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ABSTRACT

The maximum likelihood (ML) and maximum a posteriori (MAP)

estimation techniques are widely used to address the idineof-
arrival (DOA) estimation problems, an important topic imser ar-
ray processing. Conventionally the ML estimators in the DE&A
timation context assume the sensor noise to follow a Gausk&
tribution. In real-life application, however, this assuiop is some-
times not valid, and it is often more accurate to model thseais
a non-Gaussian process. In this paper we derive an itefetivas
well as an iterative MAP estimation algorithm for the DOAiest-
tion problem under the spherically invariant random preaesise

assumption, one of the most popular non-Gaussian modgis; es

cially in the radar context. Numerical simulation resulte @ro-
vided to assess our proposed algorithms and to show theintaye
in terms of performance over the conventional ML algorithm.

Index Terms— Direction-of-arrival estimation, spherically in-
variant random process, maximum likelihood estimationximam
a posteriori estimation, sensor array processing

1. INTRODUCTION

The direction-of-arrival (DOA) estimation problem is angortant
topic in sensor array processing which has found wide agjtic
in, among others, radar, sonar, radio astronomy and wireles-
munications|[1-4]. Among the numerous techniques develdpe
the DOA estimation, those based on the maximum likelihood)(M
criterion are known to have the advantage of offering antanting
tradeoff between the asymptotic and threshold perfornsa[t;eh].
Conventionally, a crucial assumption for the ML estimatsrshat
the noise isuniformly white [3,/5]. Nevertheless, this oversimplify-
ing assumption is unrealistic in certain applications [6-Fus, the
authors ofl[4] and.[9, 10] have devised, resorting to the ephof
stepwise numerical concentration, an iterative ML estimator for the
case ofnonuniform white andcolored noise, respectively.

The problem, however, is that the Gaussian noise assuniption

self, colored or not, is based on the central limit theoremd, lases
immediately its validity in certain scenarios when the dtods for

local scattering. A SIRP is fully characterized by its tegtparam-
eter(s) and speckle covariance matrix.

The existing works addressing the estimation problems in a

SIRP context almost exclusively assume the presence ofidanp
data (known noise-only realizations) in order to estimhéespeckle
and texture’s parameters [15,/ 17-22], instead of unknowiseno
realizations embedded in and contaminating the receivgadaki
In [18], the authors provided a parameter-expanded exjautta
maximization (PX-EM) algorithm to estimate the unknownnsib
parameters under the SIRP noise. The problem they conbinler,
ever, is a linear one. Furthermore, the application of thkgjorithm
is restricted to a special model, namely, the so-called rgdined
multivariate analysis of variance model [23]. To the besbof
knowledge, there are no algorithms available in the culiemature
for DOA estimation (a highly non-linear problem), nor fogsal
parameter estimatioim general in a comprehensive manner, under
the SIRP noise. To fill this gap, and employing a similar mdtto
ogy as inl[4] and/[9], we devise in this paper an iterative nmaxn
likelihood estimation (IMLE) algorithm, together with ateiative
maximum a posteriori estimation (IMAPE) algorithm in thisne
text. The latter exploits information of the noise disttibn and
can be seen as a generalization of the former. Finally, wiy cart
simulation to illustrate the performances of our algorishm

2. MODEL SETUP

Consider an arbitrary sensor array comprisiNigsensors that re-
ceive M (M < N) narrowband far-field source signals with un-
known DOAs#., . ..,0, . The array output at the&h snapshot can
be formulated as [3! 5]:
x(t)=A(0)s(t) +n(t), t=1,...,T, Q)

inwhich@ = [0, ... ,GM]T is the M x 1 vector of unknown signal
DOAs, A(0) =[a(0:1),...,a(0rm)] denotes theV x M steering
matrix, s(t) is the M x 1 vector of the source waveforma,(t) is
the N x 1 sensor noise vectol, denotes the snapshot number, and
()T denotes transpose.

In this paper, we assume the source wavefow(s), ¢ =

this are not fulfilled. This is the case, e.g., in the contexiow-
grazing-angle and/or high-resolution radar [11-13], wtéee radar
clutter shows non-stationarity. Various non-Gaussias@anodels  statistically independent of each othler|[14]:

have been developed to deal with such problems, among wéch t

so-called spherically invariant random process (SIRP)ehbds be- n(t) = /7(t)o(t),

come the most notable and popular one [12, 14-16]. A SIRP is a

two-scale, compound Gaussian process, formulated as tiiigir  in which o (¢) represents the speckle, a temporally white, complex
of two components: the square root of a positive scalar nanpil@-  Gaussian process with zero mean and an unkndiw N covari-
cess, namely, theexture, accounting for the local power changing, ance matrix@ = E{O'(t)O'H(t)}, where(-)¥ stands for the conju-
and a complex Gaussian process, namelygspbekle, describing the  gate transpose; whereas the texture, denoted(by, is composed

1,...,T, to be unknown deterministic complex sequences [3]. The
sensor noise is modeled as a SIRP, which comprises two terms,

t=1,...,T; 2)
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of independent, identically distributed (i.i.d.) posétivandom vari- s(t) andQ are fixed. We denote this estimate Byt ), which has
ables at each snapshot. To resolve the ambiguity betweeextioee  the following expression:
and the speckle so as to make the noise parameters unigealyid 1
fiable, we assume that{i } = N, in which tr{-} denotes the trace.  7(¢) = N (x(t)-A0)s(t)" Q" (x(t)- A(8)s(t)). (8)
In this paper, we mainly consider two kinds of texture disitions ; ] —
that are most widely used in the literature, for both of whigt) ~ Meanwhile, by applying Lemma 3.2.2. in_[28] to Ef (7), one ca
is characterized by two parameters, thape parameter ¢ and the ~ obtain the expression @, representing the estimate @ whené,
scale parameter b. The first is thegamma distribution, leading to the  s(t) andr(¢) and are fixed, as:
K-distributed noise [12, 24], where the pdfoft) is: T

e Q- —Z (t)( z(t) - A(0) s(1)) (x(t) - A () s(t))", (9)
T(t) e b 3
I'(a )ba 2 © in which replacingr(t) by the expression of(¢) in Eq. [8) leads to

the following iterative expression @@:

p(7(t);a,b) =

in which I'(-) denotes the gamma function. The second kind of!

our considered texture distribution is tihmverse gamma distribu- . +1) N Z (z(t) - A(0) s(t)) (m(t) A(0)s(t)"
tion, leading to the t-distributed noise [25] 26], for which =T Z ( ) )
. T @ -40)50)" (@) @) -40)s))
b
p((t);a,b) = T(t) e @, @) (10)
['(a) for which we choose the identity matrix of si2é, denoted byl v,

Under the assumptions above, the unknown parameter veictor & Serve as the initialization matr@ 9
our problem is¢ = [0T7X (T a, ] , wherey is a2NT-element We further need to normahz@ in Eq. (I0) to fulfill the

vector containing the real and imaginary parts of the elémeh  assumption that fiQ} = N. Leth ’ denote the normalized esti-
s(t), t=1,...,T, and¢ is aN2-element vector containing the real mateQ(”l) which is:
and imaginary parts of the entries of the lower triangulat paQ. ' ’

Letz = [27(1),..,a"(T)]" denote the full observation vec- O =N oY [ {Q<”1)} , (11)
tor, andr = [7(1),...,7(T")]" represent the vector of texture real- . .
izations at all snapshots. The full observation likelihcodditioned Now we consider the estimate af(t) when 6, 7(¢) and
on+ can be written as: Q are fixed, which, denoted bg(t), can be found by solving

0Lc/ds(t) =0, as:

NG sn=(a" @A) A" @aw). 12

o ~inwhichA (8) =Q '/*A(8), 2(t) = Q"*x(t), representing the
in which p(t) = Q'/? (z(t) - A(8) s(t)), represents the noise steering matrix and the observation at snapghobth pre-whitened

T exp —T%PH(t)p(t)
p(x|T;0,x,¢) = tljl ( | 7:7-)(t)Q | )

realization at snapshotwith its speckle spatially whitened. by the speckle covariance matg, respectively.
Eqg. (8), multiplied byp(7;a,b), leads to the joint likelihood of From Egs.[(B),[{10) and(12) one can see that the estimates of
x andT: 7(t), Q ands(t) are mutually dependent, and further dependent on
the parameter vectd@. This dependency makes it impossible to ob-
p(z, 7€) =p(x|T;0,x,¢) p(T;0,b) tain a closed-form expression for the LL function concetetiaw.r.t.
T exp(_%pH(t)p(t)) (6)  each of the individual parameterst), Q and 3(.t) aqd ipqepen-
= p(7(t);a,b). dent of other unknown parameters. To cope with this difficuite
t=1 | (1)Q | appeal to the so-callestiepwise numerical concentration method in-
troduced inl[4, 9], and concentrate the LL function iteraltyv This
3. ITERATIVE MAXIMUM LIKELIHOOD ESTIMATION can be agcomplished by assuming at a particular iteratia th
our case(l and7(t) are known and can be used in the computation
In our IMLE algorithm we maximize, similarly as ih [27], thewdi-  of (¢), which is then used in its turn to updafg¢ and7(¢) in the

tional likelihood in Eq.[(b), instead of the intractable miaal like-  next iteration. The sequential updating procedure is rtegeantil
lihood function, /"™ p (x, T; &) dr, which does not yield a closed- convergence.

form expression. In doing so, we actually focus on the texteal- Finally, we address the estimation@f our parameter of inter-
ization T, which is considered as deterministic, rather than the texest, considering the values ¢f and as fixed and known. Thus,

ture process itself. neglecting the constant terms, the conditional LL functio&qg. (7)

Let Lc denote the conditional log-likelihood (LL) function, can be reformulated as:
which arises from Eq[{5), as: T
Le=-% =5 (t) p" ()p(1), (13)
Lec=Inp (x|T;0,x,¢) = *TNIDW*T1H|Q|

7 into which we insert Eq[{12). The resulting expression éntmaxi-

-N Z InT(t) - Z (t) " (t)p(t). mized w.r.t.0, to obtain the estimate & for each iteration, denoted
by @, as:

To begin with, we sebLc/07(t) = 0, the solution of which - 2
provides an estimate of the paramet¢t) when the parametes, 0 = arg min Z (t) HPA(G)(t)m(t)H ’ (14)



in which |-| denotes the Euclidean norm amalz(e)(t) =Iy-

~ ~ ~ -1 -
A(0) (AH(O)A(O)) AH(()), stands for the orthogonal projec-
tion matrix onto the null space of the matt().

Our proposed IMLE algorithm, comprising three steps, can be

summarized as follows:

Step 1 Initialization. At iterations
1,...,T, ande]O) =1In.

Step 2 Calculated"” from Eq. [13) using* ¥ (t) aner(]i), then
59 (1) from Eq. [12) usingd"”, # () andQ'".

Step 3 Used"”, 89 (t) andQ,(f) to updateQ,(]m) from Egs. [ID)
and [T1). Then usé"”, 39 (t) and the updated matri@f,”l) to
find the update(*) (¢) from Eq. [8). Set =i + 1.

0, set7 () =1, t =

SolvingdL,/d7(t) = 0 leads to the expression ft) when all
the remaining unknown parameters are fixed, which is:

%((afol)bJr((afolbe

+4b(z(t) - A(0) (1) Q!

() =1 - (z(t) - A () s(t)) )%) K-distributed noise (17)
1 -1
m( (z(t)-A0)s(t)"Q

(x(t)-A(0)s(t)) + b)7 t-distributed noise

Next we consider the estimation of the texture parameters
andb, denoted byt andb. The latter can be obtained by solving

Repeat Step 2 and Step 3 until a stop criterion (convergence @L;/db = 0, as:

a maximum number of iteration) to obtain the final estimate of
denoted by mie -

The convergence of our algorithm is guaranteed by the fatt th
the value of the objective function in E@.{14) at each stepeither
improve or maintain but cannot worsen [9]. The same holdsfiou
the update 0@ and7(t). In fact, as our simulations will show, the
convergence can be attained by only two iterations. Thescom-
putational cost of our algorithm, which lies mainly in théwmn of
the highly nonlinear optimization problem in Step 2, is oaljew
times of that of the conventional ML estimation (CMLE) aligom,
which, incidentally, corresponds to the case in which thisends
uniform white Gaussian, such that E.](14) degenerates into

R T
Ocuie = arg min {Z I\Pixw)w(t)HQ} : (15)
t=1

4. ITERATIVE MAXIMUM A POSTERIORI ESTIMATION

The IMLE algorithm, presented in Sectioh 3, treats the texas de-
terministic and thereby ignores information of its stétiit proper-
ties. This has the advantage of easier and faster impleti@ntand
is also a natural approach when the texture distributioitli&eun-
known or does not have a closed-form expression, e.g., icetbe of
Weibull-distributed noise. In general cases, howeverh syaproach
is suboptimal. Thus, when the texture distribution is available, we
have the better choice of exploiting information from thettee’s
prior distribution, i.e., employing the maximum a poster{®AP)
approach, in designing our estimation procedure. Thissléadur
IMAPE algorithm that we propose in this section.

The MAP estimator maximizes the joint LL function, denoted
by Lj, which is equal to:

Ly=Inp(x,7;£) =In(p (x|T;0,x,¢) p(T;a,b))

= Lc+ ilnp(T(t);w b)

t=1

Lc-ThnT(a) -Talnb+ (a-1) ilnT(t)

t=1
- M, K-distributed noise (10)
- T
Lc-TInT(a)+Talnb- (a+1) Y In7(t)
o1 . . B
- bt; ol t-distributed noise

T
&%T(t), K-distributed noise
A a
b= Ta o . (18)
—7—, Udistributed noise
2i=1 75y

Meanwhile, calculation 0fLj/da results in:

T

~T¥(a)-TIlnb+ ) In7(t), K-distributed noise
0Ly t=1
da T
~T¥(a)+TIlnb- ) In7(t), t-distributed noise

t=1
19)

in which ¥(-) stands for the digamma function. It is obvious from
Eq. (19) thatv L;/0a = 0 does not allow an analytical expression of
the root. Thusi can only be calculated numerically.

Next, we approach the estimation of the source waveforms
and the speckle covariance matrix. By noticing thdt;/0Q =
0Lc/0Q, and 0L;/0s(t) = OLc/ds(t), it follows immediately
that the same expressions@fands(t) in Egs. [9) and{32), which
we obtained for the IMLE algorithm, are also valid in the cabthe
IMAPE algorithm. Substituting into EqL{9) the new expressof

7(t) in Eq. [I7) leads to the following expression Qr

7 2 (@) - A0)s(1)

(@)~ A@)5(1)"
/ ( (0 - a@s00" (@)

(x(t) - A () s(t)) + (a—N - 1)21;2)§

(i+1) B

+(a-N-1) 6)7 K-distributed noise (20)

a+N+1ZL
B

(@(t) - A(0) (1))
(14 @0 -2 (@)

(x(t) - A(0)s(t)) ), t-distributed noise

((2(t)- A(8)s(t)




which, similar to the expression (i}ml) in Eq. [10) for the IMLE
algorithm, needs to be substituted into EqJ (11) to obtamibrmal-

ized®""" denoted a@f,”l)

Finally, we address the estimation@f Adopting the numerical
concentration method similar to that in Sectidn 3, we alsume
here thal andr are known from the previous iteration of the algo-
rithm. Furthermore, as the estimatesacdndb are only dependent
on T, these are also fixed for each iteration. This allows us tp dro
those terms in the expression of the joint LL functibpin Eq. (18)
that contain only these unknown parameters, and therelmans-t
form it into the same expression as in Hgq.l(13). This mearts&tha
can be obtained, also for the IMAPE algorithm, from EqJ (14).

The iterative estimation procedure of our IMAPE algorithispa
contains three steps, and is summarized as follows:
Step I Initialization. At iteration: = 0, set%<°)(t)7 t=1,...,T as
the absolute values of independent random numbers frontdhe s

dard normal distributidh andc}(o) =Ix.

0 =
Step 2 Calculated"” from Eq. [13) using®(V (t) ande]Z), then
59 (1) from Eq. [12) usingd"”, 7@ (¢) and O'”. Meanwhile,
substitute Eq.[{I8) into EGL{L9). First find numericad from
Eq. [19) using? ¥ (t), thenb® from Eq. [I8) using?"(¢) and
5(0)
a*’.
step3 Used"”, 5 (1), @', 4 andb® to update®’ ™" from
Egs. [20) and{I1). Then ués”, 39(t),a™, b and the updated
matrix Qr(]m) to find the update*) (¢) from Eq. [I7). Set =
i+ 1.

Repeat Step 2 and Step 3 until a stop criterion (convergence
a maximum number of iteration) to obtain the firgal denoted by
OmapE.

The remarks at the end of Sect{dn 3, upon the convergence ¢
computational cost of our IMLE algorithm, also directly &pfo our
IMAPE algorithm.

5. NUMERICAL SIMULATIONS

In our simulations we consider a uniform linear array corsipg
N = 6 omnidirectional sensors with half-wavelength inter-ggns
spacing. Two equally powered narrowband sources impinghen
array with the DOA%; = 30° andfs = 60° relative to the broadside.
The number of statistically independent snapshots is 10. For
K-distributed sensor noise we choose= 1.6 andb = 2; and for
t-distributed sensor noise, = 1.1 andb = 2. The entries of the
speckle covariance matri@ are generated by [291Q7m.n = o2 -
0.9 "eiE(m=n) "y = 1,...,N. The number of Monte-Carlo
trials is100. The signal-to-noise ratio (SNR) is defined as:

ST s
SNR= T () (@)

in which E{7(¢)} is equal toab for a K-distributed noise anty/ (a -
1) for a t-distributed noise (fot > 1) [30].

In Figs.[1 and2, we plot the mean square errors (MSES) of th
estimation o under the SIRP noise versus the SNR by implement
ing our proposed IMLE and IMAPE algorithms, respectivelyr |
Fig.[d the noise is t-distributed, and in Fid. 2, K-distriddit For

(21)

1Unlike the case of the IMLE algorithm, for the IMAPE algorithwhich
involves estimation of the texture parameters, initialigthe texture compo-
nents as all ones will lead to poor performance. We thusalizié here the
texture as random numbers instead.

comparison we also plot, in both figures, the MSEs generayed b
the CMLE algorithm in Eq.[{1l5), and the deterministic CrasR@o
bound (CRB)I[13]. From these figures one can clearly see ligat t
conventional ML algorithm becomes poor under the SIRP naeiseé
both of our algorithms lead to significantly superior penfiance.
These figures also show that only two iterations are suffidi@n
both of our algorithms to have a satisfactory performanceéeims

of a resulting MSE appropriately close to CRB, in asymptotic
SNR cases.

10 T

T
O cMmLE
IMLE, one iteration
O IMLE, two iterations
= = =CRB

10

10

MSE

10

10’ i i i i
SNR [dB]

Fig. 1: MSE vs. SNR under t-distributed noise.
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T

10°

4 i i i i
10 15
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Fig. 2 MSE vs. SNR under K-distributed noise.

6. CONCLUSION

In this paper we addressed the problem of estimating the D&)As
multiple sources under the SIRP noise, by deriving two netiv es
mators belonging respectively to the ML and the MAP familyrO
proposed IMLE and IMAPE algorithms are both based on the step
wise concentration of the LL function w.r.t. signal and moparam-
eters. As our simulations show, both algorithms requirey anfew
ferations to attain convergence, and lead to significastiyerior

‘performance than the conventional approach.
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