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ABSTRACT

Automatic speech recognition (ASR) has become a widespread and

convenient mode of human-machine interaction, but it is still not suf-

ficiently reliable when used under highly noisy or reverberant con-

ditions. One option for achieving far greater robustness is to include

another modality that is unaffected by acoustic noise, such as video

information. Currently the most successful approaches for such au-

diovisual ASR systems, coupled hidden Markov models (HMMs)

and turbo decoding, both allow for slight asynchrony between au-

dio and video features, and significantly improve recognition rates

in this way. However, both typically still neglect residual errors in

the estimation of audio features, so-called observation uncertainties.

This paper compares two strategies for adding these observation un-

certainties into the decoder, and shows that significant recognition

rate improvements are achievable for both coupled HMMs and turbo

decoding.

Index Terms— Audiovisual speech recognition, uncertainty-of-

observation techniques, discriminative transformation.

1. INTRODUCTION

Human-machine interaction systems have achieved a considerable

level of sophistication over the past decade. However, the reliable

operation of such systems in practical scenarios has been a chal-

lenge. Systems routinely struggle with the variability of human ex-

pression, both visually and acoustically, and the ever-present effects

of varying environments and noise. Machines that jointly consider

visual and acoustic cues tend to achieve higher levels of robustness,

because visual cues are complementary to acoustic ones, and fea-

tures extracted from visual and acoustic information correlate with

each other. It is thereby possible to recover information that is oth-

erwise lost in each individual modality due to noise or occlusion.

However, visual and acoustic features also provide information that

is unique to each modality (through place and manner of articulation

for example) so that degradations due to the variability of human

expression itself can be curbed. Furthermore, it is well known that

humans gain a benefit from audiovisual integration. Lip-reading is

used by hearing impaired listeners, for example, and visual informa-

tion may even override acoustic cues as demonstrated by the experi-

ments by McGurk and MacDonald [2]. Joint audiovisual processing

has, therefore, been successfully used in a number of applications

This project was supported by the German research foundation DFG
(project KO3434/4-1) and by the EU FET grant TWO!EARS (ICT-618075).

such as automatic emotion recognition [3], speaker diarization [4],

voice conversion [5], speech enhancement [6], speaker tracking [7],

and the recognition of whispered speech [8].

Early successful approaches for joint audiovisual decoding in

automatic speech recognition (ASR) were conceived, amongst oth-

ers, by Neti et al. [9], Nefian et al. [10], Zhang et al. [11], and Kratt

et al. [12]. The goal is generally to combine an acoustic recognition

engine with an automatic lip-reading mechanism. A fundamental

problem in the integration of corresponding visual and acoustic cues

is that the two modalities are not perfectly synchronous, but exhibit

time offsets caused by preparatory articulator/lip movements. These

movements occur in anticipation of future phonemes, similarly to

corresponding co-articulation effects in the acoustic signal. The

two mechanisms that are currently considered to be most success-

ful in integrating such visual and acoustic features are coupled hid-

den Markov models (CHMMs) [13] and turbo decoding (TD) [14].

CHMMs are formally different from regular HMMs in that internal

states are addressed with a two-dimensional index instead of a one-

dimensional index (see Fig. 1). One dimension of the index refers to

the corresponding state in the audio-only stream and the other index

refers to the corresponding state in the video-only stream. CHMMs

are naturally able to account for asynchronicities between the two

streams [10] and, thereby, enable the processing of audiovisual data.

An alternative to CHMMs was recently published by Receveur,

Scheler, and Fingscheidt [14]. They recognized that the so-called

turbo techniques developed in the context of error correcting chan-

nel codes [15] can also be applied to the information fusion problem

in multimodal recognition tasks. They reported that their general-

ized turbo ASR approach outperformed conventional CHMMs with

a significant reductions in word error rate [14].

Lastly, all types of ASR systems suffer from degradations in

noisy and/or reverberant environments. The situation can be signifi-

cantly improved, however, if not only a generic noise-reduction/de-

reverberation algorithm is applied, but also information about the re-

liability of the resulting feature vector is incorporated into the recog-

nition process. Conventional techniques include uncertainty decod-

ing (UD) and modified imputation (MI). Successful implementations

of such uncertain data techniques for audiovisual speech recognition

(AVSR) were proposed in [13] and [16].

In this paper we assess the use of a new noise-adaptive linear

discriminant analysis method (NALDA) to fuse reliability informa-

tion into the recognition process. NALDA was introduced in [17] in

the context of audio-only ASR. Classical linear discriminant anal-

ysis (LDA) projects multidimensional data onto its most discrimi-

native direction. In NALDA this direction is adaptively optimized



Fig. 1: Illustration of a CHMM with N × M coupled states. The

marginal audio model has N audio states qa and the marginal video

model has M video states qv . Entry and exit of a CHMM is limited

to corner states (indicated by tiny black circles).

with respect to the estimated feature uncertainties. We extend the

methodology to AVSR systems and show that NALDA delivers word

recognition rates that are superior to conventional techniques.

2. AUDIOVISUAL SPEECH RECOGNITION

Audiovisual data differs from standard single-modality data with re-

spect to its inherent asynchronicities: since speakers tend to bring

articulators into position before phonation occurs, e.g. at the begin-

ning of an utterance, the visual modality information can precede

that of the acoustic modality by up to 120 ms [18]. Different model

topologies have been proposed to deal with this issue. Ideas range

from simply applying a standard HMM to concatenated features, the

so-called feature fusion approach [9], to a wide range of so-called

decision fusion approaches. Decision fusion can occur at different

stages of the recognition process. Early integration fuses the infor-

mation already at the state level. Late integration may go as far as

recognizing audio and video data separately and then fusing deci-

sions at the sentence-level [10].

In this paper, we consider two methods of classifier integration.

Both allow for a certain degree of natural, asynchronous behavior1,

while at the same time also providing means to explicitly enforce

some constraints on synchronicity. The first of these, the CHMM,

is known to be superior to feature fusion as well as a wide range of

other conventional strategies [10]. The other, more recently devel-

oped approach uses turbo decoding to integrate classifier informa-

tion with provisions for modeling asynchronicities. Turbo decoding

is shown to deliver a performance superior to CHMMs in [19]. We

extended both models to incorporate the handling of observation un-

certainties, as described in detail below.

2.1. Coupled HMM decoding

In a coupled HMM (CHMM) the joint state transition probability is

modeled as a linear combination of marginal transition probabilities

as illustrated in Fig. 1. An audio stream weight λC is used to capture

the interactions among audio oa and video observations ov and their

1Given that the model topology is chosen appropriately.

computation

Viterbi

audio

Tva

video

gv

γ̇v

γ̇a

ga

Tav

likelihood likelihood

FBA

best word sequence w⇤

search

γ̃a

FBA

ba bv

computation

Fig. 2: Turbo decoding (TD) for AVSR. The left column comprises

an FBA-based audio-only ASR system. For TD a second modal-

ity (video) is added and extrinsic probabilities γ̇a and γ̇v are ex-

changed between decoders. In the first TD iteration a flat prior

ga(qa) = 1, ∀qa is used for the audio state posterior calculation.

After a predefined number of iterations a best path search through

the audio posteriors γ̃a reveals the final best word sequence w⇤.

respective individual observation likelihoods ba and bv . For the joint

audiovisual state likelihood we obtain

p(oa, ov|qa, qv) = ba(oa|qa)
λC · bv(ov|qv)

1�λC . (1)

For our experiments we used a token passing decoder to find the best

word sequence w⇤ as the Viterbi path through a network of CHMM

word models.

2.2. Turbo decoding

Turbo decoding [15] is an information fusion technique, which orig-

inated from a breakthrough in digital communication applications.

More recently the turbo principle emerged as an alternative decod-

ing scheme in multimodal speech recognition [20, 14] and proved to

be useful for other applications such as blind speech separation [21]

and speech enhancement [22].

TD is based on the iterative exchange of soft information, de-

duced from state posteriors, between different decoders. This extra

information, ga and gv in Fig. 2, is used like a prior to modify the ob-

servation likelihoods ba and bv in the forward-backward algorithm

(FBA). The modified audio and video likelihoods become

b̃a(oa|qa) = ba(oa|qa) · ga(qa)
λT λP , (2)

b̃v(ov|qv) = bv(ov|qv) · gv(qv)
(1�λT )λP , (3)

in which λT acts like an audio stream weight and the constant λP

balances the likelihood and prior probability. From the FBA, we ob-

tain new state posteriors γ̃, which subsume the likelihood, the prior

probability and the extrinsic probability [14]. To find the extrinsic

probability γ̇(qt) for state q and frame t, we have to remove all ex-

cess information via

γ̇(qt) ∝
γ̃(qt)

b(ot|qt) · g(qt)
. (4)

The final step of each such half-iteration is to map the extrinsic prob-

abilities to the state space of the respective other decoder. This is

done by a linear transformation.

ga = Tva γ̇v audio ← video (5)

gv = Tav γ̇a video ← audio (6)

The process of modified FBA followed by the deduction of extrinsic

probabilities and their transfer to the corresponding state space is

iterated for the audio and the video model a few, e.g. 4, times.



Despite objections against the applicability of plain forward-

backward inference in loopy graphical models [23], we have experi-

enced no convergence problems in our experiments.

3. USING MISSING AND UNCERTAIN DATA IN AVSR

When attempting ASR within natural settings, such as a home or

office environment, the system is frequently confronted with signif-

icant levels of additive noise. The detrimental effect of noise on the

recognition process can be substantially reduced with proper pre-

processing of the recorded input signal [24]. The implicit noise

power estimation of any type of noise reduction mechanism serves

two purposes: (1) with knowledge of the noise power it becomes

possible to (optimally) filter the incoming distorted speech to en-

hance the signal components of interest [1], and (2) the estimated

noise power may serve as a gauge for the reliability level of each

component [25]. High levels of noise would render a particular com-

ponent less reliable. Low levels of noise would sway the recognition

mechanism to place more confidence into any estimate derived from

the associated speech component. Fusing information about miss-

ing and uncertain data into an ASR process typically requires three

technical steps:

1. The execution of a speech enhancement algorithm that de-

livers: (a) an estimate of the underlying noise power at each

point of a time-frequency decomposition of the incoming sig-

nal, and (b) an estimate of the underlying clean speech power

at each time-frequency point.

2. A transformation of the estimated clean spectra and their as-

sociated noise powers into the domain of the recognition fea-

tures, which includes the estimated feature vectors and their

associated uncertainty measures.

3. Using the feature vectors and their uncertainties in a statis-

tical recognition engine to decode the word sequence of the

targeted underlying speech signal.

The implementation details of each of the three steps within our pro-

posed method are described in the following three subsections.

3.1. Signal enhancement and uncertainty estimation

For the preprocessing of the signal we generally followed the rec-

ommendation ETSI ES 202 050 for an advanced front-end feature

extraction algorithm after the European Telecommunications Stan-

dards Institute [26]. Our experimental data consisted of two-channel

signals sampled at 16 kHz. We applied a simple delay-and-sum and

a simple null-steering beamformer to derive an initial estimate of

the targeted speech signal x̂in[n] and an initial estimate of the noise

signal v̂in[n] [16]. Both estimates were converted into the STFT do-

main with a 400-sample Hamming window, a frame overlap of 240

samples, and an FFT length of 512 samples [1]. We use X̂in(k, t)

to denote the STFT of the initial signal estimate and V̂in(k, t) for

the STFT of the initial noise estimate. Parameter k represents the

frequency index and t denotes the time frame index.

The STFT X̂in(k, t) was subjected to a speech enhancement al-

gorithm with Wiener gain, the decision directed approach for the

estimation of the a-priori SNR ξ(k, t) [1], and an improved min-

ima controlled recursive averaging (IMCRA) for estimating the

noise power N(k, t) [27]. The estimated noise power N(k, t) was

weighted with gain-factor ξ(k, t)/(1 + ξ(k, t)) to arrive at an esti-

mate of the spectral uncertainties Σ̂N (k, t) (see Nesta et al. [28]).

3.2. Uncertainty propagation

The enhanced signal spectral estimates X̂(k, t) and the associ-

ated spectral uncertainties Σ̂N (k, t) were converted into the 13-

dimensional MFCC domain after Astudillo et al. [29] via uncer-

tainty propagation. Cepstral mean subtraction is applied [24]. We

augmented our MFCC vector with the usual ∆ and ∆∆ coefficients

(see [24] for example). The associated ∆ and ∆∆ uncertainties are

augmented in the uncertainty vector accordingly. As a result we ob-

tain a 39-dimensional audio recognition feature estimate oa(t) and

an associated 39-dimensional feature uncertainties vector Σ̂oa
(t) for

each signal frame.

3.3. Uncertainty-based decoding

In conventional ASR systems, the observation likelihoods ba(oa|qa)
and bv(ov|qv) are typically computed as Gaussian mixture models

bqs(os) = p(os|qs)
MX

m=1

Wqs,m ·N (os;µqs,m,Σqs,m) , (7)

where Wqs,m, µqs,m and Σqs,m are the parameters of the mth

Gaussian mixture component of state q in stream s (s ∈ {a, v}).

Each Gaussian component density would be evaluated via

N (os;µqs,m,Σqs,m) = 1
q

(2π)D|Σqs,m|
· . . .

exp(− 1
2
(oa − µqs,m)T Σ

�1
qs,m (x− µqs,m)). (8)

We refer to models in which off-diagonal elements of covariance ma-

trix Σqs,m are forced to zero as Gaussian-Density/Diagonal (GDD)

models. Models with fully populated covariance matrices are re-

ferred to as Gaussian-Density/Full (GDF) models.

In order to account for the possibly time-varying reliability of

the audio stream, one may replace observation likelihoods of audio-

streams in audio-only, coupled-HMM, or turbo decoders with like-

lihoods derived from uncertainty-of-observation techniques. These

utilize estimates of the observation uncertainty Σ̂oa
(t) at each time

frame. In uncertainty decoding (UD) [30], for example, the Gaussian

component densities are updated with a time-dependent “correction”

in covariance, i.e.

Σ
0

qa,m = Σqa,m + Σ̂oa
(t). (9)

Thus, the observation uncertainty is added to the covariance of each

state output probability distribution. Uncertainty Decoding (denoted

by GDU in the following tables) was used successfully for audio-

visual speech recognition in [31]. In conjunction with uncertainty

propagation techniques and stream weight optimization, however,

the respective performance gains of UD become small.

In contrast to uncertainty decoding, noise-adaptive LDA trans-

forms not only the covariance matrices of the Gaussian component

models, but also the mean vectors. For this purpose, it uses the ob-

servation uncertainties Σ̂oa
(t) to determine the most discriminative

feature transform matrix WNALDA at each time frame t, as de-

scribed in [17]. Once the input feature vectors have been mapped

to the most discriminative D’-dimensional subspace by õa(t) =
WNALDA(t)oa(t), the HMM output distributions are transformed

for each state qa by

µ̃qa(t) = WNALDA(t)µqa . (10)

Likewise, each covariance matrix is updated by

Σ̃qa(t) = WNALDA(t)ΣqaW
>

NALDA(t). (11)



Keyword Accuracies (%) with Oracle Uncertainties Keyword Accuracies (%) with Estimated Uncertainties

SNR -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB avg. -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB avg.

Video 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20 72.20

Audio GDF 72.30 78.07 81.28 84.82 86.50 89.32 82.05 65.09 75.04 80.83 86.73 90.34 92.54 81.76
Audio GDD 72.11 77.00 81.91 84.58 87.21 89.59 82.06 71.90 79.05 82.56 87.75 91.64 91.60 84.08
Audio GDU 76.30 78.83 83.79 84.47 86.88 87.70 83.00 72.99 77.57 81.60 88.73 91.49 91.74 84.02
Audio GDN 82.72 86.81 88.49 90.71 92.17 92.44 88.89 74.00 78.94 85.19 90.93 92.40 93.30 85.79

CHMM GDF 82.52 85.14 86.58 88.32 89.88 90.33 87.13 76.67 82.56 87.30 89.74 92.37 93.88 87.09
CHMM GDD 82.78 85.93 87.95 89.86 90.96 92.32 88.30 84.72 85.81 88.68 90.47 91.22 92.09 88.83
CHMM GDU 82.39 84.40 85.29 85.85 87.85 88.08 85.64 83.63 84.59 87.77 88.97 91.18 90.64 87.80
CHMM GDN 87.32 89.23 91.28 92.56 93.71 93.86 91.33 84.13 87.59 90.28 92.40 93.36 93.43 90.20

Turbo GDF 84.49 86.92 88.17 89.31 91.08 92.04 88.67 81.79 86.41 90.11 91.53 93.98 95.32 89.86
Turbo GDD 84.46 88.06 89.42 90.92 92.58 93.50 89.82 85.75 88.58 90.45 92.16 93.68 93.52 90.69
Turbo GDU 88.45 89.08 90.54 91.33 92.79 92.13 90.72 84.34 87.57 89.67 91.48 93.60 92.71 89.89
Turbo GDN 90.03 92.34 93.77 94.76 94.97 95.66 93.59 87.21 89.48 92.08 93.09 95.26 95.12 92.04

Table 2: Keyword accuracies from our experiments with oracle and estimated uncertainties. Best results are marked in bold.

With these updated parameters and features, and with the re-

duced dimension D0, the audio observation densities are evaluated

according to (7). We use GDN to refer to a system with this type of

NALDA-based uncertainty evaluation.

From our video data we extracted 31-dimensional LDA-

transformed DCT coefficients of the mouth region as described in

[6]. The likelihood computation of the video features involved stan-

dard diagonal Gaussian mixture models without the inclusion of any

observation uncertainties.

4. EXPERIMENTAL SETUP AND RESULTS

For our experimental evaluation we used audio data from the

first CHiME challenge [32] in combination with matching video

data from the GRiD corpus [33]. The recordings consist of

1000 sentences spoken by 33 talkers each. All utterances in-

clude the annunciation of a letter (A. . .Z, excluding W) and a digit

(0. . .9). Audio and video files are not start/endpoint-aligned be-

tween the CHiME and the GRiD corpus. We therefore performed

a start/end-point matching via the word alignment files provided on

http://spandh.dcs.shef.ac.uk/gridcorpus/.

The entire set of training data was used in the initial model train-

ing. Subsequently, development data of the first five speakers was

used to adjust all free parameters, i.e. the audio stream weights for

the CHMM and the TD decoder. Table 1 shows the corresponding

values that we obtained for the four different types of decoders. We

set λP = 0.1 for all TD experiments and D0 = 37 for GDN.

The experimental results are shown in Table 2. We measured

the success of each of the considered recognition schemes via the

keyword accuracy, i.e. the percentage of correctly identified letters

and digits. For the oracle uncertainty results on the left-hand side

of Table 2, the uncertainties Σ̂oa
(i) are given by the “true” squared

error between the features of the respective clean data and the pro-

cessed features. The right-hand side shows the keyword accuracies

for estimated uncertainties, computed after Sections 3.1 and 3.2.

All four previously introduced likelihood functions were com-

pared and there are three different decoding mechanisms at play:

Standard, single-modality decoders are used to generate the audio-

only and video-only results, and coupled HMM and turbo decoding

were used to obtain the audiovisual results.

In general, the performance difference for estimated and oracle

uncertainties is quite small for SNRs ≥ 0 dB, but the results deviate

Oracle uncertainties
X

X
X
X

X
X

XX
Recognizer

pdf
GDF GDD GDU GDN

CHMM (λC ) 0.8 0.8 0.9 0.9
TD (λT ) 0.7 0.7 0.8 0.8

Estimated uncertainties
X

X
X
X

X
X

XX
Recognizer

pdf
GDF GDD GDU GDN

CHMM (λC ) 0.8 0.7 0.7 0.8
TD (λT ) 0.8 0.6 0.6 0.7

Table 1: Stream weights λC and λT for all tested combinations of

the uncertainty estimators, recognition types and pdf types.

more when the SNR is negative. In nearly all SNR conditions,

the best performance is obtained with turbo decoding and NALDA-

based uncertainty evaluation.

5. CONCLUSIONS

We have considered the use of observation uncertainties in audiovi-

sual speech recognition, using coupled HMMs and turbo decoding.

As already noted by [31], in coupled HMM decoding, stream weight

adaptation and uncertainty compensation by UD both provide sig-

nificant advantages in isolation, but using uncertainty compensation

in addition to optimized stream weighting provides only small bene-

fits. This finding was replicated in our experiments. However, noise

adaptive LDA [17], another, more recent uncertainty-of-observation

technique, has proven to be of significant value in this context.

Additionally, we have incorporated uncertainty-of-observation-

techniques into turbo decoding, an approach to audiovisual integra-

tion that was recently introduced in [14]. Here, again, uncertainty

decoding was only of rather small benefit when optimized stream

weights were used, whereas noise-adaptive LDA has shown large

benefits for optimal oracle stream weights, and has been valuable

with estimated uncertainties as well.

In the presented approach, fixed stream weights were used in all

experiments. Optimization of stream weights on a frame-by-frame

basis has proven its merit for coupled-HMM systems in [34]. It

will be interesting to extend this technique to the presented turbo-

decoding system, adapting the stream weight according to estimated

SNR, observation uncertainty, and model-based reliability measures

like dispersion and entropy, in order to also consider the time-

varying utility of video information in the process.
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