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Abstract

Total variation (TV) is a widely used regularizer for stabilizing the solution of ill-posed inverse
problems. In this paper, we propose a novel proximal-gradient algorithm for minimizing TV regularized
least-squares cost functional. Our method replaces the standard proximal step of TV by a simpler
alternative that computes several independent proximals. We prove that the proposed parallel proximal
method converges to the TV solution, while requiring no sub-iterations. The results in this paper could
enhance the applicability of TV for solving very large scale imaging inverse problems.

1 Introduction

The problem of estimating an unknown signal from noisy linear observations is fundamental in signal pro-
cessing. The estimation task is often formulated as the linear inverse problem

y = Hx + e, (1)

where the goal is to compute the unknown signal x ∈ RN from the noisy measurements y ∈ RM . Here,
the matrix H ∈ RM×N models the response of the acquisition device and the vector e ∈ RM represents the
measurement noise, which is often assumed to be i.i.d. Gaussian. When the problem (1) is ill-posed, the
standard approach is to rely on the regularized least-squares estimator

x̂ = arg min
x∈RN

{
1

2
‖y −Hx‖2`2 +R(x)

}
, (2)

where the functional R is a regularizer that promotes solutions with desirable properties such as transform-
domain sparsity or positivity.

One of the most widely used regularizers in imaging is the total variation (TV), whose anisotropic variant
can be defined as

R(x) , λ‖[Dx]‖`1 = λ

N∑
n=1

D∑
d=1

|[Ddx]n|, (3)

where D : RN → RN×D is the discrete gradient operator, λ > 0 is a parameter controlling amount of
regularization, and D is the number of dimensions in the signal. The matrix Dd denotes the finite difference
operation along the dimension d with appropriate boundary conditions (periodization, etc.). The TV prior
has been originally introduced by Rudin et al. [1] as a regularization approach capable of removing noise,
while preserving image edges. It is often interpreted as a sparsity-promoting `1-penalty on the image gradient.
TV regularization has proven to be successful in a wide range of applications in the context of sparse recovery
of images from incomplete or corrupted measurements [2–8].

The minimization (2) with the TV regularization is a nontrivial optimization task. The challenging
aspects are the non-smooth nature of the regularization term (3) and the massive quantity of data that

∗U. S. Kamilov (email: kamilov@merl.com) is with Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge,
MA 02139, USA

1

ar
X

iv
:1

51
0.

00
46

6v
2 

 [
cs

.I
T

] 
 4

 J
an

 2
01

6



typically needs to be processed. Proximal gradient methods [9] such as iterative shrinkage/thresholding
algorithm (ISTA) [10–14] or alternating direction method of multipliers (ADMM) [15–17] are standard
approaches to circumvent the non-smoothness of the TV regularizer.

For the optimization problem (2), ISTA can be written as

zt ← xt−1 − γtHT
(
Hxt−1 − y

)
(4a)

xt ← proxγtR(zt), (4b)

where γt > 0 is a step-size that can be determined a priori to ensure convergence [14]. Iteration (4) combines
the gradient-descent step (4a) with a proximal operation (4b) defined as

proxγR(z) , arg min
x∈RN

{
1

2
‖x− z‖2`2 + γR(x)

}
. (5)

The proximal operator corresponds to the regularized solution of the denoising problem where H is an
identity. Because of its simplicity, ISTA and its accelerated variants are among the methods of choice for
solving practical linear inverse problems [13,14]. Nonetheless, ISTA–based optimization of TV is complicated
by the fact that the corresponding proximal operator does not admit a closed form solution. Practical
implementations rely on computational solutions that require an additional nested optimization algorithm
for evaluating the TV proximal [17, 18]. This typically leads to a prohibitively slow reconstruction when
dealing with very large scale imaging problems such as the ones in 3D microscopy [8].

In this paper, we propose a novel approach for solving TV–based imaging problems that requires no
nested iterations. This is achieved by substituting the proximal of TV with an alternative that amounts to
evaluating several simpler proximal operators. One of our major contributions is the proof that the approach
can achieve the true TV solution with arbitrarily high precision. We believe that the results presented in this
paper are useful to practitioners working with very large scale problems that are common in 3D imaging,
where the bottleneck is often in the evaluation of the TV proximal.

2 Main Results

In this section, we present our main results. We start by introducing the proposed approach and then follow
up by analyzing its convergence.

2.1 General formulation

We turn our attention to a more general optimization problem

x̂ = arg min
x∈RN

{C(x)} , (6)

where the cost functional is of the following form

C(x) = D(x) +R(x) = D(x) +
1

K

K∑
k=1

Rk(x). (7)

The precise connection between (7) and TV-regularized cost functional will be discussed shortly. We assume
that the data-fidelity term D is convex and differentiable with a Lipschitz continuous gradient. This means
that there exists a constant L > 0 such that, for all x, z ∈ RN , ‖∇D(x) − D(z)‖`2 ≤ L‖x − z‖`2 . We also
assume that each Rk is a continuous, convex function that is possibly nondifferentiable and that the optimal
value C∗ is finite and attained at x∗.
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We consider parallel proximal algorithms that have the following form

zt ← xt−1 − γt∇D(xt−1) (8a)

xt ← 1

K

K∑
k=1

proxγtRk
(zt), (8b)

where proxγtRk
is the proximal operator associated with γtRk. We are specifically interested in the case

where the proximals proxγtRk
have a closed form, in which case they are preferable to the computation of

the full proximal proxγtR.

We now establish a connection between (7) and TV-regularized cost. Define a linear transform W :
RN → RN×D×2 that consists of two sub-operators: the averaging operator A : RN → RN×D and the
discrete gradient D as in (3), both normlized by 1/

√
2. The averaging operator consists of D matrices

Ad that denote the pairwise averaging along the dimension d. Accordingly, the operator W is a union of
scaled and shifted discrete Haar wavelet and scaling functions along each dimension [19]. Since we consider
all possible shifts along each dimension the transform is redundant and can be interpreted as the union of
K = 2D, scaled, orthogonal tranforms

W =

W1

...
WK

 . (9)

The transform W and its pseudo-inverse

W† =
1

K
[WT

1 . . .W
T
K ] (10)

satisfy the following two properties of Parseval frames [20]

arg min
x∈RN

{
1

2
‖z−Wx‖2`2

}
= W†z (for all z ∈ RKN )

and

W†W = I. (11)

One can thus express the TV regularizer as the following sum

R(x) = λ
√

2

K∑
k=1

∑
n∈Hk

|[Wkx]n|, (12)

where Hk ⊆ [1 . . . N ] is the set of all detail coefficients of the transform Wk. Then, the proposed parallel
proximal algorithm for TV can be expressed as follows

zt ← xt−1 − γtHT
(
Hxt−1 − y

)
(13a)

xt ← 1

K

K∑
k=1

WT
k T (Wkz

t;
√

2Kγtλ), (13b)

where T is the component-wise shrinkage function

T (y; τ) , max(|y| − τ, 0)
y

|y| , (14)

which is applied only on scaled differences Dzt.
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The algorithm in (13) is closely related to a technique called cycle spinning [21] that is commonly used
for improving the performance of wavelet-domain denoising. In particular, when H = I and γt = 1, for all
t = 1, 2, . . . , the algorithm yields the solution

x̂←W†T (Wy;
√

2Kλ), (15)

which can be interpreted as the traditional cycle spinning algorithm restricted to the Haar wavelet-transform.
In the context of image denoising, the connections between TV and cycle-spinning were originally established
in [22].

2.2 Theoretical convergence

The convergence results in this section assume that the gradient of D and subgradients of Rk are bounded,
i.e., there exists G > 0 such that for all k and t, ‖∇D(xt)‖`2 ≤ G and ‖∂Rk(xt)‖`2 ≤ G. The following
proposition is crucial for establishing the convergence of the parallel proximal algorithm.

Proposition 1. Consider the cost function (7) and the algorithm (8). Then, for all t = 1, 2, . . . , and for
any x ∈ RN , we have

C(xt)− C(x) (16)

≤ 1

2γt

(
‖xt−1 − x‖2`2 − ‖xt − x‖2`2

)
+ 8γtG

2.

Proof: See Appendix.

Proposition 1 allows us to develop various types of convergence results. For example, if x∗ is the optimal
point and if we pick a sufficiently small step γt ≤ (C(xt) − C(x∗))/(8G2), then the xt will be closer to x∗

than xt−1. This argument can be formalized into the following proposition.

Proposition 2. Assume a fixed step size γt = γ > 0. Then, we have that

lim inf
t→∞

(
C(xt)− C∗

)
≤ 8γG2. (17)

Proof: See Appendix.

Proposition 2 states that for a constant step-size, convergence can be established to the neighborhood of the
optimimum, which can be made arbitrarily close to 0 by letting γ → 0.

3 Experiments

In this section, we empirically illustrate that our results hold more generally than suggested by Proposition 2.
Specifically, we consider the accelerated parallel proximal algorithm based on FISTA [14]

zt ← ut−1 − γt∇D(ut−1) (18a)

xt ← 1

K

K∑
k=1

proxγtRk
(zt) (18b)

qt ← (1 +
√

1 + 4q2t−1)/2 (18c)

ut ← xt + (qt−1 − 1)/qt)(x
t − xt−1) (18d)

with u0 = x0, q0 = 1, and γt = γ. Method (18) preserves the simplicity of the ISTA approach (8) but
provides a significantly better rate of convergence, which enhances potential applicability of the method.
We consider an estimation problem where the Shepp-Logan phantom of size 32 × 32 is reconstructed from
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Figure 1: Reconstruction of a Shepp-Logan phantom from noisy linear measurements. The relative gap
(C(xt)− C∗)/C∗ is plotted against the iteration number for 3 distinct step-sizes γ. The plot illustrates the
convergence of the fast parallel proximal algorithm to the minimizer of the TV cost functional.

27.52 dB 27.94 dB 27.96 dB(a) (b) (c)

� = 1/(16L)� = 1/L TV

Figure 2: Reconstructed Shepp-Logan images for (a) γ = 1/L; (b) γ = 1/(16L); (c) the true TV solution.
Even for γ = 1/L the solution of the accelerated parallel proximal algorithm is visually and quantitatively
close to the true TV result.

M = 512 linear measurements with AWGN corresponding to 30 dB SNR. The measurement matrix is
i.i.d. Gaussian [H]mn ∼ N (0, 1/M). Figure 1 illustrates the per-iteration gap (C(xt) − C∗)/C∗, where xt is
computed with the fast parallel proximal method (18) and C is the TV-regularized least-squares cost. The
regularization parameter λ was manually selected for the optimal SNR performance of TV. We compare 3
different step-sizes γ = 1/L, γ = 1/(4L), and γ = 1/(16L), where L = λmax(H

TH) is the Lipschitz constant.
Proposition 2 suggests that the gap (C(xt)−C∗) is proportional to the step-size and shrinks to 0 as the step-
size is reduced. Such behavior is clearly observed in Figure 1, which suggests that our results potentially
hold for the accelerated parallel proximal algorithm. Figure 2 compares the quality of the estimated images,
for γ = 1/L and γ = 1/(16L), against the TV solution. We note that, even for γ = 1/L, the solution of our
algorithm is very close to the true TV result, both qualitatively and quantitatively. This implies that, while
requiring no nested iterations, our parallel proximal approach can potentially approximate the solution of
TV with arbitrarily accurate precision at O(1/t2) convergence rate of FISTA.

4 Relation to Prior Work

The results in this paper are most closely related to the work on TV–based imaging by Beck and Teboulle [18].
While their approach requires additional nested optimization to compute the TV proximal, we avoid this by
relying on multiple simplified proximals computed in parallel. Our proofs rely on several results from convex
optimization that were used by Bertsekas [23] for analyzing a different family of algorithms called incremental
proximal methods. Finally, two earlier papers with the author describe the relationship between cycle
spinning and TV [22,24], but concentrate on a fundamentally different families of optimization algorithms.
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5 Conclusion

The parallel proximal method and its accelerated version, which were presented in this paper, are beneficial in
the context of TV regularized image reconstruction, especially when the computation of the TV proximal is
costly. We presented a combination of theoretical and empirical evidence demonstrating that these methods
can compute the TV solution at the competitive global convergence rates without resorting to expensive
sub-iterations. Future work will aim at extending the theoretical analysis presented here and by applying
the methods to a larger class of imaging problems.

6 Appendix

We now prove the propositions in Section 2.2. The formalism used here is closely related to the analysis of
incremental proximal methods that were studied by Bertsekas [23]. Related techniques were also used to
analyze the convergence of recursive cycle spinning algorithm in [24].

6.1 Proof of Proposition 1

We define an intermediate quantity xtk , proxγtRk
(zt). The optimality conditions for (8b) imply that there

must exist K subgradient vectors ∇̃Rk(xtk) ∈ ∂Rk(xtk) such that

xtk = xt−1 − γt
(
∇D(xt−1) + ∇̃Rk(xtk)

)
. (19)

This implies that
xt = xt−1 − γt

(
∇D(xt−1) + gt

)
, (20)

where

gt ,
1

K

K∑
k=1

∇̃Rk(xtk).

Then we can write

‖xt − x‖2`2 = ‖xt−1 − γt(∇D(xt−1) + gt)− x‖2`2 (21)

= ‖xt−1 − x‖2`2 − 2γt〈∇D(xt−1) + gt,xt−1 − x〉
+ γ2t ‖∇D(xt−1) + gt‖2`2

By using the triangle inequality and noting that all the subgradients are bounded, we can bound the last
term as

‖∇D(xt−1) + gt‖2`2 ≤ 4G2. (22)

To bound the second term we proceed in two steps. We first write that

〈∇D(xt−1),xt−1 − x〉 ≥ D(xt−1)−D(x) (23)

≥ D(xt)− 〈∇D(xt),xt − xt−1〉 − D(x)

≥ D(xt)−D(x)− 2γtG
2,

where we used the convexity of D, the Cauchy-Schwarz inequality, and the bound on the gradients. In a
similar way, we can write that

〈gt,xt−1 − x〉 =
1

K

K∑
k=1

〈∇̃Rk(xtk),xt−1 − x〉 (24)

≥ 1

K

K∑
k=1

(Rk(xtk)−Rk(x))− 2γtG
2

≥ R(xt)−R(x)− 4γtG
2,
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where we used the convexity of Rks, the relationships (19) and (20), as well as bounds obtained via the
Cauchy-Schwarz inequality. By plugging (22), (23), and (24) into (21) and by reorganizing the terms, we
obtain the claim.

6.2 Proof of Proposition 2

By following an approach similar to Bertsekas [23], we prove the result by contradiction. Assume that (17)
does not hold. Then, there must exist ε > 0 such that

lim inf
t→∞

(C(xt)− C∗) > 8γG2 + 2ε (25)

Let x̄ ∈ RN be such that
lim inf
t→∞

C(xt)− 8γG2 − 2ε ≥ C(x̄) (26)

and let t0 be large enough so that for all t ≥ t0, we have∣∣∣C(xt)− lim inf
t→∞

C(xt)
∣∣∣ ≤ ε. (27)

By combining (26) and (27), we obtain that for all t ≥ t0

C(xt)− C(x̄) ≥ 8γG2 + ε. (28)

Then from Proposition 1, for all t ≥ t0,

‖xt−x̄‖2`2
≤ ‖xt−1 − x̄‖2`2 − 2γ(C(xt)− C(x̄)) + 16γ2G2

≤ ‖xt−1 − x̄‖2`2 − 2γε. (29)

By iterating the inequality over t, we have for all t ≥ t0,

‖xt − x̄‖2`2 ≤ ‖xt0 − x̄‖`2 − 2(t− t0)γε, (30)

which cannot hold for arbitrarily large t. This completes the proof.
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