

Edinburgh Research Explorer

Simplified Learning Using Binary Orthogonal Constraints

Citation for published version:
Huang, Q 2016, Simplified Learning Using Binary Orthogonal Constraints. in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Institute of Electrical and Electronics
Engineers (IEEE), pp. 2747 - 2751, 41st IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2016, Shanghai, China, 20/03/16. https://doi.org/10.1109/ICASSP.2016.7472177

Digital Object Identifier (DOI):
10.1109/ICASSP.2016.7472177

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1109/ICASSP.2016.7472177
https://doi.org/10.1109/ICASSP.2016.7472177
https://www.research.ed.ac.uk/en/publications/e246556c-d73e-4bcf-abbd-5ba02413a042

SIMPLIFIED LEARNING WITH BINARY ORTHOGONAL CONSTRAINTS

Qiang Huang

School of Informatics, University of Edinburgh

ABSTRACT

Deep architecture based Deep Brief Nets (DBNs) has shown
its data modelling power by stacking up several Restricted
Boltzmann Machines (RBMs). However, the multiple-layer
structure used in DBN brings expensive computation, and fur-
thermore leads to slow convergence. This is because the pre-
training stage is usually implemented in a data-driven way,
and class information attached to the training data is only used
for fine-tuning. In this paper, we aim to simplify a multiple-
layer DBN to a one-layer structure. We use class information
as a constraint to the hidden layer during pre-training. For
each training instance and its corresponding class, a binary
sequence will be generated in order to adapt the output of
hidden layer. We test our approaches on four data sets: basic
MNIST, basic negative MNIST, rotation MNIST and rectan-
gle (tall vs. wide rectangles). The obtained results show that
the adapted one-layer structure can compete with a three-layer
DBN.

Index Terms— Deep brief network, adapted hidden
layer, DBM, pre-training, target dependent constraints

1. INTRODUCTION

The use of deep learning techniques [1, 2] have brought
successes in academic researches and industrial applications
[3, 4, 5]. In deep neural network, deep architectures are of-
ten constructed by unsupervised pretraining and stacking of
restricted Boltzmann machines. RBMs working as genera-
tive models have been used to model many different types
of data, images[6], speech[7], bags of words for document
representation[8].

Previous studies have shown that a single RBM has lim-
ited data modeling capability, whereas a deep model, formed
by stacking up several RBMs, presents great data modeling
power [9]. Hinton et.al. proposed an efficient algorithm to
train DBN by greedily training each layer of RBM using hid-
den activations in the previous layer [6]. It has been shown
that the variational bound of the data log-likelihood is guar-
anteed under this greedy layer-wise learning framework, sug-
gesting that stacking another layer of RBM will not deterio-
rate the models generative power. By stacking up RBMs, in-
stead of getting a multi-layers Boltzmann machine, a hybrid
model is constructed[9, 6]. When training RBM of each layer

in DBN, contrastive divergence (CD) [10] method was pro-
posed to replace the Markov chain. In the case of CDk, neg-
ative phase samples from the model are drawn by performing
alternating Gibbs sampling only k (often k=1) times instead
of reaching the equilibrium [11].

However, as learning is performed using stochastic gradi-
ent, it may converge to a local solution. It is generally not fea-
sible to compare different local optima analytically. [12, 13]
recently showed that depending on initialization and learn-
ing parameters the resulting RBMs can highly vary even for
a small data set. Moreover, when processing condense data,
such as negative transformation of MNIST data[14], it is still
hard for the current stochastic learning method, such as CD,
to avoid overfitting. In addition, although deep architecture
brings benefits, some simple structures could be more desir-
able in order to reduce computation time for some practical
applications, e.g. real-time speech process and image track-
ing.

Currently, there have been some work to handle the prob-
lems mentioned above. For overfitting, [2] used dropout to
prevent complex co-adaptations on the training data. On each
presentation of each training case, each hidden unit is ran-
domly omitted from the network with a reasonable probabil-
ity, e.g. 0.5. [15] introduced the use of mean reduction by
subtracting the mean of the data prior to learning the param-
eters. However, these work still rely on multilayer network
instead of showing the effectiveness of their on one-layer net-
work. [16] presented an enhanced gradient method to tackle
the greedy search for metaparameters in order to avoid stuck
and even diverge.

In this paper, we will introduce a semi-supervised learning
method by adapting the outputs of hidden units and reduce a
multi-layer network to a one-layer structure simultaneously.
Our work is motivated in two aspects:

• For pre-training, the parameters corresponding to each
hidden layer are generally optimized in an unsuper-
vised way. This means there will be no any prior
knowledge on each hidden neuron at this stage, al-
though the manual labellings will be used for fine-
tuning. However, intuitively, the use of possible prior
knowledge might be able to bring some benefits when
they working as constraints to parameters optimisation.

• In a multiple-layer DBN, after pre-training and fine-

(a) Prop1 (b) Prop2

Fig. 1. Two proposed approaches: Prop1 and Prop2. Both of them use one-layer DBN structure.

tuning, we can easily find the trained filter matrices be-
tween the bottom hidden layer and the input layer are
actually sparse. This is because the bottom layer is in
charge of extracting the most basic and distinct features
from the training data. The sparsity of filter matrices
thus means there possibly exist some spaces for fea-
tures mapped from higher layers.

The remainder of this paper is organised as follows: sec-
tion 2 introduces the theoretical framework of our approaches.
Then, section 3 describes the datasets to be used and exper-
imental setup. Next, the evaluation performances are dis-
cussed in section 4. Finally, we draw the conclusion of this
paper and give our future work in section 5.

2. THEORETICAL FRAMEWORK

For a neural network with L, l ∈ {1, ..., L}, hidden layers, let
vl denote the vector of inputs into layer l and hl denote the
vector of output from layer l. Wl and bl are the weights and
biases at layer l. The operation of the neural network can be
described as:

hl+1
i = wl+1

i xl + bl+1
i (1)

vl+1
i = f(hl+1) (2)

where f represents an activation function. To optimise the
parameters, contrastive divergence (CD) is generally used to
perform stochastic steepest ascent in the training data:

△wij = ε(< vihj >data − < vihj >model) (3)

where ε is a learning rate.
During the optimisation of metaparameters in pretraining,

it is not clear which hidden units will have more dependencies
to a target unit than others. We call this case as ”stochastic-
ity” of hidden units and assume that some hidden units natu-
rally have stronger dependencies to some specific target units

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
i j

==1

S
i j

==0

Fig. 2. activation function f(x)

(classes) than others and reducing the stochasticity can bring
some benefits. We thus apply class information, as an addi-
tional constraint, to the hidden layer by selecting a number of
hidden units and assign them directly to a specific class.

To conduct the hidden units selection and assignment,
we propose two approaches. The first approach (Prop1), as
shown in figure 1(a), uses a set of binary orthogonal sequence
S to select a fixed number of hidden neurons for each class.
“1” in the binary sequence means a strong dependency be-
tween the hidden and target unit, while “0” means a less
dependency. In order to reflect different dependencies, we
linearly interpolated between the output of each hidden unit
(hj) and its corresponding binary value Sij .

hj = p ∗ hj + (1− p) ∗ Sij (4)

1 ≤ i ≤ #class, 1 ≤ j ≤ dimH ,
where dimH denotes the dimension of hidden layer, p de-
notes the interpolation coefficient and set to be 0.5 in this pa-
per. The use of above equation can essentially be viewed as a
change of activation function, namely:

f(x) =

{
p ∗ f(x) + (1− p) if Sij == 1

p ∗ f(x) otherwise (5)

Figure 2 shows the change of activation function.

The second approach (Prop2), as shown in figure 1(b),
selects hidden units according to their values as the inputs to
the target layer. In comparison with Prop1, Prop2 does not
relies on a set of pre-defined orthogonal binary sequences.
The implementation of Prop2 contains four steps:

1. Given an instance and its corresponding class c, com-
pute the input to the target unit tc from each hidden unit
hj using zc,j = Wc,j ∗ hj , where Wc,j represents the
weight of a link between the cth target unit and the jth

hidden unit

2. Select N top-ranked hidden units with respect to zc,j ,

e.g. N =
hidden units

class

3. Build a dimH-dimension binary sequence, where its
bits corresponding to the top-ranked hidden units are
set to be “1” if selected, or set to be “0”

4. Compute hj using equation 4 and adapt W with △w
obtained using equation 3

3. DATA AND EXPERIMENTAL SETUP

3.1. Data

In our experiments, we use the MNIST dataset (MNIST-
basic) and its variants, as well as rectangles. MNIST is a
standard computer vision task that provides images contain-
ing 28x28 gray-scale pixels representing ten handwritten
digits (0 to 9)[14]. The variants consists of two more modi-
fications to the MNIST dataset, including images of rotated
digits (MNIST-rot) and the negative images of MNIST. In
MNIST-rot, the digits were rotated by an angle generated
uniformly between 0 and 2π radians. In MNIST-neg, the
values of pixels in original mnist images are flipped. In rec., a
classification task is to identify whether a rectangle contained
in an image has a larger width or length. The rectangle can
be situated anywhere in the 28 x 28 pixel image.

3.2. Setup

In our experiments, we follow a common way to split each
dataset into three parts: a training for pre-training and fine-
tuning the parameters (10000 for MNISTs and 1000 for rec), a
valid part for early stopping 2000 for MNISTs and 200 for rec,
and a test part for final evaluation (50000 for both MNISTs
and rec). For a comparison, we also run two baselines, DBN-
1 and DBN-3, on the four data sets, where DBN-1 has one
hidden layer and DBN-3 has three. The number of hidden
units and learning rate are hyper parameters and are tuned by
a grid search among a small set of values on the validation
set: number of hidden units ∈ {500, 600, 800, 1000}, learn-
ing rate ∈ {0.01, 0.1, 0.5, 0.8, 1} for both pre-training and
fine-tuning. The weight cost is set to be 0.0002. For DBN-3,

its top hidden layer contains 2000 hidden units. The number
of epochs is 200 for pre-training and 200 for fine-tuning, re-
spectively. As a further comparison, we also set drop-out rate
∈ {0, 0.2, 0.5, 0.7, 0.9} only for DBN-1 and DBN-3. The
”sigmoid” function is selected as the activation function for
all experiments in this paper. In all experiments we apply no
further data preprocessing except that we follow Vincent et
al.[17] to select the models based on the validation set perfor-
mance by early-stopping during fine-tuning.

4. RESULTS AND ANALYSIS

Figures 3, 4, 5 and 6 show the classification results on four
data sets using different methods, respectively. Both of our
proposed approaches, Prop1 and Prop2, can yield salient im-
provements on the four data sets in comparison with DBN-1.
Even if comparing with DBN-3, Prop1 still outperforms it on
three data sets: rectangle, MNIST-basic and MNIST-basic-
neg, and can also compete with it on MNIST-rot. Compar-
ing with DBN-3, Prop2 also works better on the classifica-
tion of rectangles and the negative MNIST data. The differ-
ence on classification performance between Prop1 and Pro2 is
mainly because that Prop1 uses completely orthogonal binary
sequence as a constraint to reduce the possible interferences
from other classes. As aforementioned in section 1, this one-
layer structure can be viewed as a combination of stochastic
and deterministic DBN.

Epoch
0 20 40 60 80 100 120 140 160 180 200

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

DBN1
DBN3
Prop1
Prop2

Fig. 3. MNIST-basic

In our experiments, for MNIST-rot, both of our ap-
proaches only outperform DBN-1. The possible reasons
is the number of neurons we selected in the hidden layer is
not big enough to cover the variations caused by rotation. For
MNIST-neg, we find that DBN3 fails to classify the data with-
out using dropout, although it can work well on MINST-basic,
standard digit images with a very sparse energy distribution.
As aforementioned in section 1, when the input data mean is
near 1, such as MNIST-neg, learning is considerably worse

Epoch
0 20 40 60 80 100 120 140 160 180 200

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

DBN1
DBN3
Prop1
Prop2

Fig. 4. rectangle

Epoch
0 20 40 60 80 100 120 140 160 180 200

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

0.05

0.1

0.15

0.2

0.25

0.3

0.35

DBN1
DBN3
Prop1
Prop2

Fig. 5. MNIST-rotate

and even can not convergence. As a comparison, our two
approaches can well handle this issue. It is mainly because
we make the hidden units work in two states. The one state
is that some hidden units work more deterministically to a
target unit than other hidden units, which work stochastically
with their output to the target being decreased.

It is clear that, after training a multiple-layer neural net-
work, each neuron will have more dependencies to some spe-
cific classes and less dependencies to others. However, the
selected activation function, such as sigmoid, corresponding
to each neuron is generally kept same shape during the whole
optimization. This means it will equally treat the input after
the feature vectors (v) from different classes, multiplying by
weight matrix W . The use of our two approaches makes it
possible let the active function of each neuron lift or reduce
its response when the input coming in from related or unre-
lated classes. Figure 2 shows, during pre-training, the active
function works in two different states to distinguish the input
from related and unrelated classes.

Epoch
0 20 40 60 80 100 120 140 160 180 200

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

0.03

0.04

0.05

0.06

0.07

0.08

0.09

DBN1
Prop1
Prop2

Fig. 6. MNIST-basic-neg

Table 1. Comparison with DBN1 and DBN-3 after using
dropout

Data set MNIST-basic basic-neg rot. rec.
DBN1 0.0396 0.0446 0.1383 0.0506
DBN3 0.0365 0.90 0.1001 0.0261
DBN1 0.0339 0.0405 0.1198 0.0301
+drop
DBN3 0.0313 0.0378 0.0989 0.0198
+drop
Prop1 0.0301 0.0363 0.1101 0.0121
Prop2 0.0338 0.0380 0.1187 0.0187

A further comparison was given in Table 1 after DBN-1
and DBN-3 using ”dropout”. It is clear that, except MNIST-
rot, the use of our method (Prop1) still outperforms DBN-3
and DBN-1 with ”dropout” on the other three data sets.

5. CONCLUSION

The use of our proposed methods can yield better perfor-
mances on three data sets in comparison with DBN-3 and a
closed performance to DBN-3 on the data set of MNIST-rot.
The reason is that we make the hidden units work in different
states with using class information of each training instance.
This adaptation can let us obtain good performances on four
data sets only using one-layer structure.

In the future work, we will further test our approaches on
more data sets and different network formats, such as autoen-
coder based neural network; moreover, we will also consider
to use and design more robust activation functions to apply
possible deterministic factors to the stochastic characteristics
of data.

Acknowledgement: This work was supported by Natural
Speech Technology (NST), a grant from the UK Engineering
and Physical Sciences Research Council (EP/I031022/1).

6. REFERENCES

[1] G. E. Hinton and R. Salakhutdinov, “Reducing the di-
mensionality of data with neural networks,” Science,
vol. 313, pp. 504–507, 2006.

[2] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. R. Salakhutdinov, “Improving neural networks
by preventing co-adaptation of feature detectors,” 2012.

[3] G. E. Dahl, D. Yu, and L. Deng, “Context-dependent
pre-trained deep neural networks for large vocabulary
speech recognition,” IEEE Trans. on Audio, Speech, and
Language Processing, vol. 20, pp. 33–42, 2012.

[4] Y. Bengio, R Ducharme, V. Pascal, and J. Christian, “A
neural probabilistic language model,” Journal of Ma-
chine Learning, vol. 3, pp. 1137–1155, 2003.

[5] I. Goodfellow, M. Mirza, and A. C. Courville, “Multi-
prediction deep boltzmann machines,” in Advances in
Neural Information Processing Systems (NIPS), 2013,
pp. 548–556.

[6] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learn-
ing algorithm for deep belief nets,” Neural Computa-
tion, vol. 18, pp. 1527–1554, 2006.

[7] A. R. Mohamed, G. Dahl, and G. E. Hinton, “Deep be-
lief networks for phone recognition,” in NIPS’22 work-
shop on deep learning for speech recognition, 2009.

[8] R. R. Salakhutdinov and G. E. Hinton, “Replicated soft-
max: An undirected topic model,” in Advances in Neu-
ral Information Processing Systems (NIPS), 2009.

[9] Y. Bengio, “Learning deep architectures for ai,” Foun-
dations and Trends in Machine Learning archive, vol. 2,
pp. 1–127, 2009.

[10] M. A. Carreira-Perpignan and Hinton. G. E., “On con-
trastive divergence learning,” in Artificial Intelligence
and Statistics, 2005.

[11] J. How and T. Yu, “Sparse maximum entropy deep be-
lief nets,” in International Joint Conference on neural
network, 2013, pp. 1–6.

[12] abd Muller A. Schulz, H. and S. Behnke, “Investigating
convergence of restricted boltzmann machine learning,”
in NIPS 2010 Workshop on Deep Learning and Unsu-
pervised Feature Learning, 2010.

[13] A. Fischer and C. Igel, “Empirical analysis of the diver-
gence of gibbs sampling based learning algorithms for
restricted boltzmann machines,” in Proceedings of the
20th international conference on Artificial neural net-
works, 2010, pp. 208–217.

[14] L.C. Yan and C. Corte, “The mnist database of hand-
written digits,” 1998.

[15] Y.C. Tang and I. Sutskever, “Data normalization in the
learning of rbms,” Tech. Rep., Department of Computer
Science, University of Toronto, 2011.

[16] K. H. Cho, T. Raiko, and A. Ilin, “Enhanced gradient for
training restricted boltzmann machines,” Neural Com-
pute, vol. 25, pp. 805–831, 2013.

[17] P. Vincent, H. Larchelle, I. Lajoie, and P. A. Bengio, Y.
an Manzagol, “Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a local
denoising criterion,” Journal of Machine Learning Re-
search, vol. 11, pp. 3371–3408, 2010.

