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ABSTRACT

Rapid adaptation of deep neural networks (DNNs) with limited un-
supervised data remains a significant challenge. This paper inves-
tigates the combination of two schemes that have been proposed to
address this problem: i-vector representations and multi-basis adap-
tive neural networks (MBANNs). Two approaches for combining
these schemes together are described. The first uses i-vectors as one
of the input features to the MBANN. The purpose is to combine the
speaker representation of the i-vector with the network interpolation
of the MBANN scheme. The second approach aims to reduce the
computational cost, and improve the robustness to hypothesis errors,
of the MBANN scheme. Here i-vectors are used to predict the inter-
polation weights of the MBANN scheme. This removes the need for
an initial decoding pass, and alignment, which was previously used.
These approaches are evaluated using acoustic and language models
trained on a U.S. English Broadcast News (BN) transcription task.
Two distinct sets of test data are examined. The first from the BN
task, yields test data acoustically matched to the training data. The
second, acoustically mismatched, set is from Youtube videos. The
performance gains from these schemes is found to be sensitive to the
level of mismatch between training and test.

Index Terms— Rapid adaptation, structured deep neural net-
works, i-vectors, acoustic modeling

1. INTRODUCTION

Deep neural network (DNN) acoustic models have leaped forward
in recent years, outperforming the traditional Gaussian Mixture Hid-
den Markov Model (GMM-HMM) in large vocabulary continuous
speech recognition tasks [1, 2, 3]. However, according to recent
comparative studies [4], a DNN does not always manage to handle
the impact from background noise or speaker variations. Thus, effec-
tive adaptation techniques on DNNs remain to be explored. Neural
networks are difficult to be adapted though. This is because a large
amount of parameters is likely to be over-fitted with limited adap-
tation data, whilst it is hard to split them into meaningful groups to
apply similar transforms as that used in GMM-HMMs.
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There have already been a number of attempts in literature on
neural-network based compensation and adaptation. Feature-space
transforms like CMLLR [5], initially developed for GMM-HMM
models, can be directly deployed on a DNN-based system. An im-
portant field of DNN adaptation concentrates on auxiliary indicators
at the network front-end to compensate the robustness under mis-
matched conditions, e.g., using i-vector [6, 7, 8], automatic speaker
codes [9, 10], or external heterogeneous knowledge [11] as addi-
tional input features. The speaker i-vector is a low-dimensional
fixed-length representation of the speaker space, which can rapidly
adapt the neural network in an unsupervised fashion. Extensions of
the i-vector adaptation include acoustic factorization [12] and infor-
mative priors [13].

In addition to the augmented feature models, structure-based
adaptation techniques have also been investigated. The concept of
structural adaptive neural network is to impose interpretable mod-
ules to the structure, exposing meaningful parameters to adapt the
system efficiently. These transformation-based schemes add addi-
tional linear hidden layers as speaker-dependent (SD) transforms
prior to the input layer [14], to hidden layers [15] or prior to the
output layer [16]. In [17], additional bottom normalization layers
along with i-vectors are introduced to project raw acoustic features
into a speaker-normalized space. The activation-based approach [18]
uses the Hermitian polynomial as the adaptable activation function.
Apart from modifying the components of a generic multi-layer per-
ceptron, delicate adaptive network topologies have also been inves-
tigated. [19] introduces a scaling factor on hidden-layer activations
and in [20], the differentiable pooling technique is used to obtain
the speaker-dependent compensation from a hidden-activation can-
didate pool. In [21, 22], a set of conjugated hidden-layer trans-
formations are interpolated with speaker-dependent factors and in
[23], the multi-basis adaptive neural network imposes paralleled sub-
networks as well as an adaptable combination module to handle the
acoustic distortions. However, many of these structured models still
involve a large number of parameters to adapt, hence they would be
over-fitted in rapid adaptation scenarios with limited data.

In this paper, we investigate the methods for rapid adaptation
of DNNs. First, an extended multi-basis system with i-vectors as
auxiliary inputs is proposed. The i-vector-based adaptation provides
supplementary knowledge to trigger the hidden-unit representations
to be insensitive to acoustic distortions, while the structured DNN
framework assumes the incompetence of hidden layers and involves
additional structures to enhance the robustness in multi-style con-
ditions. Thus, the combination of these two different concepts
is expected to obtain even further performance gains. However,
structured neural networks usually require a second decoding pass
in order to acquire sensible hypotheses for optimizing a speaker-



dependent transform. This is not applicable to stringent real-time
systems, like voice search. Meanwhile, the adaptation performance
cannot be guaranteed with hypotheses of poor quality. Beyond the
traditional second-pass framework, a fast and rapid predictive mod-
ule for the structural multi-basis system is put forward to directly
estimate the SD transforms from i-vectors.

The experiments are conducted on the utterance-level unsuper-
vised adaptation of a large vocabulary continuous English broadcast
news transcription task. It is shown that gains are obtained by using
the multi-basis DNN with i-vector inputs for test sets with acous-
tic conditions that match the training one. The predictive adap-
tation module achieves similar performance in low-error-rate sit-
uations and, more importantly, outperforms the traditional tuning
scheme in highly-mismatched scenarios.

The rest of this paper is organized as follows. The i-vector tech-
nique and the multi-basis adaptive one are briefly reviewed in Sec-
tion 2. In Section 3, we present the two types of adaptation combi-
nation: the combined multi-basis system with i-vector input features
and the fast multi-basis transform predictive module from i-vector
representations. Experimental results are reported in Section 4. This
paper is concluded in Section 5.

2. I-VECTORS AND STRUCTURED NEURAL NETWORKS

2.1. I-vector Estimation

Following [12], the i-vector extraction is performed by a type of
model-based CAT estimation [24] where the HMM model is re-
placed by a GMM model, requiring no transcriptions of the data.
The intrinsic variability of phonemes is represented by a canonical
model M which is a GMM universal background model (UBM)
with M mixture components [25]. It is defined by a mean super-
vector of component means µ(m)

0 , diagonal component covariance
matrices Σ(m) and mixture coefficients ω(m). The input acoustic
feature vectors xt ∈ RD are treated as samples generated byM.

For training, we estimate one i-vector for each speaker using all
the data belonging to it and this i-vector is constant across all ut-
terances of the speaker. Each speaker is represented by a point in
the “speaker eigenspace” spanned by the i-vectors. There is a lin-
ear dependence between the speaker-adapted means (i.e. speaker-
dependent super-vectors) and the canonical means, which for a par-
ticular Gaussian component m ∈M is given by

µ(sm) = µ
(m)
0 +M (m)λ

(s)
iv (1)

where µ(sm) is the m-th component of speaker-dependent super-
vector, M (m) is the factor submatrix for component m of size
D × P , representing P bases spanning the subspaces with the
highest variability in the mean super-vector space and λ(s)

iv is the
P -dimensional i-vector of speaker s.

To extract the initial speaker i-vectors, a speaker-dependent (SD)
model using all the data belonging to the speaker is trained for ex-
tracting a mean super-vector. Principal component analysis (PCA)
is then applied to these super-vectors to obtain the speaker i-vectors
that span the P -space. Next, maximum-likelihood estimation of the
model parameters and of the i-vectors is performed. The auxiliary
function to be maximized is

Q(M,λ
(s)
iv ;M̂, λ̂

(s)

iv ) = (2)

− 1

2

∑
s,t,m

γ
(m)
t (s)(xt − µ(sm))TΣ(m)−1(xt − µ(sm))

whereM and λ(s)
iv are the canonical model and i-vectors to be es-

timated; M̂ and λ̂
(s)

iv are the “old” ones. γ(m)
t (s) is the posterior

probability of Gaussian component m at time t determined using

M̂ and the speaker i-vectors λ̂
(s)

iv . The training procedure uses the
Expectation-Maximization (EM) algorithm to estimate the parame-
ters. The reader is referred to [12] for a more detailed presentation
of the i-vector training procedure.

2.2. Multi-basis Adaptive Neural Network

The multi-basis adaptive neural network [23] is a structured neural-
network topology requiring a very small set of adaptive parameters
for rapid adaptation. Different from a conventional multi-layer per-
ceptron, a set of distinct parallel sub-networks are introduced, re-
ferred to as the bases. These bases share the same input and their
outputs are subsequently combined in the combination stage. Op-
tionally, common layers can be introduced before the basis split-
ting or after their combination. One basis consists of several hidden
layers. The neurons between two successive layers are restrictedly
connected in the same basis while no inter-basis connections are al-
lowed.

The combination part is specified as the adaptation transform to
handle acoustic variations among speakers. In this work the interpo-
lation scheme is followed, in which the outputs of the bases are in-
terpolated with speaker-dependent weights before being propagated
to the subsequent layers,

h̄(x
(s)
t ) =

K∑
k=1

λ
(s)
k hk(x

(s)
t ) (3)

where hk stands for the output of the k-th basis andK is the number
of the bases. The interpolation weights are defined as the speaker-
dependent transform, named as the basis weight vector

λ
(s)
mb =

[
λ

(s)
1 , . . . , λ

(s)
K

]T
. (4)

The multi-basis transform λ
(s)
mb for both the training and the testing

phases in this paper is optimized via stochastic gradient descent on
the cross-entropy criterion

LCE = −
∑
s

∑
t∈Is

log p
(
yt|xt;λ

(s)
mb

)
(5)

where Is the index set of the speaker’s frames; yt is the state label
and the gradient is calculated by

∂LCE

λ
(s)
mb

=
∂h̄

T

∂λ
(s)
mb

∂LCE

∂h̄
=
[
h1, . . . ,hK

]T ∂LCE

∂h̄
(6)

where ∂LCE
∂h̄

is given by the back-propagation algorithm. The multi-
basis DNN can be optimized in an adaptive training scheme as de-
scribed in [23]. With the help of this multi-basis configuration, the
bases would then jointly capture and model the diversified charac-
teristics among the regions in the acoustic space.

3. COMBINING I-VECTORS AND MULTI-BASIS DNN

3.1. Multi-basis DNN with I-vector Input Features

The i-vector adaptation approach explicitly informs the neural net-
work of acoustic identifiers along with the acoustic features at a very



primitive stage and expects that the interaction between these in-
homogeneous features would result in robust and compact speaker-
invariant abstraction in higher layers. However, the multi-basis
adaptive neural network delays the adaptation phase to a latter stage
where hidden activations are interpolated. The complementarity of
these different strategies warrants some further investigation.

Fig. 1. Combining Multi-basis DNN with I-vectors. Adaptable mod-
ules are colored in red.
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The proposed multi-basis DNN with i-vector input features is
shown in Fig. 1. The waveform feature x(s)

t , e.g. PLP or filter bank,
is concatenated with the i-vector λ(s)

iv belonging to its associated
speaker to form the input propagated to each of the multiple bases.
The introduced i-vector is expected to reinforce the robustness of
the basis hidden-layer representation. Meanwhile, the reinforced ba-
sis outputs are combined as before following the speaker-dependent
interpolation scheme.

3.2. Predictive Multi-basis Transform Using I-vectors

In the multi-basis neural network, an estimation of the speaker-
dependent transform λ

(s)
mb is required when evaluating an unknown

speaker. Normally, it is optimized according the decoding hypothe-
ses from a sensible speaker-independent (SI) system. A second-pass
scheme is of necessity to firstly obtain the alignments of SI hy-
pothesis, which would not be efficient enough in stringent real-time
systems. Additionally, the performance cannot be guaranteed under
highly-mismatched conditions with hypotheses of poor quality.

The fast predictive estimation module of the multi-basis trans-
form is put forward to prevent these hazards. Apart from the hypoth-
esis alignment, auxiliary indicators like the i-vectors, which contains
rich information of the speaker acoustic properties, can be utilized to
better estimate a multi-basis speaker transform. In this work, a pre-
dictor, as illustrated in the dashed-line part of Fig. 1, is trained to
establish a mapping from the i-vector λ(s)

iv to the basis interpolation
weights λ(s)

mb,
λ

(s)
mb = fpred(λ

(s)
iv ) (7)

where fpred(·) represents the prediction model. The adaptation per-
formance of the multi-basis neural network is then undertaken by the
precision of the prediction mappings, which is irrelevant to the qual-
ity of decoding hypothesis. Besides, the predictive procedure can be
used in the decoding phase in an efficient way.

The mismatch between the distribution of predicted basis
weights and that of the original ones is likely to degrade the per-
formance. In order to reduce the degradation caused by this sort of
difference, an interleaving mode is utilized to update the multi-basis
network and the predictor jointly. In each iteration, the predictor
is trained on the estimated {λ(s)

mb}esti of the training set from the
current multi-basis system; the re-estimated transforms {λ(s)

mb}pred
given by this trained predictor is then used to update the neural
network for the next iteration. The conjugate pair of neural network
and predictor of each iteration is then used in evaluation.

4. EXPERIMENTS

The proposed input-feature combination scheme and the predic-
tive transform approach were tested on a U.S. English broadcast
news (BN) transcription task. Each approach is evaluated for rapid
utterance-level unsupervised adaptation.

4.1. Dataset

The training set of this task included the 144-hour 1996 & 1997
Hub-4 English Broadcast News Speech dataset (LDC97S44,
LDC98S71), consisting of 288 shows with approximately 8k speak-
ers. In evaluation, both the BN testsets dev03 & eval03 as

Table 1. Summary of Evaluation Sets.
BN YTB

Dev03 Eval03 Elect GDev GEval
Total(hrs) 2.7 2.6 8.0 7.4 7.0
AvgUtt(secs) 10.7 10.9 7.9 6.2 6.9

well as three Youtube (YTB) datasets YTBElect, YTBGdev and
YTBGeval released by Google, were used. The utterances of all
the testsets were processed by automatic segmentation and a brief
summary of the resulted durations is illustrated in Table 1. Decoding
was performed with the RT04 tri-gram language model [26].

4.2. Setup

The relevant GMMs, DNNs and our proposed models were trained
or modified on an extended version of HTK Toolkit [27]. The 39-
dimensional PLP+∆+∆∆ features processed by both global cep-
stral mean normalization (CMN) and cepstral variance normaliza-
tion (CVN) were used to train a GMM-HMM model consisting of
6k tied triphone states on the maximum likelihood (ML) estimation.
The features were then extended with the triples using HLDA to train
a minimum-phone-error (MPE) model. This MPE model was used
to obtain the state-level alignment of the training set.

For the SI DNN cross-entropy (CE) system, the input was the
468-dimensional PLP+∆+∆∆+∆∆∆ in a temporal context win-
dow of 9 frames. The neural network consisted of 5 hidden layers
with 1000 nodes in each layer. The DNN parameters were initialized
in a layer-wise discriminative pre-training fashion and subsequently
optimized by back-propagation. 28 shows with about 600 speakers
were used as the cross validation set. The well-tuned CE DNN was
used to initialize the sequential DNN and this SI DNN-MPE system
was then optimized on the MPE criterion.

Meanwhile, the parameters of the CE multi-basis (MB) system
(denoted by +mb) were initialized by the well-trained SI DNN-CE
model and then optimized in an interleaving mode as described in
[23]. The multi-basis system was further tuned on the MPE criterion



to obtain an MB-MPE model. In this paper, the number of basis were
set to 2 and the interpolation weights of each training speaker were
initialized as the 1-of-K vector of i-vector clustering.

For the i-vectors, an SI UBM-GMM model with 2048 mixture
components was initially trained on the training corpus. Speaker-
dependent models were then estimated on the data belonging to each
speaker to extract the speaker-level i-vectors. Focusing on rapid
adaptation, each test utterance was treated as an independent entity
and utterance-level i-vectors were extracted. The dimension was set
to 30 and the i-vectors were globally normalized with zero mean and
unit variance on the training set. The 30-dimensional i-vectors were
then concatenated with the 468-dimensional SI DNN input features
to train the i-vector DNN CE and MPE systems (+iv), following a
similar procedure in the SI settings.

The CE multi-basis DNN with i-vector input features (+iv+mb)
was initialized by the CE i-vector DNN and then updated in the
MB training mode. It was further tuned with two sequential-trained
epochs to obtain the MPE combined system. A support-vector re-
gression model with linear kernels was trained using SVMLight1

over the training set to estimate the speaker-dependent interpolation
weights for each of the MB systems. The predictor and the cor-
responding MB system were then used to evaluate the fast adapta-
tion scheme (*-pred). Moreover, the MB-CE fast predictive systems
were respectively updated in the mode described in Section 3.2 for
two iterations to obtain the refined predictive systems (*-pred-updt).

4.3. Results

The CE decoding performance is reported in Table 2. On the
matched BN testsets dev03 and eval03, the extended MB DNN
with i-vector input features outperformed both of the primary i-
vector and MB systems and gave up to 10% relative improvement
contrasting to the SI baseline. Besides, the predictive schemes pre-
sented a performance similar to both the basic and i-vector-combined
MBs. The comparison of the MB predictive schemes showed that
the refined versions with interleaving updates can slightly enhance
the initial predictive approach.

Table 2. CE Decoding Summary. (Word Error Rate [%])

System BN YTB
Dev03 Eval03 Elect GDev GEval

SI 12.5 10.9 33.8 58.5 62.1
+mb 11.9 10.3 33.8 56.9 61.2
+mb+pred 12.1 10.4 33.6 56.7 60.8
+mb+pred-updt 12.0 10.3 33.6 56.1 60.5
+iv 11.3 10.0 32.8 57.6 61.4
+iv+mb 11.2 9.8 33.3 57.1 61.3
+iv+mb+pred 11.2 9.8 33.5 58.0 61.7
+iv+mb+pred-updt 11.3 9.9 33.4 58.0 61.8

On the mismatched YTB data, the predictive system for the
basic MB was able to acquire improvement compared to the
second-pass decoding scheme on all the three testsets. Especially
on YTBGdev and YTBGeval, the refined fast predictive module
(+mb+pred+updt) reduced the word error rate by 0.8% and 0.7%
(absolute values) respectively, compared with the standard hypoth-
esis tuning method (+mb). This demonstrated the robustness of the
proposed predictive scheme in high-error-rate scenarios.

The MB system with i-vector input features (+iv+mb) did not
outperform the basic MB (+mb) on YTBGdev and YTBGeval. To

1http://svmlight.joachims.org/

Table 3. Average I-vector Distance of Different Datasets.

Trn BN YTB
Dev03 Eval03 Elect Gdev Geval

5.4 5.9 5.8 9.0 10.0 9.4

explain this phenomenon, a comparison of the average euclidean dis-
tance between the test i-vectors and the mean of training ones on
different evaluation sets is shown in Table 3. The BN testsets gave
a similar average i-vector distance as the training set which pointed
out their consistency spanning in the acoustic space. The higher
difference given by the Youtube i-vectors indicated the distortion
of i-vector estimation under the highly-mismatched condition which
was rarely observed in the training set. The distorted i-vector inputs
would incorrectly compensate the hidden representations among the
bases and degrade the performance of the combined i-vector MB
systems.

The performance of the MPE models is summarized in Table 4.
The multi-basis system combined with i-vector inputs outperformed
both of its primary models under the acoustic-matched conditions.
Focusing on the BN testsets, the primary i-vector and multi-basis
systems reduced the word error rate by 3%∼7% and 5%∼10% (rel-
ative values) respectively with respect to the SI system, while the
combined model achieved a 11%∼13% relative word error rate re-
duction. The fast predictive module, however, did not acquire sig-
nificant improvement.

Table 4. MPE Decoding Summary. (Word Error Rate [%])

System BN YTB
Dev03 Eval03 Elect GDev GEval

SI 11.2 10.2 31.7 55.5 59.2
+mb 10.9 9.5 33.4 56.1 61.4
+mb-pred 11.3 10.1 31.5 54.9 58.4
+iv 10.6 9.2 31.8 57.6 60.4
+iv+mb 10.0 8.9 32.1 55.4 60.3

Compared to the CE models, the MPE DNNs are more sensitive
to the acoustic mismatches between training and test sets, because
of the additional tuning epochs on the training set. This resulted in
the degradation of the performance of the primary i-vector & multi-
basis DNN systems on the YTB data. However, on the high-error-
rate YTB sets, the multi-basis predictive approach was still able to
correctly compensate the mismatches obtaining decoding improve-
ment.

5. CONCLUSION

In this paper, we investigate the structured multi-basis adaptive
neural network with i-vector representation for rapid adaptation in
speech recognition. First, the i-vectors are appended to the input
of a multi-basis DNN. Moreover, the i-vectors are used by a pre-
dictor to directly estimate the multi-basis transform, skipping the
previously needed second decoding pass. The proposed approaches
are evaluated on the utterance-level unsupervised adaptation of a
large vocabulary continuous English broadcast news transcription
task. The combination approach presents consistent gains in both
the CE and MPE systems on the BN testsets which match the train-
ing acoustic conditions. Besides, under the highly-mismatched
YTB conditions, the predictive approach of the multi-basis system
outperforms the conventional second-pass decoding scheme.
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