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ABSTRACT

The short-time Fourier transform (STFT) is widely used to
analyze the spectra of temporal signals that vary through time.
Signals defined over graphs, due to their intrinsic complex-
ity, exhibit large variations in their patterns. In this work we
propose a new formulation for an STFT for signals defined
over graphs. This formulation draws on recent ideas from
spectral graph theory, using personalized PageRank vectors
as its fundamental building block. Furthermore, this work es-
tablishes and explores the connection between local spectral
graph theory and localized spectral analysis of graph signals.
We accompany the presentation with synthetic and real-world
examples, showing the suitability of the proposed approach.

Index Terms— Graph, localized Fourier transform, per-
sonalized PageRank, local spectral graph theory.

1. INTRODUTION

The Fourier transform globally decomposes a temporal signal
into its constituting frequencies, identifying their contribution
to the signal formation. Often, temporal signals vary their be-
havior through time; in these cases, the Fourier transform, be-
ing global, falls short as a tool to analyze the characteristics of
these signals. The short-time Fourier transform (STFT) [1] is
used to analyze the Fourier spectrum of temporally localized
sections of the signal. It is well studied that there is a trade-off
between resolution (sharpness) in time and its counterpart in
frequency. There is no way to get arbitrarily sharp analysis in
both domains simultaneously [2, Sec. 2.6.2].

Formally, in the STFT a window function w which is
nonzero for only a short period of time is slid along the time
axis and multiplied by the input signal f ; then the Fourier
transform of the resulting signal is taken. Formally, for one
dimensional signals,

STFTf (u, ξ)
.
=

∫ ∞
−∞

f(t)w(t− u)e−iξtdt. (1)

The changing spectra is usually analyzed as a function of the
time-shift u and is well suited to analyze time-varying signals.
The above formula can be interpreted as the following three-
sets algorithm: (1) translate the window w by u, (2) modulate
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the result by frequency ξ, and (3) take the convolution of the
result with the signal f . This can be written as

STFTf = 〈f,MξTuw〉, (2)

where (Tug)(t)
.
= g(t− u) and (Mξg)(t)

.
= g(t)eiξt are the

translation and modulation operators, respectively.
Weighted graphs are a natural representational structure in

most modern network applications (including, for example,
social, energy, transportation, and sensor networks). These
graphs are loaded with information, usually in the form of
high-dimensional data (i.e., signals) that reside on the vertices
(nodes) of graphs. Graph signal processing lies at the inter-
section of graph theory and computational harmonic analysis
and seeks to process such signals on graphs. See [3, 4] for
further details and references on this emerging field.

Graph signal processing has been successful at charac-
terizing the equivalent of the Fourier transform in graph do-
mains. Many different types of localized spectral transforms
have been proposed in recent years, see [3, Sec. IV] for a
thorough discussion. This list includes a windowed Fourier
transform [5], later described in this work.

One of the main examples are diffusion wavelets [6],
which are based on compressed representations of powers
of a graph diffusion operator. In parallel, local spectral
techniques, in which personalized PageRank vectors play a
prominent role, have become increasingly popular in the field
of community detection in graphs [e.g., 7]. As we will see
in Section 2, the PageRank equation is defined recursively,
and we can consider a single PageRank vector in place of a
sequence of random walk vectors, or of powers of a diffusion
operator [8].

In this work, we establish and explore for the first time
the connection between local spectral graph methods and lo-
calized spectral analysis of graph signals. This work is a first
step in this exploration, and introduces a short-graph Fourier
transform inspired on the ideas of local graph analysis, us-
ing personalized PageRank vectors as fundamental building
blocks of the method.

The remainder of the paper is organized as follows. In
Section 2 we introduce our short-graph Fourier transform.
Experimental results on synthetic and real graphs are pre-
sented in Section 3, showing the interesting characteristics of
the proposed formulation. Finally, we provide some conclud-
ing remarks in Section 4.
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2. FROM LOCAL SPECTRAL GRAPH THEORY TO
A SHORT-GRAPH FOURIER TRANSFORM

We begin by introducing the notation and fundamental for-
mulas used throughout the paper.

Let X be a matrix. In the following, (X)ij , (X):j , (X)i:
denote the (i,j)th entry of X, the jth column of X, and the
ith row of X, respectively.

We consider a graph G = (V,A), where |V | = n and
A ∈ Rn×n+ is the weighted adjacency matrix. The weighted
entry (A)ij represents in most applications a measure of sim-
ilarity between vertices i and j. We assume that G is con-
nected and undirected, i.e., (A)ij = (A)ji. The degree of a
node i ∈ V is di

.
=
∑n
j=1(A)ij . Let D ∈ Rn×n be a diag-

onal matrix with entries (D)ii = di. The Laplacian of G is
defined as L

.
= D−A, and the normalized Laplacian of G is

defined as L .
= D−1/2LD−1/2. We denote the eigendecom-

positions of L and L by UΛUT and VΛLVT, respectively.
We assume that the eigenvalues, the diagonal entries of Λ and
ΛL, are sorted in increasing order. Finally, the volume of a
set of vertices S ⊆ V is vol (S) .=

∑
i∈S di.

Let f ∈ Rn be a signal over the graph vertices, i.e., (f)i
is the signal value at vertex i. The classical Fourier transform
can be defined as the transform that diagonalizes the Laplace
operator. Similarly, the graph Fourier transform [9] is defined
as f̂

.
= VTf , where V diagonalizes the graph Laplacian. The

inverse graph Fourier transform is then simply defined as f
.
=

Vf̂ .

2.1. Local spectral graph theory

The second eigenvalue of the graph Laplacian L can be
viewed as the solution to

min
x

xTLx s.t. xTDx = 1, xTD1 = 0. (3)

The optimal solution x∗ is a generalized eigenvector of L with
respect to D and provides a map from the graph to the real
line. This map encodes a measure of similarity (geodesic dis-
tance) between graph vertices. This property is exploited for
clustering [10] and hashing [11], for example.

In [12] the above problem is modified to incorporate a
bias towards a target region (defined by one or more vertices)
in the graph. This region is represented as an indicator vector
s, normalized such that sTD1 = 0 and sTDs = 1. More
precisely, given a set of nodes S ∈ V we define the unit vector
s = unit(S) as

(unit(S))i
.
=

{
b/ vol (S) if i ∈ S;
−b/ vol (V r S) otherwise,

(4)

where b =
√
vol (S) vol (V r S) / vol (V ). The modified

problem is given by [12]

min
x

xTLx s.t.
xTDx = 1, xTD1 = 0,

xTDs ≥ κ.
(5)

The only modification is the addition of the constraint on
xTDs. This can be interpreted as imposing to the solution
a correlation with s larger than arccos(κ).

Intuitively, as the solution to Problem (3) provides a no-
tion of geodesic distance between graph nodes, the solution to
Problem (5) provides a notion of geodesic distance from the
seed set to the rest of the vertices. This link will become clear
in the following.

Theorem ([12]). Let s ∈ Rn be a seed vector such that
sTD1 = 0 and sTDs = 1, and sTDv2 6= 0, where v2 is
the second generalized eigenvector of L with respect to D. In
addition, let x∗ be an optimal solution to Problem (5) with
correlation parameter κ ∈ [0, 1]. Then, there exists some
γ ∈ (−∞, (Λ)2,2) and some c ∈ [0,∞] such that

x∗ = c (L− γD)
+

Ds. (6)

PageRank [13] assigns a numerical weight to each vertex of a
graph, assessing its relative importance within the graph; its
personalized variant is frequently used to localize the PageR-
ank vector within a subset of the network [8]. The following
proposition can be proven using simple algebraic manipula-
tions and the definition of L.

Proposition. Let c = −γ = 1−α
α in Theorem 6. The vector

p, defined as p = c (L− γD)
−1

Ds, is the solution to the
(degree normalized) personalized PageRank (PPR) equation

Dp = (1− α)(Ds) + αAD−1(Dp). (7)

Theorem 6 and Equation (7) connect Problem (5) with the
personalized PageRank equation [14]. In the field of commu-
nity detection, PPR vectors are used to find local communi-
ties around seed vertices [e.g., 7, 8, 15], where a small but
cohesive “seed set” of vertices is expanded to generate its en-
closing community (vertices having a stronger relationship to
the seed set than to the rest of the graph). In this context,
PPR vectors arise as natural units of observation for localized
analysis of graphs.

Furthermore, powers of a graph diffusion operator were
identified in [6] as natural building blocks to define wavelets
on graphs. Notice that the PPR vector is exactly equivalent to
the recursive application of the diffusion operator AD−1 [8],
which leads naturally to the notion of geodesic distance.

Given this evidence, we posit that the PPR vector is a fun-
damental tool to perform a localized spectral analysis of graph
signals. This connection is the key observation of this work
and drives our definition of a short-graph Fourier transform.

2.2. A short-graph Fourier transform

As described in the introduction, we need two elements to
define a short-graph Fourier transform: a localization (e.g.,
classically a translation) and a modulation operators.



Definition (Localization). We define the local window at
node i as

wi
.
= max (0, x∗i ) / ‖max (0, x∗i )‖1 , (8)

where x∗i the solution to Problem (5) with s = unit({i}) and
the maximum is taken entrywise.

The window wi is defined in terms of its correlation with
unit({i}), yielding to a simple conceptual interpretation. In
this work, we solve Problem (5) using Theorem 6. Given
the eigendecomposition of the normalized Laplacian, we have
L = D1/2UΛUTD1/2. Then,

x∗ = c
(
D−1/2U

)
(Λ− γI)

+
(
D−1/2U

)T
Ds. (9)

Once the eigendecomposition is computed as a preprocess-
ing step, this formula delivers an efficient method for obtain-
ing x∗, without any iterations nor matrix inversions (albeit
the inversion of the diagonal matrix Λ − γI). Interestingly,
the spectral localization of x∗ is determined by the product(
D−1/2U

)T
Ds = UTD1/2s, i.e., by the correlation be-

tween s and each element of the graph Fourier basis.
Since the eigendecomposition of L is used in Equa-

tion (9), we also use it in our graph modulation operator.

Definition (Graph modulation). For k ∈ {1, 2, . . . , n}, we
define the graph modulation operator Mk : Rn → Rn by

Mkf
.
=
√

vol (V ) f ◦ (D−1/2U):k, (10)

where ◦ denotes the entrywise multiplication.

M1 is the identity operator, such as T0 is in the classical mod-
ulation for temporal signals.

Definition. Given the localization and modulation operators,
we define the short-graph Fourier transform of a signal f ∈
Rn at vertex i ∈ V and frequency k ∈ {1, 2, . . . , n} as

SGFTf (i, k) = 〈f ,Mkwi〉. (11)

The spectrogram of f is defined as

spectrogramf (i, k) = |SGFTf (k, i)|2. (12)

It is not hard to see that Equation (11) reduces to the standard
one when the unweighted graph is a Cartesian grid.

Note. Shuman et al. provide a different definition for a short-
graph Fourier transform [5]. They define the graph modu-
lation operator as M̃kf

.
=
√
n f ◦ (V):k, where ◦ denotes

the entrywise multiplication. They also define a convolution
operator as f ∗ g .

= V
(
f̂ ◦ ĝ

)
, and a translation operator

as Tif
.
=
√
n (f ∗ δi) =

√
n V

((
VT
)
:i
◦ f̂
)

, where δi
is the impulse function at vertex i. This leads to the (more
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(a) The linear graph has 200 vertices, where each vertex is connected to its
two neighbors (with periodicity in the edges). In the weighted case, the graph
weights for all edges are set to one, excepting edges (40, 41) and (159, 160)
(marked in red) which have a weight of 10−3.
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(b) We compute localized windows around vertices 45, 50, and 55 (red, blue
and green curves, respectively). Note how the convolutional approach [5]
fails to properly locate the window in the weighted case, as the window peak
does not coincide with the desired vertex.

Fig. 1. Window localization comparison. In the unweighted case (in
which the graph Fourier and the standard Fourier transforms are equal), con-
volutional localization [5] works well; however, when the graph weights
present a sharp discontinuity, it fails to provide an accurate result. Contrarily,
the proposed PPR approach works well in both cases.

classical) definition SGFTf (i, k) = 〈f , M̃kTig〉. Defining
an appropriate window (kernel) g is not trivial in the graph
space. It is possible to define it in the graph spectral space as
(ĝ)k = e−τλk and then invert the graph Fourier transform.
In this work we do not aim at producing a better method than
the one in [5] (although we will exemplify potential localiza-
tion advantages of our definition). The method here proposed
is based on radically different principles, which are of interest
by themselves for the spectral study of graph signals.

3. EXPERIMENTAL RESULTS

We implemented the proposed short-graph Fourier trans-
form in Python, using the graph-tool library [16]. We
make the code publicly available at https://github.
com/marianotepper/sgft. In all examples we set
γ = (Λ)1,1 − β, where β takes a particular value in each
example.

We begin by examining the localization operator (Equa-
tion (8)). For this, we use in Fig. 1 a linear graph, where lo-
calization can be easily interpreted and visualized. The main
observation is that the window is properly localized when us-
ing the proposed approach, while this is not always the case
with the convolutional approach.

In the second example, we present results on a 2D grid
graph, see Fig. 2. When this graph is unweighted, the graph
Fourier transform amounts to the classical 2D Fourier. In
the unweighted and weighted cases, the proposed short-graph
Fourier transform is able to clearly identify the two differ-
ent signal regions. Naturally, since the weight discontinu-
ity matches the boundary between both signal regions, the
spectrograms of the weighted graph have better spatial and
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(a) The graph is a 50 × 50 regular grid, where each
vertex is connected to its four neighbors (with period-
icity in the edges). The input signal is formed by two
sinusoidal waveforms, as shown on the side. In the
weighted case, the graph weights for the edges con-
necting both waveforms are set to 10−5 while for the
rest of the edges, they are set to one.
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(b) Top row: Localized windows at the central vertex of the grid. Cen-
ter row: Spectrograms. Bottom row: For each vertex, color represents the
index of the frequency with maximum magnitude, from light green (low fre-
quencies) to dark green (high frequencies).

Fig. 2. All spectrograms coarsely identify the two sections in the input sig-
nal with different patterns (in all cases, we use the first 500 eigenvectors
only). In the unweighted case, the proposed method works significantly bet-
ter than the convolutional approach [5]. In the unweighted and weighted
cases, the proposed PPR-based method has better spectral localization, i.e.,
for each vertex, fewer frequencies are selected.

frequency localizations. The proposed PPR-based spectro-
gram exhibits better spatial and frequency localizations than
the convolutional approach.

For our last example, we use a real graph comprised of
weather stations distributed throughout the US. The input sig-
nal is the average temperature in each station in 2014. The lo-
calized PPR windows follow nicely the graph topology, being
more isotropic or anisotropic, depending on the local graph
topology. The spectrogram obtained with the proposed PPR-
based method presents clear patterns, which are coherent with
the spatial arrangement of the graph vertices.

4. CONCLUSIONS

In this work we presented an extension of the classical short-
time Fourier transform (STFT) to signals defined over graphs.
We have shown with different examples that this new short-
graph Fourier transform can be a valuable tool for extracting
information from signals on graphs.
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(a) Graph of weather stations in the US, with color representing the average
annual temperature in 2014. The graph was built by connecting each station
to its 6 spatial nearest neighbors (the corresponding edge weight is the spatial
distance between both stations).

(b) Different personalized
PageRank windows.
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(c) Spectrogram obtained with the proposed
technique (for better visualization, we only show
the first 30 components).
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(d) For the vertex marked with a red square (and a red arrow), we show the
correlation between its spectral signature (its column in the spectrogram) and
the signatures of the other vertices.

Fig. 3. Clear patterns appear in the spectrogram, where nodes with similar
spectral signature are localized in spatially coherent areas (e.g., Florida). We
use β = 10−3 and restrict the computations to the first 500 eigenvectors.

More broadly, we established the connection between lo-
cal spectral graph theory and localized spectral analysis of
graph signals. This is the first work that studies the use of per-
sonalized PageRank vectors as fundamental building blocks
for local spectral analysis of graph signals.

The STFT becomes ineffective when the signal includes
structures having different time-frequency resolution, some
very localized in time and others in frequency. Wavelets ad-
dress this issue by changing the time and frequency resolu-
tion. Such as diffusion wavelets extended the definition to the
graph domain using powers of a graph diffusion operator, we
plan on extending the use of personalized PageRank vectors
to produce an alternate definition of wavelets on graphs.
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