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ABSTRACT

In recent years, recurrent neural network language models
(RNNLMs) have become increasingly popular for a range of ap-
plications including speech recognition. However, the training of
RNNLMs is computationally expensive, which limits the quantity
of data, and size of network, that can be used. In order to fully
exploit the power of RNNLMs, efficient training implementations
are required. This paper introduces an open-source toolkit, the
CUED-RNNLM toolkit, which supports efficient GPU-based train-
ing of RNNLMs. RNNLM training with a large number of word
level output targets is supported, in contrast to existing tools which
used class-based output-targets. Support fot N-best and lattice-based
rescoring of both HTK and Kaldi format lattices is included.An ex-
ample of building and evaluating RNNLMs with this toolkit ispre-
sented for a Kaldi based speech recognition system using theAMI
corpus. All necessary resources including the source code,docu-
mentation and recipe are available online1.
Index Terms: language model, recurrent neural network, speech
recognition, GPU, open-source toolkit

1. INTRODUCTION

Language models are crucial components in many speech and lan-
guage processing applications, such as speech recognitionand ma-
chine translation. Due to the good performance and efficientimple-
mentation ofn-gram LMs, they have been the dominant language
modelling approach for several decades. However, there aretwo
well know issues associated withn-gram LMs. The first issue is
data sparsity. Sophisticated smoothing techniques are required for
robust parameter estimation [1, 2]. The second issue lies inthenth

order Markov assumption. The predicted word probability isonly
dependent on the precedingn−1 words, while longer range context
dependency is ignored.

Recurrent neural network language models (RNNLMs) project
each word into a compact continuous vector space which uses arel-
atively small set of parameters, and uses recurrent connections to
model long range context dependencies. Hence, RNNLMs provide
a solution for the two keyn-gram issues. Furthermore, RNNLMs
have been shown to produce significant improvements overn-gram
LMs for speech recognition tasks, and this has resulted in their use
for a wide range of applications [3, 4, 5, 6, 7].

Xie Chen is supported by Toshiba Research Europe Ltd, Cam-
bridge Research Lab. The research leading to these results was
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Technology). Supporting data for this paper is available atthe
https://www.repository.cam.ac.uk/handle/1810/253374data repository.
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However, training RNNLMs is computationally very demand-
ing and the resulting slow training speed limits the use of RNNLMs
when processing large amounts of data. In our previous work,
RNNLMs were efficiently trained on GPUs using a novel sen-
tence splicing bunch mode parallelisation algorithm. A significant
speedup of 27 times compared to Mikolov’s RNNLM toolkit [8] run-
ning on a CPU was obtained [9]. In order to reduce the performance
sensitivity of word to class assignment [10] and improve theeffi-
ciency of bunch mode training, RNNLMs with a full output layer
(FRNNLM) were employed [9], in contrast to the widely used class
based RNNLM (CRNNLM) [3].

The softmax normalisation at the output layer heavily impacts
the evaluation speed of FRNNLMs, especially when modellinglarge
vocabularies, that are perhaps number hundreds of thousands of
words. In order to solve this problem, two improved RNNLM train-
ing criteria have been proposed: variance regularisation[11]; and
noise contrastive estimation[12]. Both of these methods allow a con-
stant, history independent normalisation term to be used, and there-
fore considerably increase the RNNLM evaluation speed on a CPU.

This paper presents theCUED-RNNLM toolkit , which in-
cludes the above efficient implementation of GPU based RNNLM
training and improved training criteria. This rest of this paper is
organised as follows. Section 2 gives a brief review of RNNLMs.
Section 3 discusses three existing open-source toolkits for training
neural network language models. The efficient training, evaluation
and implementation of theCUED-RNNLM toolkit are presented in
Sections 4, 5 and 6 respectively. Experiments on a Kaldi speech
recognition system constructed on the AMI corpus are presented in
Section 7. Section 8 draws conclusions and discusses futurework.

2. RECURRENT NEURAL NETWORK LMS

RNNLMs [13] represent the full, non-truncated historyhi =<

wi−1, . . ., w1 > for word wi using a 1-of-k encoding of the pre-
vious wordwi−1 and a continuous vectorvi−2 for the remaining
context. An out-of-vocabulary (OOV) input node can also be used
to represent any input word not in the chosen recognition vocabulary.
The topology of the recurrent neural network used to computeLM
probabilitiesPRNN(wi|wi−1, vi−2) consists of three layers. The full
history vector, obtained by concatenatingwi−1 andvi−2, is fed into
the input layer. The hidden layer compresses the information from
these two inputs and computes a new representationvi−1 using a
sigmoid activation to achieve non-linearity. This is then passed to
the output layer to produce normalised RNNLM probabilitiesusing
a softmax activation, as well as recursively fed back into the input
layer as the “future” remaining history to compute the LM probabil-
ity for the following wordPRNN(wi+1|wi, vi−1).

An example RNNLM architecture with an unclustered, full out-
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Fig. 1. A full output layer RNNLM with OOV and OOS nodes.

put layer is shown in Fig. 1. RNNLMs can be trained using back
propagation through time (BPTT) [14], where the error is propa-
gated through the recurrent connections back for a specific number
of time steps, for example, 4 or 5 [3]. To reduce the computational
cost, a shortlist [15, 16] can be used to limit the output layer to the
most frequent words. To reduce the bias to in-shortlist words dur-
ing RNNLM training and improve robustness, an additional node is
added at the output layer to model the probability mass of out-of-
shortlist (OOS) words [17, 18, 19].

Training of full output layer RNNLMs is computationally ex-
pensive. One popular solution is to use class based RNNLMs [3]. In-
dividual words in the output layer vocabulary are assigned to classes.
As the number of classes and number of words within each classes
are both significantly smaller than the output layer vocabulary, class
based RNNLMs can be efficiently trained on CPUs. However, the
use of class based RNNLM not only introduces performance sensi-
tivity to word classing, it also difficult to parallel the training of ir-
regular sized class specific weight matrices for further acceleration.
In our previous work, full output layer RNNLMs were adopted and
trained efficiently on GPUs in bunch (or minibatch) mode [11,12, 9]
that processes multiple training sentences in parallel. The spliced
sentence bunch technique was used to minimise the synchronisation
overhead between bunch streams introduced by sentence length vari-
ation. The idea of spliced sentence bunch is illustrated in Figure 2.
Multiple sentences are spliced into one of theN streams (N is the
bunch size). During training, an input word vector of dimension N

is formed by taking one word from each stream. The target word
vector is formed by taking the next word in each stream.
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Fig. 2. RNNLM training with spliced sentence bunch

In state-of-the-art ASR systems, RNNLMs are often linearlyin-
terpolated withn-gram LMs to obtain both good context coverage
and strong generalisation [13, 15, 17, 18]. The interpolation weight
λ could be optimised via EM algorithm on a held-out set. For sim-
plicity, λ is kept fixed at 0.5 in this paper. In the above interpolation,
the probability mass of OOS words assigned by the RNNLM com-
ponent is re-distributed with equal probability over all OOS words
to guarantee a valid probability.

3. TOOLKITS FOR NNLM/RNNLM TRAINING

There are various toolkits which implement recurrent neural net-
works, such as Theano2, Torch3, TensorFlow4, Chainer5, and
CNTK [20]. For language modelling, there are also several open-
source toolkits specifically for neural network based language model
training. Three popular toolkits are presented in this section.

CSLM [21] is an efficient implementation of feedforward neural
network language models. It includes CPU and GPU versions that
allow large quantities of training data to be processed using efficient
parallelisation algorithms and resampling techniques.

RNNLM [8] is probably the first RNNLM toolkit designed
specifically for language modelling. It allows class based RNNLMs
to be efficiently trained on CPUs using small amounts of data.The
training speed rapidly reduces as the size of the hidden layer in-
creases [9]. TheRNNLM toolkit also provided recipes for vari-
ous functions including perplexity evaluation, N-best rescoring and
text generation. TheCUED-RNNLM toolkit was initially based on
theRNNLM toolkit and provides similar debugging information and
model format.

RWTHLM [22] provides an implementation of long short-term
memory (LSTM) based RNNLMs and class based output layers are
also used. The toolkit features a more efficient implementation of
CPU based RNNLM training. However, similar issues exist in re-
duced training speed with the increase of hidden layer size.

In this paper, we describe our GPU-based implementation
for efficient RNNLM training of full output layer RNNLMs:
CUED-RNNLM. TheCUED-RNNLM toolkit is implemented in C++,
it is freely available under the BSD license and copyright from the
RNNLM toolkit.

4. TRAINING IN CUED-RNNLM

CUED-RNNLM includes FRNNLM training, evaluation and text gen-
eration via sampling. Both training and sampling require the use of
a GPU, while model evaluation is performed on a CPU.

4.1. Cross Entropy (CE) Training

The conventional objective function used in RNNLM trainingis
based on cross entropy (CE),

J
CE(θ) = −

1

Nw

Nw
∑

i=1

lnPRNN(wi|hi) (1)

whereNw is the number of words in training corpus. RNNLMs
with full output layer are trained on a GPU efficiently using bunch
(i.e. minibatch) mode[9]. However, the softmax layer in output layer

2https://github.com/gwtaylor/theano-rnn
3https://github.com/tomsercu/lstm
4https://github.com/tensorflow/tensorflow/tree/master/tensorflow/models/rnn/ptb
5https://github.com/pfnet/chainer/tree/master/examples/ptb



requires the computation of normalisation term, as shown inEqn
(2), whereai is the weight vector associated with wordwi. The
computation of normalisation termZi is very expensive during both
training and test time.

PRNN(wi|hi) =
ev

T
i−1

ai

∑

j
e
vT
i−1

aj

=
ev

T
i−1

ai

Zi

(2)

One solution to the above problem is to learn a constant, history
independent softmax normalisation term during RNNLM training. If
the normalisation termZi could be approximated as constantD, un-
nomalised RNNLM probabilities in Eqn (3) could be used to provide
a large speed up at test time.

PRNN(wi|hi) ≈
ev

T
i−1

ai

D
(3)

Using this idea, two improved training criteria have been imple-
mented inCUED-RNNLM: variance regularisation (VR) and noise
contrastive estimation (NCE).

4.2. Variance Regularisation (VR)

Variance regularisation explicitly adds the variance of the normal-
isation term into the standard CE objective function [11, 23]. The
associated objective function is given by

J
VR(θ) = J

CE(θ) +
γ

2

1

Nw

Nw
∑

i=1

(ln(Zi)− (lnZ))2 (4)

wherelnZ is the mean of log normalisation term. The second term
added to the CE objective function given in Eqn. (1) models the
variance of the log normalisation term. The parameterγ is used to
tune the effect of the variance term against the standard CE criterion.
At test time, the RNNLM output probabilities can be approximated
by the un-nomalised probabilities in Eqn (3).

4.3. Noise Contrastive Estimation (NCE)

In NCE training, each word in the training corpus is assumed to be
generated by two different distributions [24]. One is data distribu-
tion, which is the RNNLM, and the other is noise distribution, where
unigram is normally used. The objective function is to discriminate
these two distributions over the training data and a group ofran-
domly generated noise samples. This is given by

J
NCE(θ) = −

1

Nw

Nw
∑

i=1

(

lnP (CRNN

wi
= 1|wi, hi)

+

k
∑

j=1

lnP (Cn
w̌i,j

= 1|w̌i,j , hi)

)

(5)

wherewi is theith target word,w̌i,j is thejth noise word generated
for word wi, andk is the number of noise samples.P (CRNN

wi
=

1|wi, hi) is the posterior probability of wordwi is generated by the
RNNLM, andP (Cn

w̌i,j
= 1|w̌i,j , hi) the posterior probability of

word w̌i,j is generated by a noise distribution.
During NCE training, the variance of the normalisation termZi

can be implicitly constrained to be constant. The training procedure
only relates to the target word andk samples in output layer, instead
of the whole output layer. Hence, the output layer computational
cost is no longer sensitive to vocabulary size and is reducedsignif-
icantly. In common with variance regularisation, the un-nomalised
probabilities in Eqn. (3) can be used at test time. Implementation
details can be found in [12].

5. MODEL EVALUATION IN CUED-RNNLM

The test set perplexity (PPL) and word error rate (WER) are used to
evaluate the performance of language models for speech recognition
tasks. TheCUED-RNNLM toolkit provides functions for computing
perplexity, N-best rescoring and lattice rescoring.

5.1. Perplexity Calculation

Perplexity can be calculated using RNNLMs alone, or linearly in-
terpolated withn-gram LMs. Calculating the exact perplexity for
full output RNNLMs using normalised probabilities is computation-
ally inefficient using a CPU: adding GPU perplexity calculations is
future work.

5.2. N-best Rescoring

N-best lists can be generated from word lattices using e.g. the
SRILM toolkit [28]. Then sentence level log likelihoods with the
language model score computed from an RNNLM can be calculated
and the N-best lists reranked. Note that the un-nomalised probability
in Eqn 3 can be applied when using VR or NCE trained RNNLMs.

5.3. Lattice Rescoring

Lattice rescoring using RNNLMs is also supported. Models trained
using CUED-RNNLMs can be applied using an extension added to
the HTK 3.5 [25] lattice processing tool HLRescore. The lattice
rescoring extension is also available as a patch to HTK 3.4.1. Via a
conversion tool, Kaldi [26] format lattices are also supported.

6. OTHER FEATURES

An RNNLM can be used to generate a large quantities of texts by
sampling [27, 29]. Ann-gram LM can be then trained on the gener-
ated text which is interpolated with a baseline LM. The resulting LM
can be applied directly for first-pass decoding and/or lattice rescor-
ing as an approximation to the original RNNLM.

There are several other features inCUED-RNNLM. RNNLMs
with more than one hidden layer are supported. Currently, only the
first hidden layer is allowed to have recurrent connections.Addi-
tional values can be appended to the input layer, such as topic fea-
tures [30]. Both sentence independent and dependent mode train-
ing of RNNLMs are implemented. In sentence independent mode
RNNLM training, the history vectorvi−2 in input layer is reset to
an initial value (e.g. 0.1) at the beginning of each sentence. For
sentence dependent RNNLM training, the sentence boundary is pro-
cessed as a normal word without resetting the history. Sentence in-
dependent RNNLM training is used by default.

In many applications, the training data is from several sources.
The ordering of training data presented in RNNLM training can sig-
nificantly impact performance [31]. For good performance onin-
domain test data, it is advisable is to present the out-of-domain data
to the network first during RNNLM training, before the more impor-
tant in domain training data is processed. For this reason, the training
data is not randomly shuffled during training. It is therefore recom-
mended that the sentence order is randomised for each sourceof data
as a pre-processing step, while keeping the order of data sources.

The toolkit requires no other third-party libraries exceptthe stan-
dard NVIDIA CUDA library for GPU based computation. The
debugging information and output is similar to those used bythe
RNNLM toolkit [8]. A detailed description of the command options
can be found online in the toolkit documentation.



7. EXPERIMENTS

Experiments are conducted on the AMI meeting corpus [32] to eval-
uated the performance of different types of RNNLM in a speech
recognition context. In total 78 hours of speech was used in acoustic
model training consisting of about 1M word of acoustic transcription
(including sentence start and end). In addition eight meetings were
kept from the training set and used as the development and test sets.

A Kaldi acoustic model training recipe featuring sequence train-
ing [33] was applied for deep neural network (DNN) training.A
FMLLR transformed MFCC feature was used as input and 4000
clustered states (senones) were used as clustered as target. The DNN
was trained with 6 hidden layers, each layer with 2048 hiddennodes.

The first part of the Fisher corpus of 13M words was also used to
further improve language modelling performance. A 49k wordde-
coding vocabulary was used. A 33k RNNLM input vocabulary was
constructed from the intersection between the decoding vocabulary
and all words present in the LM training data. The 22k most fre-
quent words were then selected as output vocabulary. The BPTT al-
gorithm is used in RNNLM training with the error back-propagated
for 5 previous words. All RNNLMs in this paper use one hidden
layer. On average 10 epochs of training are required to reachconver-
gence. All LMs presented in this section were trained on the com-
bined (AMI+Fisher) 14M word training set. Experimental results
using only the 1M word AMI transcriptions can be found in the doc-
umentation online.

The first experiment is to evaluate the performance of RNNLMs.
A pruned 3-gram LM was used in the first-pass decoding and fol-
lowed by lattice rescoring using an un-pruned 4-gram LM. During
RNNLM training, the AMI corpus (1M) was presented after the
Fisher data (13M). RNNLMs with 512 hidden nodes were trained
using the cross entropy criterion. Table 1 shows the performance
of RNNLMs trained by both theRNNLM andCUED-RNNLM toolk-
its. RNNLMs give significant perplexity and word error rate (WER)
improvements over the baseline 4-gram LM. The full output layer
RNNLM trained byCUED-RNNLM toolkit slightly outperformed the
class based model trained withRNNLM. Rescoring lattices and 50-
best lists gave comparable 1-best (Viterbi) performance. An addi-
tional WER reduction of 0.2% absolute was obtained by confusion
network (CN) [34] decoding using RNNLM rescored lattices, while
CN decoding using the rescored 50-best lists gave no improvement.

LM Re PPL WER
Type score dev eval dev eval

3g - 84.5 79.6 24.2 24.7
4g lattice 80.3 76.3 23.7 24.1

+CRNN
lattice

70.5 67.5
22.4 22.5

50 best 22.4 22.6

+FRNN
lattice

69.8 67.0
22.0 22.3

50 best 22.2 22.5

Table 1. Performance of CRNNLMs (trained withRNNLM) and
FRNNLMs (trained withCUED-RNNLM).

The next experiment investigates the performance of FRNNLMs
trained using various criteria when using 50-best rescoring. The
Fisher and AMI corpora were shuffled separately before beingcon-
catenated into single training data file. Shuffling gave a small reduc-
tion of WER6. The performance of VR and NCE trained RNNLMs
are shown in Table 2. RNNLMs trained using CE, VR and NCE

6No improvements obtained on CRNNLMs using data shuffling.

respectively were found to give comparable performance. Inorder
to obtain stable convergence, the NCE based training required two
more epochs than the CE baseline.

Train PPL WER
Crit dev eval dev eval

CE 67.5 63.9 22.1 22.4
VR 68.0 64.4 22.1 22.4

NCE 68.5 65.1 22.1 22.4

Table 2. FRNNLMs trained with various criteria

Table 3 presents the training and evaluation speed of RNNLMs.
A single process on a computer with dual Intel Xeon E5-2680
2.5GHz processors was used for CPU-based CRNNLM training and
evaluation. The NVIDIA GeForce GTX TITAN GPU was used
for training FRNNLMs. As expected, FRNNLM training on GPU
is much faster than CRNNLM training on CPU and NCE training
provided a further speedup. FRNNLMs trained using the VR and
NCE criteria were also found to be more than 2.5 times faster than
CRNNLMs at test time.

RNN Train Train(GPU) Test (CPU)
Type Crit Speed(kw/s) Speed(kw/s)

CRNN CE 0.45 6.0

FRNN
CE 11.5 0.32
VR 11.5 15.3

NCE 20.5 15.3

Table 3. Training and testing speed of RNNLMs

The training speed heavily depends on the hidden layer size.
Table 4 compares the training speed using a varying number of
hidden nodes withRNNLM andCUED-RNNLM. It can be seen that
CRNNLMs are efficient when a small sized hidden layer is used.
However, the training speed decreases rapidly as the hiddenlayer
size increases. When the hidden layer size is increased from128 to
2048 nodes, the number of words processed per second is decreased
by a factor of 340 to 12 words for CRNNLM. In contrast, the train-
ing speed of FRNNLMs were found less sensitive to such increase
in hidden layer size. This shows the superior scaling to network size
of CUED-RNNLM.

Toolkit
# Hidden node

128 256 512 1024 2048

RNNLM 4.1 1.7 0.45 0.095 0.012
CUED-RNNLM 19.8 14.2 11.5 6.6 3.7

Table 4. Train Speed (kw/s) against number of hidden nodes

8. CONCLUSION AND FUTURE WORK

We have introduced theCUED-RNNLM toolkit which provides an ef-
ficient GPU-based implementation for training RNNLMs. RNNLMs
with full output layers are trained using a variance regularisation or
noise contrastive estimation approach on a GPU and then efficiently
evaluated on CPU. There are several features that are planned to be
added in future. These include long short term memory (LSTM)
based RNNLM [5], and also supporting more flexible RNNLM
model structures. All resources related to this toolkit canbe down-
loaded from http://mi.eng.cam.ac.uk/projects/cued-rnnlm/.
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