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ABSTRACT

We address the problem of reference-based compressed sensing: re-

construct a sparse signal from few linear measurements using as

prior information a reference signal, a signal similar to the signal

we want to reconstruct. Access to reference signals arises in ap-

plications such as medical imaging, e.g., through prior images of

the same patient, and compressive video, where previously recon-

structed frames can be used as reference. Our goal is to use the

reference signal to reduce the number of required measurements for

reconstruction. We achieve this via a reweighted ℓ1-ℓ1 minimiza-

tion scheme that updates its weights based on a sample complex-

ity bound. The scheme is simple, intuitive and, as our experiments

show, outperforms prior algorithms, including reweighted ℓ1 mini-

mization, ℓ1-ℓ1 minimization, and modified CS.

Index Terms— Compressed sensing, reweighted ℓ1 minimiza-

tion, prior information, sample complexity.

1. INTRODUCTION

Compressed Sensing allows acquiring signals at rates much lower

than the Nyquist rate [1–3]. Applying it requires three elements:

a basis in which the signals are sparse, an acquisition matrix with

specific properties, and a nonlinear procedure to reconstruct signals

from their measurements, e.g., ℓ1-norm minimization. After the ini-

tial work [1,2], much research focused on reducing acquisition rates

even further, by leveraging more structured signal information [4–8],

using prior information [9–17], or improving reconstruction algo-

rithms, e.g., via reweighting schemes [18–22].

In this paper, we propose a reweighted scheme for a reconstruc-

tion problem that uses as prior knowledge a reference signal. Specif-

ically, let x⋆ ∈ R
n be a sparse signal of which we have m linear

measurements y = Ax⋆, where A ∈ R
m×n is the measurement

matrix (or its product with a sparsifying basis). Assume we know

a reference signal x ∈ R
n, close to x⋆ in the ℓ1-norm sense, i.e.,

‖x⋆ − x‖1 is assumed small. Using the measurements y and refer-

ence x, x⋆ can be reconstructed via weighted ℓ1-ℓ1 minimization:

minimize
x

∥∥d ◦ x
∥∥
1
+

∥∥w ◦ (x− x)
∥∥
1

subject to Ax = y ,

(1)

where ◦ denotes the entrywise product between two vectors, and

d, w ∈ R
n
+ have nonnegative entries. Problem (1) generalizes

weighted ℓ1-norm minimization [10,23], in which w is the zero vec-

tor, and also ℓ1-ℓ1 minimization [13,14], where both d and w are the
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vector of ones. Given that d and w are free parameters, they can be

chosen in order to minimize the number of measurements required

for reconstruction. In general, however, their optimal value depends

on x⋆ and is therefore unknown. To address this uncertainty, we

consider a reweighting scheme: starting from arbitrary d1 and w1,

we create a sequence {xk}Kk=1 such that, for k = 1, . . . ,K,

xk ∈ argmin
x

∥∥dk ◦ x
∥∥
1
+

∥∥wk ◦ (x− x)
∥∥
1

s.t. Ax = y ,

(2)

where dk and wk are functions of xk−1, the vector reconstructed at

the previous iteration. If dk and wk are well-chosen, then the number

of measurements to recover x⋆ should decrease as we iterate (2). Our

goal is to devise strategies to compute dk and wk at each iteration.

1.1. Overview and contributions

Our approach consists of two steps:

1) Obtaining a bound on the number of measurements m above

which (1) is guaranteed to reconstruct x⋆; the bound depends

on x⋆ and is therefore uncomputable.

2) Computing dk and wk at iteration k such that an approxima-

tion of the bound of step 1) is minimized; the approximation

results from replacing the unknown signal x⋆ by its current

best estimate, xk−1.

Our result establishing the bound in step 1) says that O( ζ

η2 log n)

measurements suffice to reconstruct x⋆ via (1), where ζ and η
are functions of the weights d and w. We show that if d and w
are chosen properly, ζ/η2 can be made arbitrarily small, in which

case the bound, and thus the number of required measurements,

becomes a constant independent of n. This contrasts with known

bounds for other problems, e.g., basis pursuit [7], weighted ℓ1
minimization [23], or simple ℓ1-ℓ1 minimization [13], which re-

quire O(c log n) measurements with c having the same order of

magnitude as the sparsity of x⋆. We use the above property in

the design of our reweighting scheme in step 2): at each itera-

tion, w and d are computed so that ζ/η2 is minimized. To our

knowledge, this approach to reweighting is the first one to use a

sample complexity bound to update its weights. Although the bound

looks complex [see (5)], the resulting scheme is simple and intu-

itive (see Algorithm 1). Furthermore, our experiments show that it

outperforms prior reweighting schemes, including reweighted ℓ1-

minimization [18], and static schemes that use prior information,

such as ℓ1-ℓ1 minimization [13] and modified-CS [9].

1.2. Related Work

Reweighting has been applied in least squares problems as far back

as [24,25]. For sparse reconstruction problems, [18] proposed a sim-



ple algorithm known as reweighted ℓ1 minimization: each weight di
is updated at iteration k as dk+1

i = 1/(|xk
i | + ǫ), where ǫ > 0

and xk is a solution of weighted ℓ1 minimization with weights dk,

i.e., (2) with wk = 0n (the zero vector). That algorithm and varia-

tions are analyzed in [26, 27]. Other reweighting schemes for sparse

reconstruction include [19, 28], which solve simpler problems per

iteration, namely least squares problems, and are therefore com-

putationally more efficient. Regarding sparse reconstruction using

prior information, [21, 22] proposed a reweighting algorithm for a

slight variation of problem (1) in the context of MRI reconstruc-

tion. There, the weights are updated as dk+1

i = 1/(|xk
i | + 1) and

wk+1

i = 1/(|xk
i − xi| + 1), and the resulting scheme is shown to

significantly improve MRI reconstruction.

2. REWEIGHTED ℓ1-ℓ1 MINIMIZATION

2.1. Step 1: Bound on the number of measurements

The number of measurements that (1) requires to reconstruct x⋆ de-

pends on several problem parameters, namely on how the vectors x⋆,

x, d, and w interact. To capture those interactions, we define the sets

I =
{
i : x⋆

i 6= 0
}

J =
{
i : x⋆

i 6= xi

}
K =

{
i : di 6= wi

}

I+ =
{
i : x⋆

i > 0
}

J+ =
{
i : x⋆

i > xi

}
K+ =

{
i : di > wi

}

I− =
{
i : x⋆

i < 0
}

J− =
{
i : x⋆

i < xi

}
K− =

{
i : di < wi

}
.

In words, I , J , and K are the supports of x⋆, x⋆ −x, and d−w; the

subscript + (resp. −) restricts these supports to their positive (resp.

negative) components. We represent set intersections as products:

e.g., IJ denotes I ∩ J . Using the above sets, we define [13]

h :=
∣∣I+J+

∣∣+
∣∣I−J−

∣∣ h :=
∣∣I+J−

∣∣+
∣∣I−J+

∣∣ , (3)

which are independent from d and w. As shown in [13], these pa-

rameters measure the quality of x. In particular, ℓ1-ℓ1 minimization,

i.e., (1) with d = w = 1n, requires O(h log n) measurements to

reconstruct x⋆. To present our result, we need to define three addi-

tional parameters, all of which depend on d and w:

θ :=
∣∣IJcK+

∣∣+
∣∣IcJK−

∣∣ (4a)

ζ :=
∑

i∈IJ

[
di sg(x⋆

i ) + wi sg(x⋆
i − xi)

]2
+

∑

i∈Q+

(di − wi)
2

(4b)

η := min
{
min
i∈Q

−

|wi − di| , min
i∈Q∪ IcJc

di + wi

}
, (4c)

where sg(·) denotes the sign of a number, Q+ := IJcK+∪IcJK−,

Q− := IJcK− ∪ IcJK+, and Q := Q+ ∪ Q−. The role played

by h in ℓ1-ℓ1 minimization will now be played by the ratio ζ/η2 in

weighted ℓ1-ℓ1 minimization. In contrast with h, however, ζ/η2 can

be manipulated because ζ and η depend on d and w.

Theorem 1. Let x⋆ ∈ R
n be the vector to reconstruct and x ∈ R

n

the prior information. Let y = Ax⋆, where the entries of A ∈ R
m×n

are drawn i.i.d. from the Gaussian distribution with zero mean and

variance 1/m. Assume d and w have positive entries, ζ > 0, η > 0,

and also that there exist two (different) indices i and j such that

0 6= x⋆
i 6= xi and x⋆

j = xj = 0.1 If

m ≥ 2
ζ

η2
log

( n

h+ h

)
+

7

5

(
h+ h

)
+ θ + 1 , (5)

1These assumptions can be stated equivalently as IJ 6= ∅ and IcJc 6= ∅,
and specify a minimum quality certificate for the prior information x. On the
other hand, the assumptions ζ, η > 0 are necessary to make (5) well-defined.

Table 1. Sample complexity of alternative reconstruction schemes.

Prob. Objective Function Bound Ref.

w-ℓ1-ℓ1 ‖d ◦ x‖1 + ‖w ◦ (x− x)‖1 O
(

2 ζ

η2 log n
)

here

ℓ1-ℓ1 ‖x‖1 + ‖x− x‖1 O
(

2h log n
)

[13]

Mod-CS
∑

i∈Ĩc
|xi| O

(

2 b
C2 log n

)

[23]

BP ‖x‖1 O
(

2s log n
)

[7]

then, with probability at least 1− exp
(
− 1

2
(m−√

m)2
)
, x⋆ is the

unique solution of (1).

This theorem, whose proof2 uses the concept of Gaussian

width [7, 29], generalizes Theorem 1 in [13], which established

a similar bound for the particular case d = w = 1n.

We mentioned before that ζ/η2 can be made arbitrarily small.3

To see why, suppose d and w were selected so that Q+ = ∅. Then,

according to (4b)-(4c), the set over which ζ is defined, IJ , does not

intersect any of the sets over which η is defined, i.e., IJ ∩ Q− =
IJ ∩ (Q− ∪ IcJc) = ∅. In other words, the set of components of d
and w that contribute to ζ are independent from the components that

contribute to η. Therefore, ζ/η2 can be arbitrarily small. As shown

next, this is not the case of alternative reconstruction problems.

Comparison with other reconstruction problems. Table 1

compares our bound for Weighted ℓ1-ℓ1 minimization (w-ℓ1-ℓ1)

with bounds obtained using similar tools for other methods: ℓ1-ℓ1
minimization [13], Modified-CS (Mod-CS) [9], and Basis Pursuit

(BP) [30]. These problems have the same format as (1), but their

objective functions are as shown in the table. In Mod-CS, Ĩ is an es-

timate of the support I of x⋆ and is used as prior information. Prior

information in ℓ1-ℓ1 is, as in our case, a reference signal x. Only BP

uses no prior information. Table 1 also shows where the displayed

bounds were computed. In the bound for Mod-CS, 0 < C < 1, and

b is the sum of false negatives and false positives in the estimation

of I , i.e., b := |I ∩ Ĩc| + |Ic ∩ Ĩ|. Thus, for ℓ1-ℓ1 and Mod-CS,

h and b measure the quality of the prior information: the better the

quality, the smaller h and b. This means the number of measure-

ments required by ℓ1-ℓ1 and Mod-CS is determined by the quality of

the prior information. For w-ℓ1-ℓ1 minimization, however, the ratio

ζ/η2 can be arbitrarily small, independently of the quality of the

prior information (of course, it has to have a “minimum quality” to

satisfy the assumptions of Theorem 1; see footnote 1). Making ζ/η2

small, however, requires selecting the weights d and w properly.

Our reweighting scheme, presented next, attempts to do exactly that.

2.2. Step 2: reweighting scheme

Algorithm 1 describes the method we propose. Its parameters are

rmin and rmax which, as we will see, determine the amount by which

the bound in (5) is minimized, ǫI , ǫJ > 0, which are used in the es-

timation of the sets I and J , and the number of iterations K. At

iteration k, the algorithm obtains an estimate xk of x⋆ by solving

weighted ℓ1-ℓ1 minimization with weights dk and wk (step 2). Note

that because d and w are initialized as 1n, the first iteration is simply

2http://www.ee.ucl.ac.uk/~jmota/reL1L1.pdf
3Note that the first term of (5) is dominant for sparse signals. In particular,

(7/5)(h+h)+θ ≤ (17/5)s+s, where s (resp. s) is the sparsity of x⋆ (resp.

x). This follows from h+h = |IJ | ≤ |I| = s and θ ≤ |I|+ |J | ≤ 2s+ s.



Algorithm 1 Reweighted ℓ1-ℓ1 minimization

Input: A ∈ R
m×n, y ∈ R

m, x ∈ R
n (prior information)

Parameters: 0 < rmin < rmax, ǫI , ǫJ > 0, K (# iterations)

Initialization: d1 = w1 = 1n, k = 1

1: for k = 1, . . . ,K do

2: Obtain xk by solving

minimize
x

∥∥dk ◦ x
∥∥
1
+

∥∥wk ◦
(
x− x

)∥∥
1

subject to Ax = y

3: Set Ik =
{
i : |xk

i | > ǫI
}

and Jk =
{
i : |xk

i − xi| > ǫJ
}

4: for i = 1, . . . , n do

5: if i ∈ IkJk then dk+1

i = wk+1

i = rmin

6: else if i ∈ IkJc,k then dk+1

i = rmin, wk+1

i = rmax

7: else if i ∈ Ic,kJk then dk+1

i = rmax, wk+1

i = rmin

8: else if i ∈ Ic,kJc,k then dk+1

i = wk+1

i = rmax

9: end if

10: end for

11: end for

ℓ1-ℓ1 minimization [13]. Then, using xk, the sets I and J are esti-

mated via thresholding in step 3. Recall that I and J depend on the

unknown vector x⋆; so, we estimate them by using our current best

guess: xk.4 The weights d and w for the next iteration are then com-

puted in steps 4-10. Note that they take only two values: rmax and

rmin. This is a consequence of the way we derive the algorithm, as

explained later in the section. Although Algorithm 1 is derived with

the goal of minimizing the bound in Theorem 1, the way it updates

the weights is actually quite intuitive.

Intuition. Consider, for example, i ∈ IkJk, i.e., it is estimated

that xi 6= x⋆
i 6= 0 (step 5). The algorithm sets the corresponding

weights di and wi to a small value rmin, which means that x⋆
i will

be estimated solely from the measurements y = Ax⋆. If, on the

other hand, i ∈ IkJc,k, i.e., it is estimated that xi = x⋆
i 6= 0, the

algorithm sets di to a small value, to avoid penalizing large values

for xk
i , and sets wi to a large value, penalizing deviations from an

apparently accurate component of x. Similarly, if i ∈ Ic,kJk, i.e.,

it is estimated that xi 6= x⋆
i = 0, wi is set to a small value, since

xi seems to be inaccurate, and di is set to a large value, since x⋆
i

is likely to be zero. Finally, if i ∈ Ic,kJc,k, i.e., it is estimated that

xi = x⋆
i = 0, both di and wi are set to large values since, very likely,

x⋆
i is zero. These updates, beyond intuitive, lead to a reduction of

the number of required measurements, as shown next.

Corollary 2. Let x⋆, x ∈ R
n and A ∈ R

m×n be as in Theorem 1.

Consider Algorithm 1 and suppose the sets I and J are correctly

estimated at iteration K − 1, i.e., IK−1 = I and JK−1 = J . If the

number of measurements satisfies

m ≥
(

rmin

rmax − rmin

)2

h log
( n

h+ h

)
+

7

5

(
h+ h

)
+ 1 , (6)

then, with probability at least 1 − exp
(
− 1

2
(m−√

m)2
)
, Algo-

rithm 1 outputs x⋆.

4The threshold parameters ǫI and ǫJ play a key role in the estimation
of I and J , and we recommend initializing them with large values (w.r.t. the
magnitudes of x⋆ and x) and reduce them progressively at each iteration. The
reason is to reduce the chance of misclassifying a component as belonging to
one of these sets at an early stage.

Proof. The weights used at iteration K are computed at iteration

K − 1. Hence, the last instance of w-ℓ1-ℓ1 in step 2 is solved with

di = rmin , wi = rmin, for all i ∈ IJ (7a)

di = rmin , wi = rmax, for all i ∈ IJc
(7b)

di = rmax , wi = rmin, for all i ∈ IcJ (7c)

di = rmax , wi = rmax, for all i ∈ IcJc , (7d)

Note that (7b) implies IJcK+ = ∅ and (7c) implies IcJK− =
∅, that is, Q+ = ∅. This means the parameter ζ in (4b) equals

r2min

∑
i∈IJ (sg(x⋆

i ) + sg(x⋆
i − xi))

2 = r2minh, where we used (3).

We also have θ = 0 [cf. (4a)]. According to (4c) and (7b)-(7d), η
equals rmax − rmin if Q− 6= ∅, and 2rmax otherwise (note that, by

assumption, IcJc 6= ∅; see footnote 1). Then, (5) becomes

m ≥
(

rmin

2rmax

)2

h log
( n

h+ h

)
+

7

5

(
h+ h

)
+ 1 (8)

when Q− 6= ∅, and becomes (6) otherwise. Note, however, that (6)

implies (8). Therefore, whether or not Q 6= ∅, all the assumptions of

Theorem 1 hold, and thus the statement of the corollary is true.

Although this result requires the strong assumption that I and J
are correctly estimated at iteration K − 1, it shows that Algorithm 1

may reduce the number of required measurements significantly. If

rmax ≫ rmin, the dominant term of (6) becomes approximately

(rmin/rmax)
2h log n. Thus, under the corollary’s assumptions, set-

ting rmax ≃ √
log n rmin makes the number of measurements re-

quired by Algorithm 1 a constant independent of n.

Derivation of the scheme. We now explain how to arrive at

Algorithm 1. Given estimates of I and J at iteration k, we want

to find d and w minimizing the ratio ζ/η2, subject to ζ > 0 and

η > 0 (cf. Theorem 1). Such a problem is ill-posed, as it has no

minimizer: the infimum is 0, but it can never be achieved because of

the constraints. So, rather than minimizing ζ/η2 formally, i.e., with

an optimization algorithm, we do it heuristically. In particular, we

allow only two values for the weights: rmin and rmax.

To aid our derivation, Table 2 shows the sets involved in the

definitions of ζ and η, and describes how the respective compo-

nents of d and w should relate to minimize the ζ/η2. Consider,

for example, a component i ∈ IJ ; it contributes gi(di, wi) :=
(di sg(x⋆

i )+wi sg(x⋆
i −xi))

2 to ζ and has no influence on η. There

are two scenarios: either i ∈ I+J+ ∪ I−J− or i ∈ I+J− ∪ I−J+.

In the former, we have sg(x⋆
i ) = sg(x⋆

i − xi), and gi(di, wi) has

a unique minimizer at di = wi = 0: gi(0, 0) = 0. However, we

cannot set di = wi = 0, since (5) is valid only for d,w > 0;

rather, we set these components to a small value, rmin > 0. When

i ∈ I+J− ∪ I−J+, gi(di, wi) has an infinite set of minimizers,

{(di, wi) : di = wi}, from which we select di = wi = rmin

so that all the components in IJ are treated similarly; any other

choice for a common value would also work. Consider now a com-

ponent i ∈ IJcK+: it contributes with (di − wi)
2 to ζ and the sum

di +wi, if small enough, may define η. To eliminate as many terms

as possible from ζ, we make IJcK+ empty by setting di = rmin

and wi = rmax. The same reasoning applies to the components

i ∈ IcJK−. Making IJcK+ = IcJK− = ∅ has a (positive) side

effect not mentioned in Table 2: θ in (4a) is also minimized.

Regarding the components in η, consider i ∈ IJcK−. Such a

component has no influence on ζ. Hence, we simply want |wi − di|
as large as possible. We achieve that by setting di to a small value,

rmin, and wi to a large one, rmax. Recall that K− = {i : di < wi};

therefore, if we had switched the roles of di and wi, we would have



Table 2. Derivation of the scheme. The third column shows the reasoning for minimizing ζ/η2, the fourth the action we select.

Parameter Set Reasoning to minimize ζ/η2 Action at iteration k

ζ IJ If i ∈ I+J+ ∪ I−J−, set di and wi as small as possible dk+1

i = wk+1

i = rmin

If i ∈ I+J− ∪ I−J+, set di = wi dk+1

i = wk+1

i = rmin

IJcK+ Set di ≤ wi to make IJcK+ = ∅ dk+1

i = rmin, wk+1

i = rmax

IcJK− Set di ≥ wi to make IcJK− = ∅ dk+1

i = rmax, wk+1

i = rmin

η IJcK− Set di small and wi large to make |wi − di| large dk+1

i = rmin, wk+1

i = rmax

IcJK+ Set di large and wi small to make |wi − di| large dk+1

i = rmax, wk+1

i = rmin

IJcK Set di large, wi large, or both, to make di + wi large dk+1

i = rmin, wk+1

i = rmax

IcJK Set di large, wi large, or both, to make di + wi large dk+1

i = rmax, wk+1

i = rmin

IcJc Set di large, wi large, or both, to make di + wi large dk+1

i = wk+1

i = rmax

instead made IJcK− empty. The same reasoning applies to the

components in IcJK+. Now note that because IJcK = IJcK+ ∪
IJcK− and IcJK = IcJK− ∪ IcJK+, the action for the compo-

nents in IJcK and IcJK has already been determined. Namely, the

2nd and 4th lines of the table defined di = rmin and wi = rmax for

the components in IJcK+ and IJcK−, thus defining the action for

all the components in IJcK. The same applies to the components

in IcJK (3rd and 5th lines). These actions do not conflict with our

goal of making η as large as possible; rather, they reinforce it, as they

align with the reasoning described in the table. Finally, the compo-

nents i ∈ IcJc only influence η and, therefore, we set the respective

di and wi as large as possible: di = wi = rmax.

3. EXPERIMENTAL RESULTS

To illustrate the performance of Algorithm 1, we conducted experi-

ments using synthetic data, described as follows.

Experimental setup. We generated a vector x⋆ of size n =
1000 with s = 70 nonzero entries, whose locations were selected

uniformly at random. The values of the nonzero entries were drawn

from the standard Normal distribution N (0, 1). The reference x was

generated as x = x⋆ + z, where z had sparsity 100 and a support

that intersected the support of x⋆ in 60 locations and missed it in 40.

The nonzero entries of z were drawn from N (0, 0.8). The number of

measurements varied m from 1 to 400 and, for each m, we generated

10 different matrices A as in Theorem 1: Aij
i.i.d.∼ N (0, 1/m).

In Algorithm 1, we set rmin = 0.1, rmax = 10, K = 15
iterations, and ǫI and ǫJ were initialized with 0.5 and decreased

by 10% in each iteration. Each problem in step 2 of Algorithm 1

was solved with ADMM [31]. We compared Algorithm 1 with the

reweighted ℓ1-ℓ1 scheme in [21, 22] and reweighted ℓ1 minimiza-

tion [18]. Both algorithms ran for K = 15 iterations as well, and

while we used the same ADMM solver for each subproblem of [21],

we used SPGL1 [32] for each subproblem of [18]. All these algo-

rithms have roughly the same computational complexity. For refer-

ence, we also compared with Mod-CS [9], a static algorithm (i.e.,

with no reweighting) that uses an estimate of the support of x⋆ as

prior information. We used supp(x) as such prior information.

Results. Fig. 1 shows the results of our experiments. The hori-

zontal axis depicts the number of measurements m, the vertical axis

the success rate over 10 different realizations of A. We consider that

an algorithm reconstructed x⋆ successfully if the relative error of its

output x̂ was smaller than 0.1%, i.e., ‖x̂ − x⋆‖2/‖x⋆‖2 ≤ 10−3.
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Fig. 1. Rate of reconstruction of Algorithm 1 and prior schemes.

The vertical line shows the minimal theoretical value of (5).

The figure shows that Algorithm 1 had the best performance, requir-

ing the least amount of measurements to reconstruct x⋆. The algo-

rithm in [21] had the second best performance, followed by Mod-CS,

ℓ1-ℓ1 minimization, and reweighted ℓ1 minimization. Note that ℓ1-

ℓ1 minimization corresponds to one iteration of Algorithm 1. The

plot then clearly shows that reweighting is an effective strategy to

reduce the number of required measurements: in 15 iterations, the

number of measurements required for reconstruction was reduced

from 250 to 160, a reduction of 36%. Fig. 1 also shows a vertical

line indicating the minimum theoretical value of the bound in (5),

85, obtained by ignoring the first term and considering θ = 0. Since

Algorithm 1 started reconstructing x⋆ using 120 measurements, this

shows that the margin for improvement is small.

4. CONCLUSIONS

We proposed a reweighted scheme for reference-based compressed

sensing, in particular, weighted ℓ1-ℓ1 minimization. Our method

differs from prior reweighting methods for either ℓ1-ℓ1 minimiza-

tion or simple ℓ1 minimization by minimizing a sample complexity

bound in each iteration. The resulting scheme is simple, intuitive,

and shows excellent performance in practice. Possible research di-

rections include understanding how the parameters of the algorithm

affect its performance, and whether the sample complexity bound

can be used to derive a stopping criterion.
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