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ABSTRACT

In the state-of-the-art statistical parametric speech synthesis
system, a speech analysis module, e.g. STRAIGHT spectral
analysis, is generally used for obtaining accurate and sta-
ble spectral envelopes, and then low-dimensional acoustic
features extracted from obtained spectral envelopes are used
for training acoustic models. However, a spectral envelope
estimation algorithm used in such a speech analysis module
includes various processing derived from human knowledge.
In this paper, we investigate a deep auto-encoder based, non-
linear, data-driven and unsupervised low-dimensional feature
extraction using FFT spectral envelopes for statistical para-
metric speech synthesis. Experimental results have shown
that a text-to-speech synthesis system using a deep auto-
encoder based low-dimensional feature extraction from FFT
spectral envelopes is indeed a promising approach.

Index Terms— Statistical parametric speech synthesis,
Deep auto-encoder, Spectral envelope, Vocoder

1. INTRODUCTION

Recently, research on statistical parametric speech synthesis
(SPSS) has been significantly advanced due to deep neural
networks (DNNs) with many hidden layers. For instance,
DNNs have been applied to acoustic modeling. Zen et al.
[1] use DNN to learn the relationship between input texts
and extracted features instead of decision tree-based state ty-
ing. Restricted Boltzmann machines or deep belief networks
have been used to model the output probabilities of hidden
Markov model (HMM) states instead of Gaussian mixture
models (GMMs) [2]. Recurrent neural networks and long-
short term memories have been used for prosody modeling
[3] and acoustic trajectory modeling [4].

However it is often said that averaging in SPSS still re-
moves spectral fine structure of natural speech. To allevi-
ate this problem, a low-dimensional spectral feature extrac-
tion from STRAIGHT spectral envelopes based on a deep
auto-encoder (DAE) has been proposed for SPSS [5]. In this
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framework, more precise spectral features are automatically
extracted in a data-driven and unsupervised way than the stan-
dard mel-cepstrum coefficients. We have also proposed a new
DNN system where spectral feature extraction, acoustic mod-
eling and spectral post-filtering are conducted based on sev-
eral DNNs [6, 7].

In the DNN-based automatic speech recognition (ASR)
field, there are several interesting challenges to extract robust
features from raw inputs such as FFT spectra or raw speech
waveforms recently (e.g. [8, 9]) and some of the recent papers
have achieved a relative reduction in word error rates using
a combination of features derived from raw waveforms and
log-mel features [10]. These research results indicate that the
DNN-based approaches have potentials to automatically find
more efficient acoustic features than carefully designed fea-
tures based on perceptual knowledge.

In this paper, motivated by the success of the above ap-
proaches, we focus on a low-dimensional feature extraction
from FFT spectral envelopes for SPSS. Many SPSS systems
are based on advanced vocoders such as STRAIGHT [11]
or WORLD [12]. One of the aims on the use of these ad-
vanced vocoders is to obtain accurate and stable spectral en-
velopes as well as to synthesize a high-quality speech wave-
form. For instance, a spectral envelope estimation algorithm
implemented in the WORLD vocoder performs F0-adaptive
windowing, smoothing of the power spectrum, and spectral
recovery in the quefrency domain for obtaining the accurate
and stable spectral envelopes [13, 14]. It is confirmed that
such the accurate and stable spectral envelope is a good choice
for SPSS. But, in the meantime, it is scientifically interest-
ing to investigate whether the DNN is able to find better fea-
tures from simple spectral amplitude representation compared
to cases where acoustic features are extracted from carefully
processed spectral envelopes used in the advanced vocoders.
For this purpose, we investigate a deep auto-encoder based
feature extraction from FFT spectral envelopes for SPSS and
compare it with SPSS systems based on several spectral enve-
lope estimation techniques, i.e. STRAIGHT spectral analysis
and WORLD spectral analysis with low-dimensional feature
extractors (mel-cepstrum analysis or deep auto-encoder).

The rest of this paper is organized as follows. Section 2
shows the related work using an auto-encoder in the speech
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Fig. 1. A framework for the DNN-based acoustic model.

information processing. Section 3 briefly describes a DNN-
based acoustic model for SPSS. In Section 4, a deep auto-
encoder based low-dimensional spectral parameter extraction
is shown. The experimental conditions and results are shown
in Section 5. Concluding remarks and future works are pre-
sented in Section 6.

2. RELATED WORK USING AN AUTO-ENCODER IN
THE SPEECH INFORMATION PROCESSING

Deep auto-encoder based bottleneck features have been used
by several groups for ASR [15, 16] and a deep denoising auto-
encoder has also verified for noise-robust ASR [17] or rever-
berant ASR tasks [18, 19]. Techniques that are closely related
to this paper are a spectral binary coding approach using a
deep auto-encoder proposed by Deng et al. [20] and a speech
enhancement approach using a deep denoising auto-encoder
where Lu et al. tried to reconstruct a clean spectrum from a
noisy spectrum [21]. In the field of speech synthesis, similar
auto-encoder based bottleneck features were tested for exci-
tation parameters [22, 23] and statistical parametric speech
synthesizers [24, 7].

3. DNN-BASED ACOUSTIC MODEL FOR
STATISTICAL PARAMETRIC SPEECH SYNTHESIS

The DNN-based acoustic models representing the relation-
ship between linguistic and speech features have been pro-
posed for statistical parametric speech synthesis[1, 2, 3, 4].
One of the state-of-the-art DNN-based acoustic models[1] is
briefly reviewed in this section.

Figure 1 illustrates a framework of the DNN-based acous-
tic model. In this framework, linguistic features obtained
from a given text are mapped into speech parameters by a
DNN. The input linguistic features are composed of binary
answers to questions about linguistic contexts and numeric
values such as the number of words in the current phrase,
the position of the current syllable in the word, and durations
of the current phoneme. In [1] the output speech parame-
ters include spectral and excitation parameters and their time
derivatives (dynamic features). By using pairs of input and
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Fig. 2. Greedy layer-wise pre-training for constructing a deep
auto-encoder.
output features obtained from the training dataset, the param-
eters of the DNN can be trained with stochastic gradient de-
scent (SGD)[25]. Speech parameters can be predicted for an
arbitrary text by a trained DNN using forward propagation.

4. A DEEP AUTO-ENCODER BASED ACOUSTIC
FEATURE EXTRACTION

4.1. Basic Auto-encoder

An auto-encoder is an artificial neural network that is used
generally for learning a compressed and distributed represen-
tation of a dataset. It consists of an encoder and a decoder.
The encoder in the basic one-hidden-layer auto-encoder maps
an input vector x to a compressed hidden representation y as
follows:

y = fθ(x) = s(Wx+ b), (1)

where θ = {W,b}. W is a m × n weight matrix and b is a
m dimension bias vector. The function s is a non-linear trans-
formation on the linear mapping Wx+ b. We typically use
sigmoid, tanh or ReLU for the non-linear transformation. The
output from the encoder is a low-dimensional representation
y, which is then passed into the decoder gθ′ to reconstruct
back to the original dimension. The reconstruction is per-
formed by a linear mapping followed by an arbitrary linear or
non-linear function t that employs an n × m weight matrix
W′ and a bias vector of dimensionality n as follows:

z = gθ′(y) = t(W′y + b′), (2)

where θ′ = {W′,b′}. The parameters {θ, θ′} are optimized
such that the reconstructed z is as close as possible to the
original x. mean squared error (MSE) is typically used as the
objective function for SGD to measure the distance between
the input vector x and the reconstructed vector z.

4.2. Deep Auto-encoder

An auto-encoder can be made deeper by stacking multiple
layers of encoders and decoders to form a deep architec-
ture. Pre-training is widely used for constructing a deep



auto-encoder. In pre-training, the number of layers in a deep
auto-encoder increases twice as compare to a deep neural net-
work (DNN) when stacking each pre-trained unit. We restrict
the decoding weight as the transpose of the encoding weight
following [25], that is, W′ = WT where WT denotes the
transpose of W. Each layer of a deep auto-encoder can be
pre-trained greedily to locally minimize the reconstruction
loss of the data. Figure 2 shows the procedure for construct-
ing a deep auto-encoder using layer-by-layer pre-training. In
pre-training, a one-hidden-layer basic auto-encoder is trained
and the encoding output of the locally trained layer is used as
the input to the next basic auto-encoder with a smaller bottle-
neck layer. After all layers are pre-trained, they are stacked
and fine-tuned with SGD to minimize the reconstruction error
over the entire dataset. Note that mean squared error (MSE) is
used as the loss function for both pre-training and fine-tuning.

A deep auto-encoder allows us to automatically extract
robust low-dimensional features from high-dimensional spec-
tral envelopes in a non-linear, data-driven and unsupervised
way. In this paper, we apply the deep auto-encoder to
STRAIGHT, WORLD and FFT spectral envelopes for ex-
tracting low-dimensional features, respectively1.

5. EXPERIMENTS

We have evaluated several low-dimensional feature extraction
techniques using an English database. The database provided
for the Blizzard Challenge 2011 [26], which contains approx-
imately 17 hours of speech data, comprising 12K utterances,
was used for the experiment. All data was sampled at 48 kHz.
200 sentences that are not included in the database were used
as a test set.

We have compared seven systems: HMM, SRT-MCEP,
SRT-DAE, WRD-MCEP, WRD-DAE, FFT-MCEP and FFT-
DAE. Table 1 shows the detailed information of each system.
For obtaining spectral envelopes, spectral analysis techniques
implemented in STRAIGHT vocoder, WORLD vocoder or
the FFT were used for each system. Here, the FFT spectral
envelopes were estimated just using the F0-adaptive window-
ing, followed by basic FFT operation. Aperiocdicity mea-
sures implemented in the STRAIGHT or WORLD vocoder
were also calculated. We have used either mel-cepstrum anal-
ysis or a deep auto-encoder for extracting low-dimensional
spectral features from each of the obtained spectral envelopes.
For acoustic models HMMs [27] for HMM and DNNs [1]
for other systems were used. We have synthesized speech
samples using spectral envelopes, F0 features and aperiod-
icity measures using the STRAIGHT or WORLD vocoder
even for FFT spectral case. In the case of the mel-cepstral
analysis, predicted cepstral coefficients were converted into
spectrum amplitudes to use the these vocoders. In the case
of the auto-encoder, the decoder part was used to converted

1Note that the aim of this paper is to simplify spectral analysis processing
used in the STRAIGHT and WORLD vocoders and use the FFT sepctra as
the inputs to DNN. We do not aim to replace vocoders entirely in this paper.
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Fig. 3. Subjective results.

predicted features into spectrum amplitudes. In this paper,
spectral enhancement techniques such as global variance [28]
or post-filtering [6] were not applied to all systems to reduce
factors considred in the listening test.

We have trained five-hidden-layer DNN-based acoustic
models for SRT-MCEP, SRT-DAE, WRD-MCEP, WRD-DAE,
FFT-MCEP and FFT-DAE. The number of units in each of
the hidden layers was set to 1024. Random initialization was
used in a way similar to [1]. The symmetric five-hidden-layer
auto-encoder were trained for SRT-DAE, WRD-DAE and FFT-
DAE. The numbers of units of the hidden layers were 2049,
500, 60, 500 and 2049. We used a sigmoid function for all
units of hidden and output layers of all neural networks.

For each waveform, we extract its frequency spectra with
2049 FFT points. For each system, 60 dimensional spectral
features were extracted. Spectrum and cepstrum were both
frequency-warped using the Bark scale. Feature vectors for
HMM were comprised of 258 dimensions: 59 dimensional
bark-cepstral coefficients (plus the 0th coefficient), log F0, 25
dimensional band aperiodicity measures, and their dynamic
and acceleration coefficients. For other systems using DNN-
based acoustic models, continuous log F0 interpolated lin-
early for unvoiced regions and voiced/unvoiced parameters
were used as F0 parameters. Thus, 259 dimensional fea-
tures were used as output features of the DNN. Note that log
F0 was the same in all systems so that listeners can focus
on differences of spectral modeling. The context-dependent
labels were built using the pronunciation lexicon Combilex
[29]. The linguistic features for DNN acoustic models were
comprised of 382 dimensions. Phoneme boundaries were es-
timated with the HMM-based speech synthesis system. The
linguistic features and spectral envelopes in the training data
were pre-normalized for training DNNs. The input linguis-
tic features were normalized to have zero-mean unit-variance,
whereas the output spectral amplitudes were normalized to be
within 0.0–1.0.

For subjective evaluation, MUSHRA tests were con-
ducted. Natural speech was used as a hidden top anchor
reference. 24 native subjects have participated in the exper-
iments. Twenty sentences were randomly selected from the
test set for each subject. The experiments were carried out
using professional headphones in a soundproof room.



Table 1. Details of spectral envelope analysis, aperiodicity analysis, feature extractors, acoustic models and synthesis modules
used in each system. Here Mel-cep and DAE mean mel-cepstrum analysis and a deep auto-encoder, respectively.

Systems HMM SRT-MCEP SRT-DAE WRD-MCEP WRD-DAE FFT-MCEP FFT-DAE
Spectral envelope STRAIGHT STRAIGHT STRAIGHT WORLD WORLD FFT FFT

Aperiodicity measure STRAIGHT STRAIGHT STRAIGHT WORLD WORLD WORLD WORLD
Feature Extraction Mel-cep Mel-cep DAE Mel-cep DAE Mel-cep DAE
Acoustic Model HMM DNN DNN DNN DNN DNN DNN

Synthesis STRAIGHT STRAIGHT STRAIGHT WORLD WORLD WORLD WORLD
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Fig. 4. Synthesized running log spectra in each technique.

5.1. Experimental results

Figure 3 shows subjective results in the experiment. The re-
sults for natural speech was excluded from the figures to make
comparison easier.

First we can see from the figure 3 that HMM was rated
lower than other DNN-based speech synthesis systems. This
confirms that the DNN-based acoustic models have pre-
dicted more natural acoustic features as the previous re-
search reported [27]. Compared with the results between
the STRAIGHT vocoder (SRT-MCEP and SRT-DAE) and the
WORLD vocoder (WRD-MCEP and WRD-DAE), the sys-
tems using the WORLD vocoder was rated slightly higher
than STRAIGHT ones although the differences between two
vocoders are not statistically significant. Interestingly, how-
ever, FFT-DAE significantly outperforms all other systems
although FFT-MCEP was rated the lowest among systems
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Fig. 5. Mean of global variance calculated using synthesized
log spectra for all utterances in each technique.

using the WORLD vocoder.
For further analysis of the results, We have plotted parts

of synthesized running log spectra in each technique in fig-
ure 4. We can clearly see from the figure 4 that the systems
using a deep auto-encoder, especially FFT-DAE, outputs
more dynamic trajectory compared with the systems using
mel-cepstrum analysis. Figure 5 shows the mean of global
variance calculated using synthesized log spectra for all test
utterances in each technique. It is well known that a syn-
thesized trajectory is often excessively smoothed due to the
statistical processing and the global variance of the synthe-
sized trajectory tends to be smaller than that of natural speech
[28]. We see that the systems using the auto-encoder have
larger global variance and this trend matches with the results
of our listening test result well. From the figures 4 and 5,
we conclude that FFT-DAE predicted most dynamic spectral
envelops and generated higher quality sounds. These results
indicate that a deep auto-encoder has extracted more efficient
and effective low-dimensional acoustic features for SPSS
even from raw FFT spectral envelopes in the data-driven,
unsupervised way.

6. CONCLUSIONS

In this paper, we have investigated a deep auto-encoder based
feature extraction from raw FFT spectral envelopes for SPSS.
In the experiments we have constructed seven text-to-speech
synthesizers using different acoustic models, spectral analysis
method and low-dimensional feature extractors. Interestingly,
the text-to-speech synthesizer using the FFT-spectral based
deep auto-encoder has outperformed conventional ones used
in the expeirments.

Applying enhancement techniques, e.g. global variance or
post-filtering, to constructed speech synthesizers and the use
of raw speech waveforms are our future work.
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