity Parameter and LipschitzGradient Modulus
We seek one step estimatong andM,, such that
E[fn | #nq] <m

and N
E[Mn | -1l > M

with {#;} defined in[(6).
Hessian MethodWe exploit the fact that

(2 _fo(x)=ml Vee 2

This in turn implies that
Amin (Dim fn(fc)) >m Vee X

This suggests that give[rzn(k)}fg1 we set

Tin £ mMin Ami 02,
Mh i Amin nkz Lz, zn(k

Since

Amm(A) = ﬂnIHrll <A’U,'U>,

Amin(A) is a concave function ok. Then by Jensen’s inequality, we have

E[fv] = Engigr;.Amm< z”m :czn(k») ‘%1]

nk_

< mlpE Amin < z D 0z zn(k))> ’ t%/nl]
xe n k=1
< min | Amin ( Z D 0(x, zn(K)) ‘ %4)

p— i H 2
= mmE!QAm|n (Dmm fn(iL‘))
= m

Similarly, we can set
Mn £ maxA 02
" zed max< Kn kZ -73 zn )
Since
Amax(A) = max (Av,v),
vil|lvf|=1

Amax(A) is a convex function ofA. By Jensen’s inequality, it holds that
E[Mn | #h-1] > M

Gradient Method To Comput&,: To actually minimize over, we can use gradient descent. To apply gradient
descent, we use eigenvalue perturbation resulis [20]. Gagpihhat we have a base maffixwith eigenvectorsg and
eigenvaluedg. We want to find the eigenvectossand eigenvalues; of a perturbed matriX :

Tovoi = Agivoi
Tvi = Ay
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In particular, we want to relat&y; to A;. With

0T AT Ty,
we have
SAi = v (8T) vy
and o
d—Tilj = wgi(i)voj(2— &j)

Suppose we are given a matrix-valued functiofx) with
T(x)v(x) = Amin(x)v(x)

Then it holds that

Cednin(T(@)) = 5 ZH0 0T (@)
] |

Then we can use gradient descent to solve
, 1k
EQ.Amin K_n Z Dmé(wazn(k))

Starting from anyc(0), we can compute

1g
n
and set
Q) L3 4 K 15
Mh = Amin K_nkZ1Dm (z(P), zn(K)) (15)
Heuristic Method:For any two pointse andy, we have by strong convexity
1
fn(y) = fo(@) + (Dfn(@),y — @) + 5mlly - z|?

Suppose that we hawe pointsz(1),...,z(N). Then we know that for any two distinct points andzx;

m< (@) - fn(fb‘ii)) — (Ofn(2()), (1) — (1)
3l () —z(D)?

This suggests the estimator

& i R T @0 2n(K) — 5 o (1) 20(0) = (& 380 Oal( (i), 20(K), 2(0) — 2(j) )

16
i Tz) —2()|2 (16)
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for the strong convexity parameter. Then we have

E|ty]
S (i), 20 (K) — 2 U@ (), 20(0) = (& 20 Do), 20(0), 2 () — () ) ]
=E | min T -
7] HEOREIIE |
[R5 @), 2(0) — & 50 @), 20 (0) — (& 20 Dol (), 20(K). @)~ 2()) ) ]
<minE T ——
%] ORI ]
< min 1@0) ~ ol (i) — O (i), =(0) - 2(0)
2 (@) ()]

It is difficult to compare this estimator to exactly. All we can say is that

< i @)~ (e (i)~ Ofa(a(i)). o) ~ (1)
b EORENIR

as well. In practice, this method produces estimates ctose t
Similarly, we can set

LRI () z(K) - & S (), 2000) — (& 0 Dat(@()), 20(K), 2 (1) - 2(]) )
Mn: max 1 N . 2
b Sl — ()]

Problem SpecificFor the penalized quadratic, we have

(17)

2 l(x,z) =AT+ww'

SO
Dim fo(x) = AT+ E[wnw;r]

This suggests the simple closed-form estimates

and

Again, by Jensen’s inequality, it holds that
E[Mn | #h-1] <m

and N
EMn | #n-1] > M

Combining EstimatesiVe now look at combining the single time instant estimatethefstrong convexity parameter
and the Lipschitz gradient modulus.

Lemma 9. Choose such that for all C> 0 it holds that
> e M < f oo
n=1

Then for all n large enough it holds that
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1. M—th<m
2. Mn+th>M
almost surely.

Proof. By the compactness of the spagécontainingy, we can apply the dependent version of Hoeffding’s lemma
(Lemmd23) to yield

B[ | 4 1] < exp{ %05152}
and

E {es'v" |Jifi,1} < exp{%a,asz}

for some constants?2 andog derived from Hoeffding’s lemma. Then applying Lemina 22pltdws that

P >} n]E[~ | 1] +th p <e€x _n_t,%
My ni; Iy i—1 ne > p 20_'%
We know that L0
n i;E[m | 1] >m
so it follows that
P{mn > m+th} <ex _n_tﬁ
mn ny > p 20}%

Similarly, for the Lipschitz gradient modulus, it holds tha
" ntﬁ
P{My<M—tq} < exp{—ﬁ}
As before, we have
(<] ~ <] I’ltﬁ
nZlP{mn >m+ty} < nzlexp{—r‘r%} < 4o

and

[

" © ntﬁ
P{Mp <M —tn} < exp{——}<+°°
nZ:L nZ:L 2GI\Z/I
to ensure that almost surely for allarge enough it holds that

Mh—th <m

and A
Mh+th>m

For Lemmd®, we neet to decay no faster that(n—1/2).
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3.5.2 Estimating Gradient Parameters
From Assumptiof D.6 , it holds that
E||Dw€(w,z)|\2 E||Oxl(x*, 2) + (Oxl(x, z) — Oz l(x*, 2)) ||2
2E||Op(a", 2)||? + 2B Dat(@, 2) — Dab(@”, )|
2B||Oxf(2*,2)||? + 2M?||l2 — 2*|?

IAINA

Thus, we can set
B=2M?

and
A=2E||Ozl(x*,2)|?

This suggests that given an estimiigfor M, we set

By — 212
Then by Jensen’s inequality, we have
EBn| #na] = 2E[N2| ]
> 2(E[Bn | #n1])
> 2m2
= B

Lemma 10. Choosey such that for all C> 0 it holds that
z e M < too
n=1
Then for all n large enough it holds that A
Bh+th>B
almost surely.
Proof. By identical reasoning for the strong convexity and Lipschontinuous gradients, it holds that
. ntg
P{By<B—t,} <exps ——

{ n n} — p{ 20'%}

Since we have
0 nt%
z expy — o5 ¢ <+
A=l 203
for all nlarge enough it holds that .
Bh+th>B
almost surely.
To estimate?, consider using a point to approximatec*. It holds that
E|Ozb(z*,2)[2 = E|Oul(z,2)+ (0ul(z*,z) - Dul(z, 2))||?

2B||Ogb(x, 2)[|? + 2| Ogl(a*, 2) — Opl(x, 2)|?
2E||Oxl(z, 2)||* + 2M?E ||z — z*||2

2
2E||Dme<w,z>||2+2(M> 10f )]

m
2
) 10t ()2

IAINA

IN

M
m

IN

2]E||Dmé(m,z)||2+2<
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This suggests the estimate

- 2 K Mn_1+1 2
Fa(w) = 2 zumfwzm>ﬂz+4( SRS
—1—1th1

) e

Lemma 11. For anyx possibly random but not a function £ ( ) ", and all n large enough, it holds that
EfAn| 1] > A

Proof. For anya possibly random but not a function £ (k) }& 1, it holds that

E[An | -1

2 Ko Min_1+t 1 K 2

_IE[ S 11024(z, 2n( ))||2+4< it 1> H Ool(z, zn(K)| | Hs
nk_ —1—thaa Knk 1

2 Ko Min-1+1tn 1 1 K 2
=E O t( 2| +4<” “> H— Oxl(z,20(K)| | Hn-

[ nkz | (2, zn(K))|l n-1 My 1 —th 1 nkz (z,zn(k)) n-1

Min -1+t

> 2800w )+ (0 )

The last inequality uses Jensen’s inequality. Then by oiar pnalysis, almost surely for afi sufficiently large it

holds that

I\7|n—1‘f‘tn71 > M
Mo1—th-1 M

and so for alh sufficiently large
A 2 M 2 2
ElAn| An-1] 2 2B[[Ueb(z,2n)["+4( — | [Dfa(@)]

= 2B||Oxt(p 2n)|I?
= A

Therefore, for alh sufficiently large (dependent on estimatiomofndM), it holds that
E[An | Hn-1] > A
O

Combining Estimates for Atn practice, we us&n(mn), which complicates the analysis due to the fact thais
computed using the same sampfeg(k) Eil.

Lemma 12. Choosey such that for all C> 0 it holds that
> e < oo
Then for all n large enough it holds that

almost surely.
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Proof. Consider the following three estimatesfAall computed with knowledge ah andM andz, as in LemmaR:

Ki 2 Ki 2
AP = 2 z | Ozf(i, 2i ( ))|2+4(%) Kiik_lmmé(wi,zi(k))
i _ 2¢ ML g - ’
A = &3 Ina f(a (01244 () % 2. Detld5(K)

2
R R ) W=l

Define the averaged estimates

i@ _ 1gz@
n &

A(3) 1203

= 2YA
”i;

a1 2

A = DS A
ni;

We always have

SO

First, we show thaﬁi&2> is close toA,(13>. We have

AT A7

K,
SZ‘% > (I026(i,2i( ))HZ—I\Dmf(:ﬁm(k))llz)

I k=1

M\2[| 1 K 1K ;
+4<E) K 2 D 0(xi, zi(K HK| k . «U(Zi, zi(K))

<4e1 %IID (i, zi(K) — O (&, i (K)) || + 8G (M>2 Ls (Oxl(wi, 2i(K) — Ol (&, 2i(K))) i

Ik A Iy ~1 T Iy ~1 m K|k:1 Iy ~1 @x Iy ~1

2
< <4+8<M> )GMHmi—cTciH
m
yielding
2 n
A2 _A® M 15 ei—a

Second, we have

|A‘(13)_A(4)|
<is (2 S Ol 2 Ozl 4
<[5 2\ ig 2, (1=t = ()1 = E 19201 | Faa])
2 n Ki
+8(%) G%.— :ikzl(m f(m.,z.(k))—Dfi(:F:i))H
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Combining both inequalities, we know that

A — A

(eoe ol

n K
15 (25 00utanon-E 10 201 )

n. K; &
+s(%)zei ;ki (Ont (@1, 24(K) - D861 |

The first and third terms in this bound can be controlled byathalysis of the direct estimate and the second term by
Lemmal22). This shows that

Since

[ee]

A 12 G 2 nt
P A,(-.2)<A—— ——1th, < Cex {——}<+00
n=1 { ni;m n} nZl P 20&2

almost surely for alh large enough, it holds that

i@, 1¢ G
5y L4t >A
Ay + n2 K +1h >
In addition, we have
i@, 1¢ G
— — + 2t > A
An +n|: K +2h 2
There exists a random variablesuch that
>N = Mn +tq > M
Mh—th — m
Then forn > N, it holds that
An—AD
40 | (Mi_g+t M\?| |1 K 2
:_Zi ( L b 1) _(_) Oz f(xi, 2 (K))
n Mm_1—ti1 m Ki K=1
N-1 Ki 2
2‘_1 (M) _ (M) 1 Oal(i, 2 (K))
n & m_1—ti1 m Ki &




Since our choice df, can decay only as fast &//n, it follows that
4 N—1

;aZ_(g?fégf)z‘<M)

for all n large enough. This implies that

2

1K
—th <0

Ozf(xi, zi (K
K 3. Daflan i(6)

.~ 10 G
A.ﬁ—zl—
n& /K
L (4% ? M.1+¢.1> Hl § 2 10 G
>A—| = Ozl(xi zi(K)|| —th ]| +=) ——=+t
"(2) 1n .
> = —
> A+ ”Zm/_
>A
for nlarge enough. O

Using these estimates, we have constructed estinfatesch that for alh large enough it holds that
Jn+Crt+tal > ¢°
for appropriate constan, almost surely. Therefore, by assumption forralirge enough it holds that

b(dOa Ka L.U*) S b(d07 K7 Lpn +tn)

3.5.3 Effect onp Estimation

Our analysis of estimating assumes that we know the parameters of the function andtiaydar the strong convexity
parametem. We now argue that the effect of using estimated parametstsad is minimal. This happens because
we know that for alh large enough it holds that

B>y

almost surely.

Lemma 13. We want to estimate a non-negative paramegteby producing a sequence of estimages$or all i > 1
and averaging to produce

~ 1n0

%—a;m

where the estimateg are dependent on an auxiliary sequenigen the sense thagi (). Suppose that the following
conditions hold:

1. Suppose that there exists a random varidilsuch that n> N implies thatfi, > y*

2. El@(y)] = ¢

Then it follows that
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Proof. It holds that

%;m-—zmw 23 aw)

> —qu W) + qu W) (18)
Therefore, it follows that
12 10
IinmJQfE ﬁiZAqq] > IimeElﬁi%m(wi*)]
> ¢
O

We can extend all the concentration inequalities for edtinggo as well by extending the inequality in{(18) to
yield

%ig-——zmw %%(m
N-1 n
>3 AWy A
1N71 . 1.0 .
> ﬁi;((ﬂ(‘lﬁ)—(ﬂ(w >>+ﬁi;<n(wi)
1 n
= n|Zi (LIJ|) ()

Before, we have analyzed

5> aw)

so for large enough, we recover previous results, since ti{&) term goes to 0.

4 Adaptive Sequential Optimization With p Unknown

We now examine the case wighunknown. We extend the work of Sectibh 2 using the estimdtgsin Sectior[B.
Our analysis depends on the following crucial assumption:

C.1 For appropriate sequencfis}, for all n sufficiently large it holds thgb, +tn > p almost surely.
C.2 Db(do,Ky) factors ad(dy, Kn) = a(Kn)do + B(Kn)

We have demonstrated that assumpfion|C.1 that holds foritbet dnd IPM estimates gf under [(2) and(3). Note
that whether we assurrig (2) & (3) does not matter for analysis

4.1 General Condition onKp

We start with a general result showing that for any choickp§uch thak, > K* for all n large enough the excess
risk is controlled in the sense that
limsup(E[fn(xn)] — fn(z))) < €

n—oo
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We then apply this result to two different selection rulesKa.

Consider the function )
&) =a(k) <\/§/+p> +B(K)

derived from assumption C.2. Note that as a functiow,ofk (v) is clearly increasing and strictly concave. First,
suppose that we seleét defined in[(b). Then by definition it holds that

- (e) <e
We study fixed points of the functiogk- (v):
Lemma 14. The functiong- (v) has a unique positive fixed pomiwvith
1LVv=g-(V)<¢
2. ¢ (V) <1

Proof. We have
@& (0) = a(K*")p®+B(K*) >0
Since
lim @+ (v) = g+ (0)

v—0

andgk~(0) > 0, there exists a positivesufficiently small that

-(a)>a
Next, expandingx (V) yields

2 2
(V) = ;na<K>v+2a<K>p\/;fv+ a(K)p?+ B(K)
Since-(€) < €, we obviously must hav%a(K*) < 1. Suppose that

—a(K)=1

Then it holds that m
o (€) = e+V2mpVe + Ep2+B(K) >

This is a contradiction, so it holds that
a(K') <1

Itis thus readily apparent that
V— @k (V) = o

asv — . Therefore, there exists a poimt> a such that
@+ (b) <b

It is easy to check thagk-(v) is increasing and strictly concave. Therefore, we can appBorem 3.3 from[21] to
conclude that there exists a unique, positive fixed pooftgk- (V).
Next, suppose that/. (v) > 1. Then by Taylor’s Theorem far> v sufficiently close tos, we have

W+ (V) >V
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However, we know that as— o, it holds thatv — gk+ (v) — . By the Intermediate Value Theorem, this implies that
there is another fixed point dm ). This is a contradiction, sinceis the unique, positive fixed point. Therefore, it
holds thatg, . (v) < 1. Now, suppose thaf,. (v) = 1. Sinceg- (V) is strictly concave, its derivative is decreasing|[22].
Therefore, orf0,v), it holds that

- (v) > 1

This implies that

W) = g+ [ e mx
> @ (0)+V
> v
This is a contradiction, so it must be thgit. (v) < 1. O

As a simple consequence of the concavitypef(v), we can study a fixed point iteration involving (v). Define
then-fold composition mapping

Lemma 15. For any v> 0, it holds that
lim g (v) =

n—oo

Proof. Following [23], for any fixed poiny, it holds that

| (V) =V < - (V=]
Therefore, applying the fixed point property repeatedlydge

147 (v) — V] < (- (9)"v—V]

By Lemmée_ 14, it holds that
H- (V) <1

and so the result follows. O

Now, we show that we appropriately control the excess riskmire estimat@. The extension of this argument
to the case when we also estimate function paramétésstraightforward. If we have

Kn
zn(k Kn xn_1,Kn) = n(zn(k
P({zn(K) }2q | Zn-1,Kn) k|1I0( (k)

then

2
E[fa(zn) | ®n-1,Kn] — fn(zs) <b ((\/% (fn,l(mn,l) — fnfl(fcﬁ,l)) +p> ,Kn)

Therefore, it holds that

5 2
E[fa(zn)] = fn(zp) <E [b ((\/E (fa-1(en-1) — faa(_4)) +P> vKn)]

Suppose that we set

Heo = 0 ({Kn}tn_g U{Pn}n-2)
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This sigma algebra contains all the information abgiy} and thus{Ky}. Then, we do not have

p({zn(K)}, | He) = npn%

sinceKp1,Kn;2,... are a function oi{Kn}Egl. We do not even have

2
Em@M|xa—m@me(<¢%(m1@nn—mlwzoyuﬁ,KJ

However, we would expect that this is not too far from truenGeptually, we consider running our approach twice on
independent samples. The first run determines the requinater of sample$K}n_,. We then run our process for
a second run with these fixed choices{&f};;_;and independent samples as in Fiddre 1. For the second rsitruie
that

p({=? (k) 1 npnm

2
fn(-’”r@) | f%{”} - fn(fc;) <b ((\/% (fn—l(m,(-,zjl) - fn—l(fc:Fl)) +P> ,Kn>

In practice, we do not need to run our process twice. This g amproof technique. Now, for the second run the

recursion )
/2
er(]2> =b (( Es,@ﬁ—p) ,Kn) vn>3 (29)

with &, ande, from Assumptioi A.4 bounds the excess risk of the second run

and

E[fa(a?) | Ha) — fa(af) < &8

Then it follows that X X
E[fa(x)] — f(}) < E[&\]

First Run-n—1

Receive Optimize Compute Choose
Kn_ ~ F—
{zn-1(K) kill Tn-1 Pn-1 Kn

Second Run n

g
Receive Optimize COmIOUt_eJ
2 Kn excess ris

L 00, zh bound J

Figure 1: Two Run Process

We now argue tth[e,gz)] also bounds the excess risk of the first run.
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Lemma 16. For the first run, it holds that

E[fn(@n)] — fo(zs) < E[e”]
Proof. We proceed by induction. For= 1,2, we know that

E[fn(@n)] — fo(zp) < E[e”]

by definition. Next, suppose that
Elfn-1(®n-1)] — fa1(xn_1) < E[gt'(lz—)l]

We have

E[fa(2n)] — fn(zq) <E | a(Kn) (\/fnfl(wnfl) — faa(zy ) +p)2+B(K“)]

so it holds that
Elef?] - (Elfn(an)] - fo(z}))

>E [a(m) ( s§2>1+p)2 —a(Kn) (/fo-2(@n-1) — faa(@s 1) +p)

2

=E [a(Kn) (er(lzjl— (fa-1(zn-1) — fnfl(m;—l)))]
+E [Zpa(Kn) (\/ Er(]z,)l - \/fnfl(fﬂn—l) - fnl@ﬁﬁ)}
By the Monotone Convergence Theorem, it holds that

E [a(Ke) (621~ (fo-1len-1) — foa(i 0))|

= lim [max{a(Kn), 1/q} (er(,z,)l — (fnoa(mn1) — fnfl(wﬁfl)))}

.1 "
> “gLIQf aE [8,(31 - (fnfl(wnfl) - fnfl(a"nfl))}
>0

where the last line follows, since by hypothesis

Elfn-1(xn-1)] — fnfl(mrﬁ—l) < E[gé%)l]
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Similarly, it holds that

E [Zpa(Kn) (\/ﬁ— \/fn—l(wnfl) - fnl(%ﬁﬂ)}

2 *
& | 2pa(ky) fa = (fra(@n2) — o a(a; )

e? 4+ \/fnfl(mnfl) — fhoa(z)_q)

2) *
o &1 (fnfl(mnfl) - fnfl(mnfl))
= Amo]E 2pmax{a(Kn),1/q9}

gr(i)l + \/fnfl(mnfl) — faa(zy q)

2 *
> lim supz—pE 2 — (fo_a(@n-1) — faoa(z_y))

g 0 e,(]z,)lJr \/fnfl(wnfl) = faa(xhy)

2) _ *
ZlimSUpz—p limE &1~ (foa(@n-1) — fooa(wq 4))

1
L [c@ 0
goo (T ££31+ \/fnfl(mnfl) _ fnfl(wzfl) { gn,1+\/fn—1( n-1)—fn1(z)_)<1}

-

) 20 .. 1 %
> limsup=2 lim sup_E [8,22,)1 — (fa1(@n-1) — fnfl(wnfl))]

g 0 19w

>0
Therefore, we conclude that
E[fn(zn)] — fn(z;) < E[&?)
O

Theorem 2. Under assumptioris C]1-Cl2 and with ¥ K* for all n large enough almost surely with*Krom (20),
we have
limsup, e (E[fn(xn)] — fa(z))) < &

Proof. Letvbe the fixed point associated wigh- (v) from LemmdI#. We know that
V=g (V) <€

and -
n
W+

with v < &. Since we hav&,, > K* for all n large enough almost surely, there exists a random varféisiech that

(v)»v<e

n>N = K,>K*

Then we have almost surely

limsupel? < limsup(@,o---o W) (Er-1)

n—oo n—oo
< lim sup(gﬁTNH)(s,;,A)
n—-oo
= Vv
<
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Finally, applying Lemm&319 and Fatou’s lemma yields

limsup(E[fn(xn)] — fa(z]) < IimsupIE[srgz)}

n—oo n—oo

IN

E {Iim supsrgz)]

n—oo

IN

£

4.2 Update Past Excess Risk Bounds

We first consider updating all past excess risk bounds as wégtme n, we plug-inp,_1 +tn_1 in place ofp and
follow the analysis of Sectidd 2. Define foe=1,...,n

2
X 2. .
R ( ( E]fi@l + (Pn-1+ tnl)> , Ki)

If it holds thatpn_1 +th_1 > p, thenE [fn(zn)] — fa(z)) < &\ fori = 1,...,n. Assumptiod C.1 guarantees that this
holds for alln large enough almost surely. We can thuskgeequal to the smalle$t such that

2
2 o )
b ((\/ amaX{er(,"ll),e}+(pn1+tn1)> ,K> <e

for all n > 3 to achieve excess rigk The maximum in this definition ensures that whign +t,_1 > p, Kn > K*
with K* from (8). We can therefore apply Theoréin 2.

4.3 Do Not Update Past Excess Risk Bounds

Updating all past estimates of the excess risk bounds frowe 1i up tonimposes a computational and memory burden.

Suppose that for alt > 3 we set
2
2
b ((\/ T (pn1+tnl)> 7K) < 8} (20)

This is the same form as the choicelih (5) with 1 +t,_1 in place ofp. Due to assumptidn Cl1 , for aillarge enough
it holds thatp, +tn, > p almost surely. Then by the monotonicity assumption in]Adr 4l n large enough we pick
Kn > K* almost surely. We can therefore apply Theofém 2.

Kn_min{Kzl

5 Experiments

We focus on two regression applications for synthetic arad data as well as two classification applications for
synthetic and real data. For the synthetic regression enoblve can explicitly compute andx;, and exactly evaluate
the performance of our method. It is straightforward to éhbat all requirements inAIL-A}4 are satisfied for the
problems considered in this section. We apply the do nottegust excess risk choice K here.
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5.1 Synthetic Regression

Consider a regression problem with synthetic data usingéimalized quadratic loss

1 21
Ux,z) = > (y—wT:B) + EA [|2]|?

with z = (w,y) € R%*1, The distribution ofzy is zero mean Gaussian with covariance matrix

|: O-E)I rwann :|
r'l—lr’n-,yn O-)%n
Under these assumptions, we can analytically compute nermsw;, of fn(x) =E, ~p, [¢(x, 2n)]. We change only
Fwnyn and afn appropriately to ensure thic;, — x ;|| = p holds for alln. We find approximate minimizers using
SGD withA = 0.1. We estimate using the direct estimate.

We letnrange from 1 to 20 witlp = 1, a target excess rigk= 0.1, andK, from (20). We average over twenty runs
of our algorithm. Figur&l2 shows,, our estimate op, which is abovep in general. Figurgl3 shows the number of
samplex,, which settles down. We can exactly compiiér,) — fn(;;), and so by averaging over the twenty runs
of our algorithm, we can estimate the excess risk (denotaahfxe average estimate”). Figlie 4 shows this estimate
of the excess risk, the target excess risk, and our boundeoextess risk from Secti¢n 4.3. We achieve at least our
targeted excess risk
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Figure 4: Excess Risk

5.2 Panel Study on Income Dynamics Income - Regression

The Panel Study of Income Dynamics (PSID) surveyed indafslievery year to gather demographic and income
data annually from 1981-1997 [24]. We want to predict anvittlial's annual incomeyj from several demographic
features{v) including age, education, work experience, etc. chossadan previous economic studieslin/[25]. The
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idea of this problem conceptually is to rerun the survey esscand determine how many samples we would need if
we wanted to solve this regression problem to within a ddsseess risk criterion.

We use the same loss function, direct estimategpand minimization algorithm as the synthetic regression
problem. The income is adjusted for inflation to 1997 dolaith mean $20,294. We average over twenty runs of our
algorithm by resampling without replacement|[26]. We comega taking an equivalent number of samples up front.
Figure[® shows the test losses over time evaluated overyvpentent of the available samples. The test loss for our
approach is substantially less than taking the same nunitsamnaples up front. The square root of the average test
loss over this time period for our approach and all samplefsarg are $1153- 352 and $2805- 424 respectively in
1997 dollars.
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&
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Figure 5: Test Loss

5.3 Synthetic Classification

Consider a binary classification problem usiftg, z) = 3(1—y(w ' z))2 + 3A||z||? with 2z = (w,y) € RY x R and
(y)+ = max{y,0}. This is a smoothed version of the hinge loss used in supgetov machines (SVM)[26]. We
suppose that at time, the two classes have features drawn from a Gaussian distribwith covariance matrig?l

but different mean;;l,gl) andu,gz), ie,wn|{yn=1i} ~ JV(ur(,i), 02I). The class means move slowly over uniformly
spaced points on a unit sphereRf as in Figuré b to ensure théi (2) holds. We find approximatémizers using
SGD withA = 0.1. We estimatg using the direct estimate with (1 1/n%/8,

Figure 6: Evolution of Class Means

We letn range from 1 to 20 and target a excess sk 0.1. We average over twenty runs of our algorithm. As
a comparison, if our algorithm takg, ggl samples, then we consider takigﬁglKn samples up front at = 1.
This is what we would do if we assumed that our problem is mo¢tvarying. Figur€l7 shows,, our estimate op.
Figure[8 shows the average test loss for both sampling gtesteTo compute test loss we drayadditional samples
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teSt(k , from p, and computer— Zk" 1 U(zn, 2¥5'(k)). We see that our approach achieves substantially smaller
test loss than taking all samples up front.
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5.4 General Social Survey - Classification

The General Social Survey (GSS) surveyed individuals eyeay to gather socio-economic data annually from 1981-
2013 [27]. We want to predict an individual’'s marital staysfrom several demographic features)(including age,
educatlon etc. We model this as a binary classificationlprolusing loss

1 1
Uz,2) = S(1-y(w'®))? + > l®

2
with z = (w,y) € RY x R and(y) . = max{y,0}. This is a smoothed version of the hinge loss used in supgotby
machines[[26]. We find approximate minimizers using SGD witk 0.1. Figurd ® shows the test loss. We see that
our approach achieves smaller test loss than taking all lesmp front. We also plot receiver operating charactessti
(ROC) [26] to characterize the performance of our classifibr particular we plot the ROC for 1974 in Figlirg 10 and
the ROC for 2012 in Figule11. By examining the ROC, we seetétkang all samples up front is much better in 1974
but much worse in 2012.

6 Conclusion

We introduced a framework for adaptively solving a sequeriaptimization problems with applications to machine
learning. We developed estimates of the change in the mieirmiused to determine the number of samileseeded
to achieve a target excess riskExperiments with synthetic and real data demonstratehismapproach is effective.
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A Examples ofb(dp,K):

For this section, we drop the index for convenience. The bounds of this form depend on tteng convexity
parametemand an assumption on how the gradients grow. In general, suaresthat

Eovpl|Ozt(@,2)|? < A+ Bz — 2|2
The base algorithm we look at is SGD. First, we generatetéeng0),. ..,z (K) through SGD as follows:
z({+1) = Ngxl)—pu(l+1)0zx0(x((),2(¢)] ¢=0,....K-1
with z(0) fixed. We then combine the iterates to yield a final approxémnainimizer
ZK) = @(0),...,2(K))

For our choice ofp, we look at two cases:
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1. No iterate averaging, i.e

@(x(0),...,z(K)) = z(K)
2. lterate averaging, i.e, for a convex combinafari/)}%_,

K
@(x(0),...,2(K)) = go)\ (O)z(€)

d(6) £ [|z(6) - ="||? (21)
First we boundE[d(¢)] in Lemmd&1Y.

Define

Lemma 17. Suppose that the functior{z) has Lipschitz continuous gradients. Then it holds that

ﬁl 2mu(0) + Bu?(¢)) + E

TFMN

(1— 2mu (i) + Bu(i)) (k)
=k+
Proof. Following the standard SGD analysis (se€ [16]), it holds$ tha

dt) < Jlz(t—1) -z — pu(0)Ol(@(f —1),2(0))]?
< dif—-1)-2u){x(l—1)—a*, 0 l(x({—1)
Then it follows that

,2(0)) + H2(0)| D b(m(£ - 1), 2(6))[?
E[d(0) [ (¢ - 1)]

<d(e—1)—2u(0) (@(t— 1) —2*,0f (@0 — 1)) + p?(OE[|Opb(z (£ — 1), 2(0) | *| (¢ — 1)]
< (L—2mu(0) + BuA(0)d(¢ — 1)+ pA(¢ - 1A

and

E[d(6)] < (21— 2mu(6) + Bu?(€) E[d(£ — 1) + p(¢

2mu—Bu2§2\/gu (1—\/%;1) gz%:}

—1A
SinceB > m, we have

2
and so

2

1—2mu(¢) +Bu®(f) > 1— % _1
Since this quantity is non-negative, we can unwind thisirgion to yield

14

14 14
< []a-2mu() +BHO)+ Y ] (- 2muli) +BH ()09
k=1 K=Li=k+1

The bound in Lemm@a17 can be further bounded into a closeddsrfollows from|[[28]: Define

th—1 ;
_ ) if B#£0
P50 {Iog(t), if =0

Then withu(¢) = C¢~9, it holds that
E[d(0)] < Zexp{ZZBCZ‘plea ) exp{ —ME-aL (E[d(0)] + &) + 2%, ifo<a<1
= 2 (Bld(0)] + 4) + +Ac?nez 10 if o =1
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Note that this bound is a closed form but is substantiallsémdhan LemmB17. In the case that the functions in
guestion have Lipschitz continuous gradients, we intredaubound on the excess risk using Lenmimia 17. This case
corresponds to choosing

@((0),...,z(K)) = z(K)
Lemma 18. With arbitrary step sizes and assuming thaétf has Lipschitz continuous gradients with modulus M, it
holds that

E[f ()] - f(2") < SME[A(K)]

and therefore, we set

b(do,K):%M <ﬁ.(1 2mu(¢) +BuA(¢ +K (1— 2mu( )+Bu2(i))u2(£)>

Proof. Using the descent lemma froim [29], it holds that

B[1(2)] - () < ZME[d(K)]

Plugging in the bound from Lemnial17 yields the botdh, K). O

Next, we introduce a bound inspired by [30] for the case wipgng0), ... ,2(K)) corresponds to forming a convex
combination of the iterates.

Lemma 19. With a constant step size and averaging with

y() i
Al) = {zﬁlvm’ =0

0, if¢=0
where
y() = (1—mu+Bp?)~*
it holds that d 1
b(do,K) = s+ AU

2uyioy(l) 2
Proof. By strong convexity, it holds that

—(@(t—1)—a*,0f(2(¢ 1)) < —mz(¢ 1) —2"|>~ (f(z(~ 1)) - f(2"))
Following the Lyapunov-style analysis of Lemind 17, it halalst
E[d(6)] < (1—mu+Bp?)E[d(£ — 1)] — 2p (E[f (2(¢ — 1))] - (")) + Ap?

Rearranging, using the telescoping sum, and using coyétiblds that

do a

If we sety = \/—lK then it holds that

b(do,K) =0 (%)
for Lemmd19.

We consider an extension of the averaging schenie in [31]b®hed in this paper only works witB = 0, so we
extend it slightly to handl& > 0.
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Lemma 20. Consider the choice of step sizes given by

1
= — >
u) Ve>1

Then L L oK
3d(0) +5(K+1)A+3B3 1o y(£)

1+ 3im(K+1)(K+2)

b(do, K) =

where

E[d(€)] < y(£)
Note that we can use the bound in Lenimh 17 here.
Proof. We have using Lyapunov style analysis

E[d(6)] < (1—2mu(0) +BuZ(0)E[d(¢ — 1)] — 2u(O)(E[f (2(0))] - f(z*)) +Au?(¢)

Then we have

] < (P 5 ) - 1) L2 Bl @) - 1)+ A
It holds that
1—2mu(£)_ 1 _ 1 —om 1 B 1
HA(0) pA(-1) HA(0) pe)  p2(e—1)

2 20 ((—1)2

czZ cC C?

As long as we have

then we get

Summing an rearranging yields

K g <L 1 s
2 o Elf @O = f@7) < 5d(0) + 5(K+ DA+ 58 5 Eld(0)
with u(0) = 1 by convention. With the weights
1
_ MO
y(€) = ﬁ:oﬁ
we have B o 3d(0)+ 3(K+ DA+ IBYK  E[d(0)]
E[f(z(K))] - f(=") < '

K 1
2T=0 (1)
Then it holds that

=1+ mrt

1+:—2Lm(K+1)(K+2)
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so 3d(0) + 2(K+ 1A+ 3B3K (E[d(¢)]

1+3imK+1)(K+2)

E[f(z(K))] - f(z") <

For the choice of step sizes in Lemma 20 from Lenima 17, it hiblas

Eid(0] =0 ()
Since ‘
1
/z 7= O (logK)
it holds that

Note that a rate oﬁ(%) is minimax optimal for stochastic minimization of a stropgbnvex function([32].
Next, we look at a special case of averaging for function& shiat

E||Ozl(x,2) — Ogb(&,2) — 02 0(&,2) (x — %) [|* =
from [28]. For example, quadratics satisfy this condition.
Lemma 21. Assuming that

E||Ogl(x, 2) — Oxl(%, z) — 02 0(%,2) (x — &) ||? =

we select step sizes

u(e)=cre
with a > 1/2, and
L, ife>0
A=< K
© {O, if (=0

it holds that

(E[d(K)])*?
1 K11 1
ml/2 z ' (k+1)  u(k

A 2B K
“/W*\/mKZZE (k—1)]

with d(K) = ||&(K) — «*||2. If in addition f has Lipschitz continuous gradients withdatus M, then it holds that

_ 1
m/2p(1)

1

1/2
ey ()

(E[d(0)])*+

\@WMW%

E[f(F(K))] - f(z") < SME[A(K)]

Proof. Suppose that we set
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Then it holds that

2 f(2")(x(k) — ") = Ol (x(k—1), 2(k— 1)) — Ozl (x*, 2(k— 1))
+[O2,f(2") — 02,0z 2(k—1))] (@(k—1) — ")
yielding
K

Do f(m(k—1), 2(k— 1)) % 3 Oot(a” (k- 3)

02 f(2") (@(k) — ') =

1
K

~,
M =

~

+ 024 f(2") — Dagt(a", 2(k—1))] (@(k— 1) — )

1
K&

First, we have

EK Dal(a(k-1),2(k-1)) = =3 Oof(@(t—1).2(c~1))
1% 1
= X2 mgEt--=0)
1581 L 1K 1 .
= szlm(m(é—l)—m)—szlw(m(é)—m)
1K71 1 1 . 1 )
= Rkl<“(k+1)_m>(w(€)_w)+m(:ﬂ(0)—m)
1 *
—m(m(K)—m )
Second, we have
EHE Oaf(x*, 2(k 1))2 _ L SR 2k 1)
Kkzl B} K2 Z
< A
S 3
Third, we have
1 K ) . ) . . 2 o K
EH—Z[szf(w>—Dm€<w zk-D)] (@k-D-2)| < 5 Y Edk-1)
K=1 &
Combining these bounds with Minkowski's inequality yields
(mE[d(K)])*
S(EHDZ f< @(K) - 2?2
i 1/2 i 1/2 1 1/2
Sy u(k)‘(E[d“‘”) + fy EAOD ™ ey BN

gl
B 25
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Then we have

(E[d(K)])
1 K11 1
m1/2 z pk+1)  p(k)

A B X
+‘/W<+\/mKZZE (k—1)]

This decays at raté’ (&) as long au(¢) = C¢~% with 3 < a < 1.

1
m/2p(K)

1
m/2p(1)

(E[d(0))"?+ (E[d(K)])Y?

Mmmmﬁ”+

B Useful Concentration Inequalities

For our analysis of both the direct and IPM estimates, we tieedollowing key technical lemma from [33]. This
lemma controls the concentration of sums of random vargatilat are sub-Gaussian conditioned on a particular
filtration {.%}{',. Such a collection of random variables is referred to astaGaussian martingale sequendaie
include the proof for completeness.

Lemma 22(Theorem 7.5 of[33]) Suppose we have a collection of random variags ; and a filtration{.%}!
such that for each random variable Wholds that

1L E[eM| Ziq] < e297 with o? a constant
2. M is.%-measurable

Then for everyr € R" it holds that

n t2
P aV >t gexp{——} vt>0
{izi | } 2v

n t2
P aV < —t gexp{——} vt >0
{i; ! } 2v
S o
v="> oa
2,°

Proof. We bound the moment generating functioryéf ; Vi by induction. As a base case, we have

and

with

E[e®] - E[E[ea%

ez 3ofals’

oof3(37%) ¢}

%]

IN

Assume for induction that we have

o]
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Then we have

i
= E|exp szlai\/i e3+1%j+1
L i=
- J_ o
exp S a‘\/I j+1A8]+1
a2
I i
E[expdsY aVi p E |e¥+1%i+1
RPRIE
I i
exp szlai\/i 029135118
L i=

*wfi150)4

where (a) follows sincgij:l aVi is #j measurable, (b) follows since

E [e531‘+1><j+1

E

I
=

E

o)

3“”1}]

I

INT
=

—
(2]
N2

152 2

and (c) is the inductive assumption. This proves that

{3 anl] <onf (3 ) ) comf ]

Using the Chernoff bound [19], we have
1
< exp{—st—l— évsz}

P {iiaM > t} <e SE lexp{siiaa\/i}

Optimizing the bound ovesyields
n t2
P gV, >t, < exp{——}
{izl I } 2v

If the random variables instead satisfy

1. E[exp{s(M —-E[Vi | Zi_1])} | Fi-1] < e29°S with 0? a constant

The proof for the other tail is similar.

2.V is %-measurable
then Lemm&22 can be appliedfd — E [V | Z_1]}; to yield

P{iia;\/i >iiaiE[Vi | Zi 1] +t} < eXp{_;_i}

If we can upper bound the conditional expectations
EM| %1 <G,

by .%;_1-measurable random variablgs then we have

P{ia@vi > iiaiq +t} SP{iaM > i_iaﬂE Vi | Zid] +t} < exp{—;—i}

For our analysis, we generally cannot comﬂEl{M ] 3‘],1], but we can find “niceG,.
To find o for use in Lemm&22, we frequently use the following condiibversion of Hoeffding’s Lemma.
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Lemma 23(Conditional Hoeffding’s Lemma)lf a random variable V and a sigma algehfa satisfy a<V < b and
E[V|.Z] =0, then

E[eV| Z] < exp{ (b— a)zsz}
Proof. We follow standard proof of Hoeffding’s Lemma from [19]. $&e**is convex, it follows that

e* < Ees‘ﬂ- Z e a<x<b
b—a b—a
Therefore, taking the conditional expectation with respec” yields
J— Z Z| —
b ]E[V|</]esa+]E[V|</] a
b—a b—a

Ee¥| 7] < & (22)

Leth=s(b—a), p= —5%;, andL(h) = —hp+log(1— p+ pe"). Then we have

Lty _ a, —a s
€ ~ b- aes+b ae’S
b—EV|7] o EV|F]-a,
b a a4 b a e (23)

sinceE [V | #] = 0. SinceL(h) = L'(h) = 0 andL”(h) < %, it holds thatl (h) < & (b— a)?s>. Combining this bound

onL(h) with 22) and[(2B) yields the result. O
Before proceeding with our analysis, we need to introduesvaulseful concentration inequalities for sub-Gaussian
vector-valued random variables. First, for a scalar randanable&, define the sub-Gaussian norm

T(E):inf{a>0’ Ele¥] < e2? Szszo} (24)

Clearly, if T(&) < +oo, thené is sub-Gaussian. Second, for a random veetior RY, define
d

B(v) = _;r((v)i) (25)

where(v); is thei™ component ob. We definev to be sub-GaussianB(v) < +oo.
Of crucial importance in our analysis is analyzing the nofraraverage of vector-valued sub-Gaussian random
variables. The following lemma describes how to controlghie-Gaussian norm in such a situation.

Lemma 24. Suppose tha{vI > , is a collection of independent sub-Gaussian random vaesbiRY. Then it holds
that

If in addition the random variablegv; }K ; satisfy

2 2
max max T <T
i=1,...Kj=1,....d (( )J) >

K
K 2 K

then it holds that
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Proof. We analyze one component of the sgiy [ ; v;. It holds that

i)

Il

=
| — |

[©]

X

©
——

Xl w

M =

£)
HI/_/
| I

This implies that

and so

1 K 1 d K 5
B Ri;Ui < RJ: .:T((UI)J)
d K
el 2
< K\ 2 T
_
WK

O

Example 3.2 from[[1]7], a consequence of Theorem 3.1 in [kr}seful for the concentration of the norm of
sub-Gaussian vector random variables.

Lemma 25 (Example 3.2 of [17]) If v is a random vector ifRY with B(v) < +oo, then

2
P{v| >t}§2exp{—%}

Finally, we will also need to deal with dependent randomalalgs that are sub-Gaussian with respect to a particular
filtration.

Lemma 26. Suppose that a random variable V and a sigma algefraatisfies
1L.EV|#]=0
2. P{|V|>t| .7} < 2e~ with ¢ a constant.

Then it holds that

NI =

E[eV | 7] < exp{ (g) 52}

foralls> 0.
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Proof. Adapted from the characterization of sub-Gaussian randormaies in[[15]. First, we have for amy< c that

E [eaVz

7| < 1+/ 2ateCP (V| > t | F}dt
JO

< 14 / 2ate (-t
0

2a
c—a

Settinga = £ yields the bound
Ble | 7] <2

SinceE |V | %] =0, by a Taylor expansion we have

E[eV| 7] = 1+/Om(1—y)E[(sv)2eVSV

(1+§) o=
ol %)
- wofi(0))

3“} dy

IN

IN
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