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ABSTRACT act as independent learners and perform the computations by

This work presents a distributed algorithm for nonlinearthemselves' Finally, the task of interest is consideredeto b

adaptive learning. In particular, a set of nodes obtain me%qommon or similar across the nodes and, to that direction,

surements, sequentially one per time step, which are celat hey cooper_a?e with each other. Cooperat_ion h_a_s been proved
via a nonlinear function; their goal is to collectively mimize 0 be beneficial to the leaming process since it improves the

a cost function by employing a diffusion based Kernel Leas{earnlng performance.]4].

Mean Squares (KLMS). The algorithm follows the Adapt  This paper is concerned with the problem of distributed
Then Combine mode of cooperation. Moreover, the theore®daptive learning in Reproducing Kernel Hilbert spaces
ical properties of the algorithm are studied and it is provedRHKS). To be more specific, we consider an ad—hoc net-
that under certain assumptions the algorithm suffers a no ravork the nodes of which obtain input/output measurements,
gret bound. Finally, comparative experiments verify that t Sequentially, one per time step, related viaanlinear un-

proposed scheme outperforms other variants of the LMS. known function. To cope with this nonlinearity we resort to
the family of the kernel-based algorithms for nonlinearmada

Index Terms— Adaptive Networks, Diffusion, RKHS, tive filtering. In particular, the proposed algorithm bedgrto

Kernel LMS. the Kernel LMS (KLMS) algorithmic family and follows the
1. INTRODUCTION diffusion rationale for cooperation among the nodes.
In recent years, the interest in the topicdistributed learn- Related Work: Several studies for distributed adaptive

ing and inference has grown rapidly. This is mainly due to€stimation of linear syster_ns have been p_roposed in thaditer
the constantly increasing requirements for memory and confure. These include diffusion based algorithms, €.gLJ[5].6
putational resources, demanded by modern applications, §nsensus ones, e.c.l [8, 9], as well as algorithms for mul-
as to cope with the huge amount of available data. Theddask learning[[10, 11]. The problem of non-linear adaptiv
data “spring” from several sources/applications, suctoas-c  €Stimation in RKHS has been studied, elg.| [12/ 18, 14, 15]. A
munication, imaging, medical platforms as well as social/€cent study, which considers the problem of nonlinear adap
networking sites, e.g.[]1]. A natural way, to deal with thetive f||te_r|ng in distributed n_etworks, can be found [n[16].
large number of data, which need to be processed, is to splli’®€ major differences of this paper with our work are sum-
the problem into subproblems and resort to distributed-opefMarized in the sequel. First, the authors consider a prede-
ations [2,3]. Thus, the development of algorithms dealin%ned dictionary, which essentially makes the dimension of
with such scenarios, where the data are not available in-a sif1® Problem finite and equal to the number of elements of

gle location but are instead spread out over multiple locatj  the dictionary. On the contrary, here, we consider the gen-
becomes essential. eral case, where the dictionary is allowed to grow as time in-

An important application within the distributed learning '€ases, and we present a more gene_ral fqrm of the algorllthm.
context is the one oflistributed adaptive learningf@]. In Further_more, here, we §tudy for the first time the theorktica
a nutshell, this problem considers a decentralized networR™OPerties of the Diffusion Kernel LMS (DKLMS) and we
consisting of nodes interested in performing a specific, taski€/ve regret bounds for the proposed scheme.
which can be, for instance, parameter estimation, claasific ~ Contributions: In this paper, we propose a novel nonlin-
tion, etc. The nodes constantly obtain new measurements aedr distributed algorithm for adaptive learning. In partie,
they continuously adapt and learn; this gives them the capave propose a KLMS algorithm, which follows the diffusion
bility to track and adapt to changes in the environment. Omationale. The Adapt Then Combine mode of cooperation
top of that, it is assumed that there is no central node whicamong the nodes is followed. To be more specific, we assume
could perform all the necessary operations and, so, thesnodthat the nodes obtain measurements, which arrive seqligntia
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i), =) The cost function to be minimized in that case can be written

as follows:

J(w) =Y E{(dr(n) — w"ms(n))

da(n), @y(n) ds(n), ws(n) keN

di(n), @1(n)

2

}- (4)

The cost[(#) includes information coming from the whole net-
work and in order to minimize it, global knowledge is re-
Fig. 1. An ad—hoc Network quired. Nevertheless, in distributed and decentralizachle
ing each node can only interact and exchange information
) ) ] _with its neighborhood which will be denoted by, V& <
and are related via a nonlinear system. The goal is the My, A fully distributed algorithm, which can be employed for

imization of the expected value of the networkwise discrepiye estimation ofw. is the diffusion LMS (see for example
ancy between the desired output and.the estimated one. '} 71y, The starting point of this scheme is a modification of
that direction, at each step, the nodes: a) perform a local upng steepest-descent method, which is properly reforeullat
date step exploiting their most recent measurements, b) €@y, 55 g enable distributed operations and to avoid any globa

operate w_ith each pther, ir_1 order to enhance their eStimateéomputation (the interested reader is referredto [4]). dn a
Comparative experiments illustrate that the proposedmsehe dition, the instantaneous approximation is adopted, aiiogr

outperforms other LMS variants and the theoretical progert , \yhich the statistical values are substituted by thetzin-

of the proposed scheme are discussed. neous ones, e.gl, [1.7]. Each ndde A updates the estimate

Notation: Lowercase and uppercase boldfaced letterg,, ;) at each time step according to the following iterative
stand for vectors and matrices respectively. The symbal.heme:

R stands for the set of real numbers aNdfor the set of

nc_)nnegative integgrs.H dgnotes_an infinite dimensional wh(n) = wi(n — 1) + prer(n)zr(n) (5)
Hilbert space equipped with an inner product denoted by ,

(fi, f2), Yf1, f» € H; the induced norm is given by wi(n) = Z agjwy(n), (6)
Il = /{f, f). Given a setS, with the term|S| we de- 1Nk

note its cardinality.

where =d —wlm-1 andyy is the ste
2. PROBLEM STATEMENT ex(n) := dig(n) — wy (n — 1)@k (n) andpy p

size. Furthermoreg;,; stand for combination coefficients,

We consider an ad—hoc network illustrated in . 1, c01=1sistWhICh have the following properties,; = 0, I ¢ N, ax, >

ing of K nodes. Each nodé&, € N := {1,..., K}, at each 0, L € N, 2 e ak,i = 1. Acommon choice, among others,

. L for choosing these coefficients is the Metropolis rule, inalih
discrete time instance € N, has accessto ascalafn) € R . 9 . P
m . . the weights equal to:
and a vector,(n) € R™, which are related via

SR S— ifl € N, and | # k
max{ [N} [IN; [}’ ! ks

di(n) = *(@x(n)) + ve(n), (1) Gt = 1 S, 1=
0, otherwise.

wheref° : R™ — R is an unknown yet common to all the o )
nodes function belonging to the Hilbert spa¢eand the term  The intuition behind the scheme presentedn (8), (6), can be
v, (n) stands for the additive noise process. The overall goaiummarized as follows. In the first step, nddepdates its

is the estimation of a functiorf, which minimizes the cost: ~ €stimate using an LMS based update (adaptation step) ex-
ploiting local information. In the sequet, cooperates with

J(f) = Z E{(dp(n) — f(iL‘k(n)))Q}, (2) its neighborhood by combining their intermediate estirnate
heN to obtain its updated estimatey, (n). The weights;, ; assign
a non—negative weight to the estimates received by the neigh
in a distributed and collaborativefashion; that is the nodes borhood, whereas they are equa| to zero for the rest of the
want to minimize the cosE[2) by relying solely on local pro- nodes. Hence, each nodggregateshe information received
cessing as well as interactions with their neighbors. by the neighborhood. This scheme is also known as Adapt
2 1. Linear Diffusion LMS Then Combine (ATC) diffusion strategy.

In order to help the reader grasp the concept of the diffusiof-2: Centralized Kemel LMS
LMS, in this section we describe the linear scenario, ite2, t 2 5 1 preliminaries

one where the function to be estimated is a vectorasay
R™, and [1) essentially becomes: Now, let us provide with a few elementary properties of the

RKHS, which will be used in the sequel. Throughout this
d(n) = wlxy(n) + v (n). (3) section the node subscript will be suppressed since we will



describe properties of centralized learning. We consideakh in [@)-(6) and we will employ the non-linear transformation
Hilbert spaceH comprising functions defined di"; thatis  on the input (similarly to[(8),[(9)). The resulting recunsio
f:R™— R. The functions : R™ xR™ — Rwillbecalled V& e Nis:

a reproducing kernel of if the following properties hold:

e (..) bel frn = fem—1 + prex(n)s(@i(n), ) (12)
e Y € R™ the functionx(x, -) belongs toH.

fem =Y akifin: (13)
e Yz € R™, f € H,itholds thatf(x) = (f, k(x,)). lEN;,

If these properties hold the# is called a Reproducing Kernel wheree;,(n) is defined similarly to[(8). Despite the fact that
Hilbert Space[18, 19]. A typical example is the Gaussian kerthis seems a trivial generalization &1 (5)] (6), as we have al
nel with definition:x(x;, x;) = exp(—3|lx;—=;||?), 3 > 0. ready discussed previously, one cannot resort directliito t
A very important property, which will be exploited in the se- form of iterations, since access to the transformed data may
quel states that points in the RKHS can be written as followsnot be possible.
Exploiting the lemma, which will be presented shortly,
- we can bypass the aforementioned problem, by deriving the
f= 2%%;-;(3@(71), ) () inner product between the obtained function and the trans-
"= formed input vector in a closed form. Before we proceed,
whereq,, C R. Finally, the reproducing kernel is continuous, let us introduce some notation. The networkwise function at

symmetric and positive-definite. time n is denoted byin = [fin,---s frn]T € H, where
2.2.2. Kernel LMS the Cartesian producd := H x ... x H. Similarly, we
~————

K times

Kernel LMS, which was originally proposed in [20], is a gen- define the networkwise input(z(n), -) = [x(21(n),-),. ..
eralization of the original LMS algorithm, which utilizebe . T IR T
x(n), )]t € Handg(n) = [puie1(n),...,uxex(n)]* €

transformed input, i.ex(2(n),-), at each iteration step. Put pm * Finajly we gather the combination coefficients to the
in mathematical terms, the recursion of the KLMS is givenK « K matrix A, the k, I-th entry of which contains,
by: It can be readily shown thaE{14)-{13) can be written for the
whole network in the following compact form:
e(n) = d(n) = (fu-1. K(x(n),-)) ®) g comp

fu = Jua + peln)sta(n), ) © 1,=A(

foo +eEm. ). 14
Since the spac# may be infinite dimensional, it may be dif-

ficult to have direct access to the transformed input data and )
the functionf,,. However, if we go back td{1) and forget the Lemma 1 Assume thaf, o = 0, vk € N. Then equation
distributed aspect for now, we can see that the quantity-of in{14) can be equivalently written:

terest isf (x(n)), which can be computed exploiting (7). In n

particular, following s?milar steps as_iE[JZO] it can be show [, = Z A" g (DR (x (i), ). (15)
that the KLMS recursion can be equivalently written: -1

ol , Hence, the vector of responsésn) := [di(n), ..., dx (n)]"
e(n) =d(n) — Y _ e(i)r(z(n), (i) (10) , at time instance, is given byd(n) = f (k(z(n),")) =
L D AMT g (i)R(z (i), z(n)) u
fa(@(n)) = p > e(i)r(x(n), o(i)). (11)  The proof, which follows mathematical induction, is omitte
i=1 due to lack of space and will be presented elsewhere.

Note that this reformulation is very convenient as it conesut Remark 1 Coefficient Reduction over Time:If we take
the response of the estimated function to the input, withou§ closer look on(@@) it can be seen that the number of
any need to estimate the function itself. coefficients one has to store as well as the required num-
3. THE DIFFUSION KERNEL LMS ber of operations grow as time evolves. Several sophisti-
cated techniques, which set most of the coefficients to zero
In this section we describe the proposed algorithm togethexhile avoiding performance degradation, have been pro-
with its theoretical properties. Recall the problem under-c  posed in the literature, e.g.[ [21]. As it will become ap-
sideration, discussed in Sectidn 2. Our goal, here, is trgbri parent in the simulations section, here we adopt a simple
together the tools described in Sectigng £2.1] 2.2 and deriveethod; that is, we apply a buffer of siZe In that case,
a Kernel based LMS algorithm suitable for distributed op-we store theL most recent coefficients anfd) becomes
eration. Our starting point will be the ATC-LMS described f = >"" . 1.1 A" Tg(i)r(z(i), ).
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Fig. 2. Average MSE for the first experiment Fig. 3. Average MSE for the second experiment

Remark 2 Coefficient Reduction over Spaceit can be
shown (se€[]4, Appendix E]) that tiel—th entry of the—th 10 nodes and a distributed version of the problem studied in

power of the matrix A equals to: [22,123], for which the input and the output are related via:
[Az]kl = Zﬁ Zi R nyil Qfjy Akjy - - - Q11+ From the .
last relation it is not difficult to obtain that the nodeexploits —

P ()= 20D 80), den) = (n) + vr(n),

information from nodes which do not belong to its neighor- Yrim
hood. However, this does not break the rules of decentihlize

learning, since it also holds th&t],,; will be nonzero iff the wherewy,(n) is Gaussian with varianced—3 and the input
distance, measured in hops, betwéerl is smaller or equal zx(n) is also Gaussian with variangely,, wherey, €
than: hops. Hence, the nodes can send their input vectorﬁ)_& 1),Vk € N with respect to the Uniform distribution.

to their neighbors, which in turn will forward them to their yo compare the proposed algorithm with: a) the linear dif-
neighbors and so on. This increases the network load ang,gion s, b) the non—cooperative KLMS | i.e., the KLMS
one can avoid it by setting some of the weights to zero, aghere the nodes do not cooperate with each other. For the

discussed on Remark 1. A simple strategy is to set o zero §llgrne| hased algorithms we employ the Gaussian Kernel with
the coefficients that belong to nodes which don't belong tQ, _ | | 3nd we choose a step—size equal te 0.6 for all the

T Il+g2(n—1)

the neighborhood. algorithms. Furthermore, the combination weights are ehos
with respect to the Metropolis rule, the buffer sizeat each
3.1. Theoretical Properties node equals ta00 and we only take into consideration infor-

mation that is coming from the single hop neighbors. Finally
In the sequel, we will present the regret bound of the prothe adopted performance metric is the average MSE, with def-
posed scheme and in particular we will show that this growsnition M SE(n) = 1/K S hen(de(n) = fon(zr(n)). Asit
sublinearly with the time. can be seen from Fi@] 2 the KDLMS outperforms the other

] . LMS variants, since it converges faster to a lower error floor

Theorem 1 Under certain assumptions about the boundnesgompared to them. In the second experiment the setup is sim-
of the input, the step-size and the combination weights, thg,r 1o the previous one albeit here we increase the variance
networkwise regret is bounded by of the noise, which now equals 10—'. Fig.[d illustrates that

the enhanced performance of the KDLMS, compared to the

i Z (i (Froio1) = Jus(9) < vWN +6,¥g € H (16) other algorithms, is retained in this scenario as well.
i=1 keN
5. CONCLUSIONS AND FUTURE RESEARCH
whereJi . (f) = 3(dx(n)— f(x(n)))? andy, § are positive
constants. B |n this paper, a novel Kernel based Diffusion LMS, suitable
) ) ) for non-linear distributed adaptive filtering was propased
Proof: The proof is omitted due to lack of space and wil beThe theoretical properties of the algorithm were discussed
presented elsewhere. and the performance of the scheme was tested against other
4. SIMULATIONS adaptive strategies. Future research focuses on acaederat
the convergence speed by utilizing more data per iteraéisn,
In this section, the performance of the proposed algorithmvell as investigating sophisticated strategies, whichuced
is validated within the distributed nonlinear adaptiveefilt the number of coefficients by storing the most “informative”
ing framework. We consider a network comprisihg =  ones.
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