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ABSTRACT

Massive MIMO systems, where the base stations are equipped with
hundreds of antenna elements, are an attractive way to attain un-
precedented spectral efficiency in future wireless networks. In the
“classical” massive MIMO setting, the terminals are assumed fully
loaded and a main impairment to the performance comes from the
inter-cell pilot contamination, i.e., interference from terminals in
neighboring cells using the same pilots as in the home cell. How-
ever, when the terminals are active intermittently, it is viable to avoid
inter-cell contamination by pre-allocation of pilots, while same-cell
terminals use random access to select the allocated pilot sequences.
This leads to the problem ofintra-cell pilot contamination. We pro-
pose a framework for random access in massive MIMO networks
and derive new uplink sum rate expressions that take intra-cell pi-
lot collisions, intermittent terminal activity, and interference into ac-
count. We use these expressions to optimize the terminal activation
probability and pilot length.

Index Terms— Massive MIMO, random access, pilot collisions.

1. INTRODUCTION

In massive multiple-input multiple-output (MIMO) systemsthe base
station (BS) has a large number of antennas, which can be usedto
create statistically stable and strong spatial beams to theterminals,
which are in effect hardened communication channels with negligi-
ble small-scale fading. The beamforming depends critically on the
channel estimation carried out at the BS, based on the pilot signal
sent by each of the terminals that intend to communicate withthe BS
in the uplink (UL) or downlink (DL). The channel estimation process
is deteriorated if the transmission of the pilot sequence isinterfered
by a concurrent transmission from a terminal that uses the same pi-
lot sequence. If the concurrent transmission (or several ofthem) are
coming from terminals associated with different BSs, then collision
occurs, which is the well-known pilot contamination problem [1].
The main line of work on massive MIMO, starting from [2], has
assumed that all terminals in a given cell use orthogonal pilots and
analyzed the system performance under inter-cell pilot collisions.

In this paper we reverse this “classical” assumption and assume
that the interference from other cells is negligible, due tonatural
separation or orthogonal resource allocation. In contrast, we notice
that it can happen that two terminals in the same cell choose the same
pilot sequence, leading tointra-cell pilot collisionor intra-cell pilot
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contamination. This is justifiable in scenarios where the terminals
have intermittent traffic [3], such that the number of terminals K
associated to a BS is much larger than the number that is active at
a certain instant. In such a setting, the number of pilot sequences
should closely match the expected number of active terminals rather
than the total number of terminalsK.

This model is relevant in the classical scenario of random access,
in which the terminals are not fully loaded with traffic and there is
uncertainty at the BS regarding which terminals have data tosend at
a given time, such that no scheduling can be applied. In the context
of the emerging 5G scenarios, the model covers the crowded sce-
narios (e.g., stadium) and hotspots [4]. Another emerging scenario
associated with this traffic pattern is where a crowd of sensors occa-
sionally and at random time instants want to transmit data toa com-
mon access point. Typically, this transmission is rather insensitive to
delays, the rates are low, and the uplink power budget is extremely
limited. Examples include massive sensor telemetry in IoT and mas-
sive M2M in 5G, where many sensors take measurements that need
be reported to a fusion center. Note that wireless sensor networks
often rely on multi-hop transmissions and path diversity tocombat
fading towards the sink node. The hardened channels of massive
MIMO obviate the need for multi-hop transmissions and provides
the spatial diversity required to handle massive traffic loads.

In the approach proposed in this paper, the channels are esti-
mated from uplink pilots every time the terminal (sensor) transmits.
A data codeword is sent over multiple time slots. In each timeslot,
each active terminal selects (pseudo-)randomly a pilot from a pre-
determined pilot codebook and, during the rest of the slot, it sends
a part of the data codeword. It can be considered that the terminal
performspilot hoppingover multiple slots and the hopping sequence
can be used to identify the terminal and appropriately mergeand de-
code the parts of its codeword at the BS. This approach is suitable
for low-power terminals (by virtue of the large array gain ofa mas-
sive array) and is scalable with respect to the number of antennas at
the BS. Scalability with respect to the number of terminals is deter-
mined by the channel coherence (e.g., determined by the mobility
and delay spread) and the activity level of the terminals.

While massive MIMO is a fairly mature research topic [5–10],
the existing results on uplink capacity analysis in the literature [7]
assumes full data buffers and are not applicable to the case we study
here. Some preliminary results on the effect of intermittent terminal
activity can be found in [3]. Here, we take this work one step further
and consider a full-blown setup that allows for uncoordinated pilot
use and hence fully uncoordinated operation. The aspects ofran-
dom access in massive MIMO have been recently considered in [11],
where the use of coded access and successive interference cancella-
tion are considered in the context of massive number of antennas.
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Fig. 1. Illustration of the transmission frame. In this example,
four terminals{T1, T2, T3, T4} and two mutually orthogonal pilot
sequences{s1, s2} are considered. Transmission of a codeword
is done over multiple channel fades, which enables averaging over
noise, channel fades, and pilot collision events.

2. RANDOM ACCESS AND SYSTEM MODEL

As described in the introduction, there are important practical sce-
narios where the pilots used in the home cell are not exposed to pi-
lot contamination from other cells. We therefore consider the UL
of a single-cell multi-user massive MIMO system with randomac-
cess from a large set of intermittently active terminals. The BS
is equipped withM antennas and can serve a maximal number of
K terminals. The channel coherence interval isτc symbols long.
A total number ofτp orthogonal sequences are available, denoted
as{s1, s2, . . . , sτp}, where each sequence isτp symbols long and
τp < τc. Moreover, we haveK ≫ τc so the BS does not have the
resources to dedicate pilots to particular terminals. The duration of
a UL time slotτu is smaller or equal to the coherence intervalτc.

The structure of a UL transmission frame is displayed in Fig.1.
In each UL time slot, each terminal decides randomly whetheror
not to transmit. The decision is made independently from theother
terminals and the transmission activation probabilitypa. The termi-
nal selects a pilot sequence uniformly at random from the pool of τp
available pilot sequences. Collisions can thus happen in thepilot do-
main, i.e., among contending terminals that send to the same BS. In
each UL slot, the pilot phase is followed by adata phase, i.e., trans-
mission of a part of a codeword. The whole codeword is sent over
multiple slots. For an asymptotically large number of time slots, the
whole codeword is affected by an asymptotically large number of
channel fading realizations, pilot collisions, and interference events.
Relying on the ergodicity of such a process, we characterizethe per-
formance through a lower bound on the ergodic capacity.

In random access, the BS does not know a priori which terminals
that transmit in a given time slot, or which pilot that a terminal has
selected in that slot. In principle, the terminals could select the pilot
hopping according to a unique, predefined pseudorandom sequence,
calledpilot-hopping sequencehere. The BS then knows in advance
the pilot-hopping sequence of all potential transmitters,such that it
can buffer the information from different slots and run a correlation
decoder across the slots in order to find out which pilot-hopping se-
quences have been activated. Here we do not treat the detailsof such
a procedure and leave it for future work. Instead, we assume that
the BS can determine exactly when the terminals were active.The
main goal of this paper is to establish a performance bound for such
communication systems, and, based on this bound, optimize the acti-
vation probabilitypa and the number of pilot sequencesτp for given
system parameters, i.e., the total number of terminalsK, the uplink
time slot durationτu and the number of BS antennasM .

A block fading model is adopted where a channel realization is
constant across a time slot duration and changes independently from
slot to slot. The channels are narrowband and thus the channel re-

sponse between the BS and terminalj is described by anM×1 chan-
nel vectorhj . The channel realizations are modeled as circularly
symmetric complex Gaussian distributed,hj ∼ CN (0, βjIM ). The
varianceβj reflects the path loss, shadowing, received noise power,
and the effects of transmit power control at the terminal. More
specifically, statistical power control is performed at theterminals so
thatβj fluctuates around a nominal valueβ according toβj = β+v,
wherev is modelled as a uniformly distributed random variable be-
tween and−αβ andαβ, whereα is a constant smaller than 1. The
normalizedM × 1 noise vectorn is modelled asn ∼ CN (0, IM ),
thus the median SNR at each antenna of the BS isρ = β.

We use(·)∗, (·)T , (·)H , E[·] to denote complex conjugation,
transpose, Hermitian transpose, and the expected value of arandom

variable, respectively.Br,n,p = ( nr )pr(1−p)n−r is the probability

mass distribution of a binomial distribution with parameters r, n, p.

3. LOWER BOUND ON THE UPLINK SUM RATE

We present three performance expressions that are lower bounds on
the ergodic sum rate. The first bound,R1, is tight but necessitates
Monte-Carlo simulations to be evaluated. The second bound,R2,
does not require Monte-Carlo simulation but its tightness depends
on the distribution of the parameters{βj}. The third bound,R3,
is relatively loose, but analytically simple and follows the variations
of the ergodic sum rate well. This bound is used in this paper to
optimize the pilot lengthτp and the activation probabilitypa.

The bounds account for channel estimation errors due to the re-
ceiver noise and pilot collisions. In a given time slot, we assume that
the pilot sequence selected by an active terminalk is detected and
the channelhk is estimated using the conventional MMSE estima-
tor [7]. This estimate is used at the BS for maximum ratio combin-
ing (MRC) during the data phase. Notice that MRC is an attractive
scheme in massive MIMO due to its low computational complexity
and near-optimality whenM is large [5].

We denote byC0 the set of colliders to one given terminal0
(i.e., the active terminals that use the same pilot sequence). The
index0 is generic and the results do not depend on it. Due to space
limitations, we describe the methodology used to derive thebounds
without going into the exact details.

Theorem 1. Assuming MRC at the BS, a lower bound on the ergodic
sum rate is

R1 =
K
∑

Ka=1

p(Ka)Ka

Ka−1
∑

c=0

p(c|Ka) Eβ [R1(C0|Ka)] (2)

where

Eβ [R1(C0|Ka)] =
τu − τp

τu
Eβ [log2(1 + SINR1)] (3)

is a lower bound on the ergodic capacity of terminal0 conditioned
on a collider setC0 and Ka active terminals. The expectation is
taken with respect toβj andSINR1 is given by

(M − 1)σ2
ĥ0

β2
0

(M − 1)σ2
ĥ0

∑

j∈C0

β2
j + β2

0(
∑

j∈{0,C0}

σ2
ǫj +

∑

j /∈{0,C0}

βj + 1)
. (4)

Note thatp(c|Ka) = Bc,Ka−1,1/τp is the probability of havingc
colliders to terminal0 and on that there areKa active terminals.
p(Ka) = BKa,K,pa is the probability of havingKa active terminals
out ofK. σ2

ǫj andσ2
ĥ0

are the variance of the channel estimation
error and the channel estimate for terminalj and0.



SINR1 =
τp(M − 1)β2

0

τp(M − 1)
∑

j∈C0
β2
j +

∑

i∈{0,C0}
βi(1 + τp

∑

j∈Ci
βj) + (1 +

∑

i/∈{0,C0}
βi)(1 + τp

∑

i∈{0,C0}
βi)

(1)

Proof. The derivation of (4) follows [7, 10] where the essential in-
gredient is to treat interference as noise and the use of Jensen’s in-
equality on the functionlog2(1+1/x), which allows averaging over
the channel fades of the interferers. This bound is tight thanks to
channel hardening. The prelog termpa in (3) comes by accounting
for the activity probability of terminal0. R1/K is a lower bound on
the ergodic capacity of any given terminal.

Replacing the expression ofσ2
ǫj

andσ2
ĥ0

in (4) with the exact
expressions from [7] we obtain (1) at the top of the page. BoundR1

requires Monte-Carlo simulations, while the bound that is derived
next can be computed numerically without the need for Monte-Carlo
simulations. Using again Jensen’s inequality onlog2(1 + 1/x), a
lower bound is obtained by taking the expected value of the denom-
inator in (1) w.r.t. a) all sets of contaminators to terminal0 , b) the
parameterβ associated to the terminal of interest.

Corollary 1. Assuming MRC at the BS, a lower bound on the er-
godic sum rate is

R2 =
K
∑

Ka=1

p(Ka)Ka

Ka−1
∑

c=0

p(c|Ka)R2(c|Ka) (5)

where

R2(c|Ka) =
τu − τp

τu
log2(1 + SINR2) (6)

andSINR2 is shown in (7) at top of the next page. Note thatp(c|Ka)
andp(Ka) are defined in Theorem 1.

In the expression (7), we have introduced the notationsβ2 =
E[β2], β−1 = E[β−1], β−2 = E[β−2] which are assumed to exist.
The existence of a closed form expression depends on the distribu-
tion model of{βj}.

Next, we present the final sum rate expression used to optimize
the parametersτp andpa. In the new boundR3, the expectation is
taken in the denominator of (7) w.r.t. the distribution of the number
of contaminators and the number of active terminals. The boundR3

is relatively loose as compared toR1 andR2, since it averages over
the number of colliders and active terminals in the interference vari-
ances. However, it follows very well their variations and provides
very good optimization results, as shown in the numerical results.
To evaluate the sum rate, expressionsR1 andR2 are preferable. We
denoteτ o

p andpoa as the value of the parameters optimizingR3.

Corollary 2. Assuming MRC at the BS, a lower bound on the er-
godic sum rate is

R3 = paK
τu − τp

τu
log2(1 + SINR3) (9)

whereSINR3 is given in(8) at the top of the next page.

Proof. In the denominator ofSINR2, we take the expected value
w.r.t. the probability mass of the binomial distributionp(c) =
p(Ka)p(c|Ka). More specifically, we take first the expected value
of c conditioned on a number of active terminalsKa. It is the av-
erage number of contaminators to one given terminal and is equal
to (Ka − 1)/τp. Then, we take the expected value w.r.t.Ka, i.e.
the average number of active terminals out ofK terminals which is
equal topaK. Hence,E(c) = (paK − 1)/τp. In (7), there are no
contributions inc2 as they get cancelled out.

4. SUM RATE SCALING LAWS

Next, we useR3 in (9) in order to obtain scaling laws and heuristic
parameter selection. Consider asymptotic conditions wherepaK ≫
1, M ≫ 1, τu ≫ 1 andτp ≫ 1, which are of interest in massive
MIMO systems with a high user load that can lead to pilot colli-
sions. An additional condition isβ−2 β

2 ≈ 1, which we assume in
the rest of the paper. Keeping the dominant terms in (8),SINR3 is
approximated as:

SINRa =
Mτp

β2 β−2MKpa + β
2
β−2p2aK2 + β β−1paKτp

. (10)

The corresponding sum rate expression gives insights into how the
sum rate depends on the various parameters. Simulations show
that the maximum of the sum rate strongly depends on the term
β
2
β−2p2aK

2 in the denominator and much less significantly on the
other terms. The heuristic solution presented next is obtained based
on this observation.

Definition 1. We defineτh
p andpha as

τh
p =

τu
3

phaK =

√

τuM

3soβ
2
β−2

(11)

wheres0 ≈ 3.92 is the solution oflog(1 + x) = 2 x
1+x

. The associ-
ated sum rate is equal to

Rh
a =

√

τuM

3soβ
2
β−2

2

3
log2

(

1 + SINRh
a

)

. (12)

whereSINRh
a is the value ofSINRa in (10) at(τh

p , p
h
a).

Proof. We look for the expression ofτp andpaK maximizing the
following rate function:

Rh = paK(τu − τp) log2(1 +X), X =
Mτp

β
2
β−2p2aK2

. (13)

The partial derivative ofRh are
{

∂Rh

∂τp
= − log2(1 +X) + (τu − τp)

∂X
∂τp

1
1+X

,
∂Rh

∂pa
= log2(1 +X) + pa

∂X
∂pa

1
1+X

.
(14)

Noting thatpa ∂X
∂pa

= −2X and ∂X
∂τp

= 1
τp
X, we obtain

{

1 + 1+X
X

log(1 +X) = τu
τp

,
1+X
X

log(1 +X) = 2.
(15)

From those equations, we obtain (11).

Based on this heuristic parameter selection, we obtain the fol-
lowing scaling behaviors.

Lemma 1. Assumingτu ≫ 1, τp ≫ 1, M ≫ 1 andpaK ≫ 1, the
following asymptotic results hold forτh

p andphaK in (11):

1. M ≫ τu: SINRh
a scales as

√

τu/M andRh
a scales asτu.

2. M ≪ τu: SINRh
a scales as

√

M/τu andRh
a scales asM .

3. M ∼ τu: SINRh
a tends to a constant value andRh

a scales as√
τuM .



SINR2=
τp[M−1]

τp[M−1]cβ2 β−2+β−1[1+τpcβ̄]+cβ
[

β−2+τpβ−1+τpβ−2 β(c−1)
]

+[1+(Ka−c−1)β]
[

β−2+τpβ−1+τpcβ β−2

] (7)

SINR3=
τp[M−1]

β−2+[M−1][paK−1]β2 β−2+2[paK−1]β β−2[1−β(1−1/τp)]+β
2
β−2p2aK[K−1]+

[

1+(paK−1)β β−1

]

[1+τp]
(8)

Proof. Substituting the expressions (11) in (10) leads to those
asymptotic results.

The significance of the heuristic solution is two-fold. First, this
solution gives a sum rate that is close to the optimal sum rate, which
will be illustrated in Section 5. Second, it provides quasi-optimal
variation laws in all asymptotic regimes. In simulations, adepen-
dence ofτ o

p onM can be observed but it is weak. Furthermore, it is
natural to model the dependence ofτ o

p on τu only and not onM to
comply with the constraintτ o

p ≤ τu. Examining the laws of varia-
tionsτp ∼ O(τa

u ) andpaK ∼ O(Mbτ c
u), one can easily show that

the choicea = 1, b = c = 1/2 leads to the best scaling laws.
Whenτu is the smaller quantity, the average number of active

terminals and the sum rate is limited byτu. WhenM is the smaller
quantity, their number is limited byM . WhenM andτu are com-
parable, the optimal number of pilot sequences and average number
of active terminals becomes comparable as well. In the first two
asymptotic modes of Lemma 1, the rate of each terminal becomes
asymptotically small but the average number of active terminals that
the system can accommodate grows faster. In the third mode, the
rate of each terminal becomes constant while the average number of
active terminals increases. The quality of service requirement should
dictate which values ofM andτu should be selected. Note that, the
system functions in regimes where the number of average number of
active terminals is of same order of number of antennas.

5. NUMERICAL RESULTS

In this section, we illustrate the behavior of the 3 performance
bounds as well as the optimal and heuristic solutions. The SNR
ρ = β is fixed to 10dB. The variation parameter ofβj aroundβ is
set toα = 0.25. The total number of terminalsK is equal to 800.

Fig. 2 displays the variations of(τ o
p , p

o
aK) and(τh

p , p
h
aK) as a

function ofτu. The number of antennas isM = 100 andM = 400.
We can see thatτ o

p andτh
p follow a linear variation w.r.t.τu, but the

linear coefficient slightly depends on the value ofM for τ o
p . poaK

andphaK both scales as
√
τu. ForM = 100, the average number of

active terminals is limited by the number of antennas and is smaller
thanτ o

p . WhenM andτu are comparable, the optimal regime in-
volves a comparable number of active terminals and number ofpilot
sequences. Particularly for large values ofM , the offset between
optimal and heuristic solutions becomes large, while the sum rate
exhibits a small difference as shown in Fig. 3. This comes from the
fact that the region around the optimal solution is quite flatso that
such an offset does not have a significant impact.

In Fig. 3, the performance boundsR1, R2 andR3 are displayed
for M = 100 andM = 400. BoundR1 andR2 are almost super-
posed forM = 100 while a small gap is visible forM = 400. A
large gap betweenR3 and the other bounds can be observed. This
gap comes from the large variations ofSINR2 in (7) w.r.t. the colli-
sion events that are averaged out in the denominator ofSINR2 to get
R3. At last, looking at boundR1, we see that the heuristic solution
exhibits excellent performance.
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6. CONCLUSION

We have considered a communication scenario with massive MIMO
and intermittent terminal activity. In such a setting it is infeasible to
allocate orthogonal pilots within a cell and the terminals apply ran-
dom access to a small common pilot set. On the other hand, the pilot
sets allocated to the neighboring sets are orthogonal. Thisgives a
rise to operation that is free from the usual inter-cell pilot contami-
nation and instead leads to intra-cell pilot contaminationthat occurs
as a result of a collision of a random access process. We have pro-
vided performance expressions as well as optimization tools that are
particularly important for a system where the activity of the termi-
nals and the number of pilots have to obey certain statistical rules.
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