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ABSTRACT

This paper studies graph-based active learning, where the goal is to
reconstruct a binary signal defined on the nodes of a weighted graph,
by sampling it on a small subset of the nodes. A new sampling al-
gorithm is proposed, which sequentially selects the graph nodes to
be sampled, based on an aggressive search for the boundary of the
signal over the graph. The algorithm generalizes a recent method
for sampling nodes in unweighted graphs. The generalization im-
proves the sampling performance using the information gained from
the available graph weights. An analysis of the number of samples
required by the proposed algorithm is provided, and the gain over the
unweighted method is further demonstrated in simulations. Addi-
tionally, the proposed method is compared with an alternative state-
of-the-art method, which is based on the graph’s spectral properties.
It is shown that the proposed method significantly outperforms the
spectral sampling method, if the signal needs to be predicted with
high accuracy. On the other hand, if a higher level of inaccuracy
is tolerable, then the spectral method outperforms the proposed ag-
gressive search method. Consequently, we propose a hybrid method,
which is shown to combine the advantages of both approaches.

Index Terms— active learning on graphs, adaptive and non-
adaptive sampling of graph signals, sampling complexity

1. INTRODUCTION

This paper studies the problem of binary label prediction on a graph.
In this problem, we are given a graph G = (V, E), where the edges
E (which can be weighted) capture the similarity relationship be-
tween the objects represented by the nodes V. Each node has an ini-
tially unknown label associated with it, given by a signal f : V' —
{—1,+1}. The goal is to reconstruct the entire signal by sampling
its values on a small subset of the nodes. This is achievable when
the signal bears some degree of smoothness over the graph, which
means that similar objects are more likely to have the same label.
Active learning aims to minimize the number of samples needed by
selecting the most informative nodes.

This problem arises in many machine learning applications,
where there is an abundance of unlabeled data but labeled data is
scarce and expensive to obtain, for example, requiring human exper-
tise or elaborate experiments. Active learning is an effective way to
minimize the cost of labeling in such scenarios [1]]. A graph based
approach to this problem starts by creating a graph where the nodes
correspond to the data points X = {x1, ..., Xy} and the edges cap-
ture the similarity between them. Typically, a sparse graph which
connects each data point to few of its most similar neighbors is used.
The unknown labels f; € {—1, 41} associated with the data points
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define a binary function on the nodes. In datasets of interest, the
signal is often notably smooth on the graph.

There are two approaches to active learning on graphs. The first
approach focuses on identifying the nodes near the boundary region,
where the signal changes from 41 to —1. The methods with this ap-
proach [2L13] sample nodes sequentially, i.e., the nodes to be sampled
next are chosen based on the graph structure as well as previously
observed signal values. The second approach [4} 15} 6], in contrast,
utilizes global properties of the graph in order to identify the most
informative nodes, and sample them all at once. Such global ap-
proaches usually focus on providing a good approximation of the
signal, rather than exact recovery. It is also possible to combine the
two approaches, for example, as in [7].

The first contribution of this paper is a new sampling algorithm,
called weighted S which takes the boundary sampling approach.
The weighted S? algorithm is a generalization of a recently pro-
posed algorithm called S2 [2]], which is defined only for the case of
unweighted edges. The purpose of the generalized algorithm is to
take advantage of the additional information available in the form of
the edge weights, in order to reduce the sampling complexity. We
characterize the sampling budget required for signal recovery by the
weighted S? algorithm, as a function of the complexity of the sig-
nal with respect to the graph. We explain how this generalization
can be useful in reducing sampling complexity, and demonstrate a
significant reduction (nearly 25% in one dataset), when neighboring
nodes of opposite labels are considerably less similar to each other
than identically labeled neighbors.

We further compare the sampling complexity of the weighted
S? algorithm with an alternative state-of-the-art method called the
cutoff maximization method [4]. Unlike the S methods, which aim
for a complete recovery of the signal by aggressively searching for
the boundary nodes, the cutoff maximization method is focused only
on providing a good approximation of the signal by ensuring that
the unsampled nodes are well-connected to the sampled nodes [8].
This method finds a sampling set by optimizing a spectral function
defined using the graph Laplacian. We perform the comparison on
three realistic data sets, and observe two interesting results:

1. The cutoff maximization method does not discover the entire
boundary (i.e, nodes with oppositely labeled neighbors) unless the
sampling set contains almost all the nodes. In contrast, the number
of nodes required by the S? methods to discover the boundary is not
considerably larger than the number of boundary nodes.

2. When the sampling budget is quite limited, the cutoff maxi-
mization method provides a much better approximation of the signal.
There exists a threshold in terms of the sampling budget that deter-
mines which method offers better accuracy. Conversely, the tolerable
degree of inaccuracy determines which of the methods offer lower
sampling complexity.

Motivated by the second observation, we propose a hybrid ap-
proach (similar in spirit to [7]) which samples the first few nodes



with the cutoff maximization method to approximate the boundary
and then switches to the weighted S? method to refine the approxi-
mation. The experiments suggest that the hybrid approach combines
the advantages of both methods.

2. S? ALGORITHM FOR WEIGHTED GRAPHS

The S? algorithm was proposed in [2] for unweighted graphs. In this
section we describe the principle of the algorithm, and then general-
ize the algorithm to weighted graphs. In the next section we analyze
the query complexity of the generalized algorithm.

2.1. Original S? Algorithm

The goal of the algorithm is to find the signal f. To do this, the algo-
rithm operates by finding the edges that connect oppositely labeled
nodes. These edges are called cut edges, and together the set of cut
edges is called the cut. The algorithm incrementally identifies the
cut, with the rationale that once the entire cut is identified, the signal
is completely recovered. To find the cut, the algorithm maintains a
copy of the graph GG, and each time it samples a node that neighbors
previously sampled nodes of opposite label, it removes the newly
discovered cut edges from the graph copy. This way, the remaining
graph copy contains only the undiscovered part of the cut, and the
algorithm can more easily focus on discovering these edges.

The main idea of the algorithm is to look for a pair of oppositely
labeled nodes, and then to find the cut edge on the shortest path be-
tween the nodes, using a binary search procedure. The algorithm
begins with a random sampling phase. At this phase the algorithm
queries a random node, according to the uniform distribution. Af-
ter each sample, the algorithm checks whether the sampled node has
any previously sampled neighbors of opposite label. If such neigh-
bors exist, then the connecting edges are newly discovered cut edges,
and they are removed from the graph. After checking and potentially
removing newly discovered cut edges, the algorithm checks whether
the remaining graph contains any pair of connected nodes of op-
posite labels. If no such pair exists, the algorithm proceeds with a
random sample. If pairs of connected, oppositely labeled nodes do
exist, the algorithm looks for the shortest path among all the paths
connecting such pairs, and sample the node in the middle of that path
(breaking ties arbitrarily). After each sampling operation, either a
random sample or a bisecting sample, the algorithm again removes
all newly discovered cut edges.

The S? algorithm is described more formally in Algorithm El
The algorithm is given a budget, which determines the number of
queries to perform. Once the budget is exhausted, the algorithm calls
a label completion function, which predicts the labels of the unsam-
pled nodes. Several such label completion algorithms are known,
such as the POCS method in [9]]. The S2 algorithm uses a function
called Middle Shortest Path (MSP), which returns the node in the
middle of the shortest path among all the paths connecting a pair of
oppositely labels nodes in the remaining graph.

2.2. Generalization for Weighted Graphs

The 52 algorithm in [2] is defined only for unweighted graphs. Since
many learning scenarios provide a weighted graph, we extend the al-
gorithm to exploit the additional available information by modifying
the MSP function in the algorithm. Our modification is based on the
assumption that the signal is smooth, which means that high-weight
edges connect mostly nodes of the same label. Therefore, the weight
of cut edges is generally low.

In the unweighted S algorithm, each MSP query reduces the
number of nodes in the shortest of the paths between any two oppo-

Algorithm 1 S? Algorithm

Inputs: Graph G, BUDGET < n.
L+ 0
while 1 do
2 < Randomly chosen unlabeled node.
do
Add (z, f(x)) to L.
Remove newly discovered cut edges from G.
if |L| = BUDGET then
return LabelCompletion(G, L)
end if
while x + MSP(G,L) exists
end while
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Fig. 1: An illustration of advantage of weighted S? over unweighted S2.

sitely labeled nodes by approximately one half. The main idea in our
generalization is to take advantage of the low weights of cut edges
in order to reduce this number by more than a half with each query.
To do this, we first switch our perspective, for convenience, from
the edge weights to the distances associated with the edges, which
are inversely proportional to the weights. The distance between non-
neighboring nodes is defined as the sum of the lengths of the edges
in the shortest path connecting the nodes. Since the weights are a
decreasing function of the distances, it follows that cut edges are
typically longer than other edges. We take advantage of this fact
by modifying the MSP function to sample the node closest to the
midpoint of the path, where the midpoint is computed in terms
of length, rather than the number of edges in the path. With each
query, the proposed sampling rule can potentially reduce the number
of nodes along the shortest of the paths between any two oppositely
labeled nodes by more than half if the cut edges contribute signifi-
cantly more than the non-cut edges to the length of the path. Thus,
ultimately it requires less samples to discover a cut edge. This intu-
ition is demonstrated in Figure[T} In this example, the nodes labeled
+1 are connected with an edge of length /2, the nodes labeled —1
are connected with an edge of length [ and the cut edge is of length
3l. Given the labels of the end nodes of this path, the binary search
phase of the unweighted S algorithm needs to sample labels of 3
extra nodes to discover the cut edge. The weighted S* algorithm, on
the other hand, finds the cut edge with only 2 samples. This type of
situation arises more prominently in an unbalanced data set, where
the number of nodes in one class is much larger than the other. The
advantage of weighted S algorithm in such a case is experimentally
verified in Section

3. ANALYSIS OF THE WEIGHTED S? ALGORITHM
3.1. Notation

Note that f partitions the vertices of G into a collection of connected
components with identically labeled vertices. Let Vi, Va, ..., Vi be
these k& connected components. Notice that the first node that S?
queries in each collection V; is often queried randomly, and not by a
bisection query. Define

If 8 is small, more random queries are required by S2. Let C be the
set of cut edges in G. The length of the shortest cut edge in G is
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Fig. 2: The interval of interest is at least halved after two queries.

denoted by lcu.. Let OC be the set of nodes which share an edge with
at least one oppositely labeled node. The nodes in JC' are called
boundary nodes.

For 1 < i < j <k, let C,; be the subset of C for which each
edge {z,y} € C; satisfies ¢ € V; and y € Vj. If C; ;5 is not empty
for some 1 < ¢ < j < k, then it is called a cut component. The
number of cut components is denoted by m. For a pair of nodes v
and v2, let d(v1,v2) denote the length of the shortest path between
v1 and v2. Define I, = maxy, vyev d(vi,v2).

3.2. Cut Clustering

For nodes x,y € V, let d°(z, y) be the length of the shortest path
connecting x and y in G. Lete; = {x1,y1} and ez = {x2,y2} bea
pair of cut edges in G such that f(z1) = f(z2) and f(y1) = f(y2).
Define
S(er, e2) = d" (@1, m2) + d°7 (y1, y2) + max{le,, le,

where G — C'is the graph G with all the cut edges removed. Let
H, = (C, ) be the meta graph whose nodes are the cut edges of
G, and {e,e'} € £ iff §(e,e’) < r. Let I, be the smallest number
for which H;,, has m connected components. The motivation for the
definition of [,; is demonstrated in the following lemma.

Lemma 1. Consider a case in which after the removal of an edge e
by the weighted S? algorithm, there exist an undiscovered cut edge
¢’ in the same cut component of e. Then the length of the shortest
path between two oppositely labeled nodes in the remaining graph
is at most ...

Proof. Consider the connected component of the meta graph H;,
that contains the removed cut edge (as a meta node). By the as-
sumptions of the lemma, there must be at least one meta edge in
this connected component that connects a discovered cut edge to an
undiscovered cut edge. This meta edge corresponds to a path length
at most [,; in the remaining graph, proving the lemma. O

3.3. Query Complexity

Theorem 1. Suppose that a graph G = (V, E) and a signal f are
such that the induced cut set C' has m components with cut cluster-
ing l.. Then for any € > 0, the weighted S2 will recover C with
probability at least 1 — € if the BUDGET is at least

m [2log2 (%ﬂmamfm) [210g2 (zliﬂ*

The proof of Theorem [I] uses the fact that after a pair of con-
nected and oppositely labeled nodes is found, the number of queries
until a boundary node is sampled is at most logarithmic in (I/lcu),
where [ is the length of the path between the nodes. We show this
fact in the following lemma.

log(1/(Be))

Lemma 2. The cut-edge of length l.. is found after no more than
r= [2 log, (%)-‘ aggressive steps.

Proof. In Figure[2] let C and D denote the queried nodes, such that
C is sampled first. Let E denote the midpoint of the interval between
A and B, where there may not be a node. By considering all the
cases based on labels of C' and D and their positions relative to F,

log(1/(1—-8))’

it can be shown that after two queries, the length of the interval of
interest (i.e., the interval containing the cut-edge) is at least halved.
The details are omitted in the interest of space.

After ¢ (where ¢ is even) queries, the length of the interval of
interest is at most 21% Note that the cut-edge is found when the
length of the interval of interest is less than or equal to ley. If 7 is the
maximum number of queries required to locate the cut-edge, then

l l
9z = lw =7 = {2 log, (l—>-‘ (1)
cut

O
Proof of Theorem[l] The random sampling phase follows the same
. : . log(1 €
argument as in [2]], which gives the term %.

A sequence of bisection queries that commences after a ran-
dom query or an edge removal, and terminates with an edge re-
moval, is call a run. In each run, at least one boundary node is
being queried. Therefore, the number of runs is no greater than
|0C|. In each cut component, after the first cut edge and boundary
node are discovered, the rest of the boundary nodes are discovered

in [2 log, (llc—':lﬂ queries each, according to Lemmas and For
discovering the first cut edge in each cut components, we trivially
bound the number of queries by [2 log,, (;ﬁ)—‘ . Since there are m
cut components, we bound the total number of bisection queries by

m [2 log, (;—ﬂ +(10C] — m) [2 log, <lLﬂ ‘

4. EXPERIMENTS

We consider the following graph based classification problems:
1. USPS handwritten digit recognition [10]: For our experiments,
we consider two binary classification sub-problems, namely, 7 vs.
9 and 2 vs. 4, consisting of 200 randomly selected images of each
class represented as vectors of dimension 256. The distance be-
tween two data points is d(z,j) = ||xi — x;||. An unweighted
graph G is constructed by connecting a pair_of nodes (i,7) if j
is a k-nearest neighbor (k-nn with k& = 4) E] of i or vice versa.
A weighted dissimilarity graph G4 is defined to have the same
topology as G but the weight associated with edge (i, 7) is set to
d(i,j). A weighted similarity graph G, is defined to have the
same topology as G but the weight associated with edge (i, 7) is set
to w(i,j) = exp (—d(i,§)*/207). The parameter o is set to be
1/3-rd of the average distance to the k-th nearest neighbor for all
datapoints.

2. Newsgroups text classification [11]: For our experiments,
we consider a binary classification sub-problem Baseball vs. Hockey,
where each class contains 200 randomly selected documents. Each
document ¢ is represented by a 3000 dimensional vector x; whose
elements are the tf-idf statistics of the 3000 most frequent words
in the dataset [8]]. The cosine similarity between a pair data points

xi.%; )

(4,7) is given by w(i,j) = e The distance between them
i 3

is defined as d(%,j) = /1 — w(%, 5)?. The k-nn unweighted graph
G (with k = 4), the dissimilarity graph G4 and the similarity graph
G, are constructed using these distance and similarity measures as
in the previous example.

In addition to the above datasets, we generate a synthetic two
circles dataset, shown in Figure ] in order to demonstrate the ad-
vantage of weighted S? over unweighted S2. Tt contains 900 points

'Due to lack of space, we do not study the effect of k in detail.



Table 1: Number of samples needed to discover all the cut edges. S? methods involve random sampling. Average over 30 trials is reported.

Data n |C| | 10C| Wm Unweighted S% | Weighted S? | Cutoff | Hybrid ; Thswitch
Two circles 1000 | 129 160 4.0533 237 179.2 999 272 1 128
7v9 400 154 180 1.1074 312.37 312.07 399 277 47
2v4 400 29 39 1.1183 49.13 48.37 394 76 ' 38
Baseball v Hockey | 400 | 255 235 1.0691 368.07 368.17 399 384 ‘ 42
05 : : 1 0.4 05
Cutoff Cutoff Cutoff
504 Unweighted S? 5 Unweighted S? 504 Unweighted S?
s Weighted S2 508 Weighted S2 s Weighted S
S03 — Hybrid S — Hybrid S03 — Hybrid
2 oz 2
802 8 802
o o o
0.1 0.1 o
% 50 100 150 200 250 300 350 400 % 50 100 150 200 250 % 50 100 150 200 250 300 350 400
Number of samples Number of samples Number of samples
@7v.9 (b)2v. 4 (c) Baseball v. Hockey

Fig. 3: Classification error against the number of sampled nodes.

0.99951

1.3373e-131

Fig. 4: A synthetic two circles dataset

in one class (marked red) evenly distributed on the inner circle of
mean radius 1 and variance 0.05 and 100 points in the second class
(marked blue) on the outer circle of mean radius 1.1 and variance
0.45. A 4-nn graph is constructed using the Euclidean distance be-
tween the coordinates of the points.

We compare the performance of the following active learning
methods: (1) unweighted S? method [2] with graph G, (2) weighted
S? method with dissimilarity graph Gy, (3) cutoff maximization
method [8] with similarity graph G, and (4) a hybrid approach
combining cutoff maximization and weighted S? method. After
the nodes selected by each method have been sampled, we recon-
struct the unknown label signal using the approximate POCS based
bandlimited reconstruction scheme [8] to get the soft labels. We
threshold these soft labels to get the final label predictions. The hy-
brid approach uses the non-adaptive cutoff maximization approach
in the beginning and switches to the weighted S? method after sam-
pling a certain number of nodes nwich. In order to determine nswicch,
after sampling the i-th node with the cutoff method, we compute

(fi fi—1)
&I
bels. Once this value falls below below 0.001, indicating that the
newly added label only marginally changed the predictions, hybrid
approach switches to weighted S2.

Table[T]lists the number of samples required by each of the sam-

where f; denotes the vector of predicted soft la-

pling methods to discover all the cut edges using the observed labels.
It shows that weighted S? can reduce the sample complexity signif-
icantly (by 25%) compared to unweighted S? if the ratio of mean
length of cut edges and mean length of non-cut edges is high as is
the case in the unbalanced two circles dataset. In rest of the datasets,
the gain offered by weighted S? is negligible since the cut edges
are only slightly longer than non-cut edges and as a result, taking
lengths into account in the bisection phase does not offer much ad-
vantage. We also observe that the number of samples required by
the weighted S? method is close to the size of the cut |9C/| in most
of the datasets. Tablealso shows that the adaptive methods S and
weighted S? are very efficient at recovering the entire cut exactly,
compared to the non-adaptive cutoff maximization method.

In practice, it is not necessary to reconstruct the signal exactly
and some reconstruction error is allowed. Figure [3] plots the clas-
sification error against the number of sampled nodes. It shows that
the classification error of the cutoff maximization method decreases
rapidly in the early stages of sampling when very few samples are
observed. However, the decrease is slow in later stages of sampling.
S? methods, on the other hand, are good at reducing the error in the
later stages, but performs poorly with only a few samples. The fig-
ure also shows that the hybrid method performs as well as the better
method in each region.

5. CONCLUSIONS

The paper generalizes the S? algorithm for the case of weighted
graphs. The sampling complexity of the generalized algorithm is
analyzed, and the gain over the unweighted version is demonstrated
by simulation. Additional experiments identify the region of toler-
able reconstruction error in which the S? algorithms outperforms
a graph frequency based global approach. A hybrid approach is
proposed with the advantages of both methods. It remains open
to analytically characterize of the gain of the weighted S® method
over the unweighted version. Another interesting avenue for future
work is to provide a performance analysis for the spectral sampling
method which can suggest an optimal switching criterion for the hy-
brid method.
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