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ABSTRACT
In this paper we present an approach to polyphonic sound event

detection in real life recordings based on bi-directional long short
term memory (BLSTM) recurrent neural networks (RNNs). A sin-
gle multilabel BLSTM RNN is trained to map acoustic features of
a mixture signal consisting of sounds from multiple classes, to bi-
nary activity indicators of each event class. Our method is tested
on a large database of real-life recordings, with 61 classes (e.g. mu-
sic, car, speech) from 10 different everyday contexts. The proposed
method outperforms previous approaches by a large margin, and
the results are further improved using data augmentation techniques.
Overall, our system reports an average F1-score of 65.5% on 1 sec-
ond blocks and 64.7% on single frames, a relative improvement over
previous state-of-the-art approach of 6.8% and 15.1% respectively.

Index Terms— Recurrent neural network, bidirectional LSTM,
deep learning, polyphonic sound event detection

1. INTRODUCTION

Sound event detection (SED), also known as acoustic event detec-
tion, deals with the identification of sound events in audio record-
ings. The goal is to estimate start and end times of sound events,
and to give a label for each event. Applications of SED include for
example acoustic surveillance [1], environmental context detection
[2] and automatic audio indexing [3].

SED in single-source environment is called monophonic detec-
tion, which has been the major area of research in this field [4]. How-
ever, in a typical real environment it is uncommon to have only a
single sound source emitting at a certain point in time; it is more
likely that multiple sound sources are emitting simultaneously, thus
resulting in an additive combination of sounds. Due to the presence
of multiple and overlapping sounds, this problem is known as poly-
phonic detection, and the goal of such a SED system is to recognize
for each sound event its category (e.g., music, car, speech), and its
beginning and ending. This task is much more challenging than the
monophonic detection problem, because the sounds are overlapping
and the features extracted from the mixture do not match with fea-
tures calculated from sounds in isolation. Moreover, the number of
sources emitting at any given moment (polyphony) is unknown and
potentially large.

Initial approaches to polyphonic SED include traditional meth-
ods for speech recognition, such as the use of mel frequency cep-
stral coefficients (MFCCs) as features, with Gaussian mixture mod-
els (GMMs) combined with hidden Markov models (HMMs) [5, 6].
A different type of approach consists of extracting and matching the
sounds in the input to templates in a dictionary of sounds. This
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Fig. 1: Polyphonic sound event detection with BLSTM recurrent
neural networks.

can be achieved through sound source separation techniques, such
as non-negative matrix factorization (NMF) on time-frequency rep-
resentations of the signals. NMF has been used in [7] and [8] to
pre-process the signal creating a dictionary from single events, and
later in [6] and [9] directly on the mixture, without learning from iso-
lated sounds. The work in [9] was extended in [10] making learning
feasible for long recordings by reducing the dictionary size.

Other approaches are based on spectrogram analysis with image
processing techniques, such as the work in [11] that studies poly-
phonic SED using generalized Hough transform over local spectro-
gram features.

More recent approaches based on neural networks have been
quite successful. The best results to date in polyphonic SED for
real life recordings have been achieved by feedforward neural net-
works (FNNs), in the form of multilabel time-windowed multi layer
perceptrons (MLPs), trained on spectral features of the mixture of
sounds [12], temporally smoothing the outputs for continuity.

Motivated by the good performance shown by the FNN in [12],
we propose to use a multilabel recurrent neural network (RNN) in the
form of bi-directional long short-term memory (BLSTM) [13, 14]
for polyphonic SED (Fig. 1). RNNs, contrarily to FNNs, can directly
model the sequential information that is naturally present in audio.
Their ability to remember past states can avoid the need for tailored
postprocessing or smoothing steps. These networks have obtained
excellent results on complex audio detection tasks, such as speech
recognition [15] and onset detection [16] (multiclass), polyphonic
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piano note transcription [17] (multilabel).
The rest of the paper is structured as follows. Section 2 presents

a short introduction to RNNs and long short-term memory (LSTM)
blocks. We describe in Section 3 the features used and the proposed
approach. Section 4 presents the experimental set-up and results on a
database of real life recordings. Finally, we present our conclusions
in Section 5.

2. RECURRENT NEURAL NETWORKS

2.1. Feedforward neural networks

In a feedforward neural network (FNN) all observations are pro-
cessed independently of each other. Due to the lack of context in-
formation, FNNs may have difficulties processing sequential inputs
such as audio, video and text. A fixed-size (causal or non-causal)
window, concatenating the current feature vector with previous (and
eventually future) feature vectors, is often used to provide context
to the input. This approach however presents substantial shortcom-
ings, such as increased dimensionality (imposing the need for more
data, longer training time and larger models), and short fixed context
available.

2.2. Recurrent neural networks

Introducing feedback connections in a neural network can provide it
with past context information. This network architecture is known
as recurrent neural network (RNN). In an RNN, information from
previous time steps can in principle circulate indefinitely inside the
network through the directed cycles, where the hidden layers also act
as memory. For a sequence of input vectors {x1, ...,xT }, a RNN
computes a sequence of hidden activations {h1, ...,hT } and output
vectors {y1, ...,yT } as

ht = F(Wxhxt +Whhht−1 + bh) (1)

yt = G(Whyht + by) (2)

for all timesteps t = 1, ..., T , where the matrices W?? denote the
weights connecting two layers, b? are bias terms, and F and G ac-
tivation functions. In case of a deep network, with multiple hidden
layers, the input to hidden layer j is the output of the previous hidden
layer j − 1.

When instances from future timesteps are available, also future
context can be provided to the network by using bi-directional RNN
(BRNN) [18]. In a BRNN each hidden layer is split into two separate
layers, one reads the training sequences forwards and the other one
backwards. Once fully computed, the activations are then fed to the
next layer, giving the network full and symmetrical context for both
past and future instances of the input sequence.

2.3. Long short-term memory

Standard RNNs, i.e., RNNs with simple recurrent connections in
each hidden layer, may be difficult to train. One of the main reasons
is the phenomenon called vanishing gradient problem [19], which
makes the influence of past inputs decay exponentially over time.

The long short-term memory (LSTM) [13] architecture was pro-
posed as a solution to this problem. The simple neurons with static
self-connections, as in a standard RNN, are substituted by units
called LSTM memory blocks (Fig. 2). An LSTM memory block is a
subnet that contains one self-connected memory cell with its tanh
input and output activation functions, and three gating neurons—
input, forget and output—with their corresponding multiplicative

units. Eq. 1, defining the hidden activation ht, is substituted by the
following set of equations:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf)
ct = ftct−1 + it tanh(W

xcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ot tanh(ct)

(3)

where ct, it, ft and ot are respectively the memory cell, input gate,
forget gate and output gate activations, σ is the logistic function,
W?? are the weight matrices and b? are bias terms.

Fig. 2: An LSTM block.

By analogy, the memory cell c can be compared to a computer
memory chip, and the input i, forget f and output o gating neurons
represent write, reset and read operations respectively. All gating
neurons represent binary switches but use the logistic function—thus
outputting in the range [0, 1]—to preserve differentiability. Due to
the multiplicative units, information can be stored over long time
periods inside the cell.

A bidirectional long short-term memory (BLSTM) [14] network
is obtained by substituting the simple recurrent neurons in a BRNN
with LSTM units. More details about LSTM, BLSTM and training
algorithms can be found in [20].

3. METHOD

The proposed system receives as input a raw audio signal, extracts
spectral features and then maps them to binary activity indicators
of each event class using a BLSTM RNN (Fig. 1). Each step is
described in further detail in this section.

3.1. Feature extraction

The input to the system are raw audio signals. To account for dif-
ferent recording conditions, the amplitudes are normalized in each
recording to lie in [−1, 1]. The signals are split into 50 millisec-
ond frames with 50% overlap, and we calculate the log magnitudes
within the 40 mel bands in each frame. We then normalize each
frequency band by subtracting the mean value of each bin over all
recordings and imposing unit variance (computing the constants on
the training set), a standard procedure when working with neural
networks.

For each recording we obtain a long sequence of feature vectors,
which is then split into smaller sequences. We split every original
sequence at three different scales, i.e., in non-overlapping length 10,
length 25, and length 100 sequences (corresponding to lengths of
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0.25, 0.62 and 2.5 seconds respectively). This allows the network to
more easily identify patterns at different timescales.

Each frame has a target vector d associated, whose binary com-
ponents dk indicate if a sound event from class k is present or not.

3.2. Proposed neural network

We propose the use of multilabel BLSTM RNNs with multiple hid-
den layers to map the acoustic features to class activity indicator
vectors. The output layer has logistic activation functions and one
neuron for each class. We use Gaussian input noise injection and
early stopping to reduce overfitting, halting the training if the cost
on the validation set does not decrease for 20 epochs.

The output of the network at time t is a vector yt ∈ [0, 1]L,
where L is the number of classes. Its components yk can be inter-
preted as posterior probabilities that each class is active or inactive
in frame xt. These outputs do not have to sum up to 1, since several
classes might be active simultaneously. For this reason, contrarily
to most multiclass approaches with neural networks, the outputs are
not normalized by computing the softmax. Finally, the continuous
outputs are thresholded to obtain binary indicators of class activities
for each timestep.

Contrarily to [12], where the outputs are smoothed over time
using a median filter on a 10-frame window, we do not apply any
post-processing since the outputs from the RNN are already smooth.

3.3. Data augmentation

As an additional measure to reduce overfitting, which easily arises in
case the dataset is small compared to the network size, we also aug-
ment the training set by simple transformations. All transformations
are applied directly to the extracted features in frequency domain.

• Time stretching: we mimic the process of slightly slowing down
or speeding up the recordings. To do this, we stretch the mel
spectrogram in time using linear interpolation by factors slightly
smaller or bigger than 1;

• Sub-frame time shifting: we mimic small time shifts of the
recordings—at sub-frame scale—linearly interpolating new fea-
ture frames in-between existing frames, thus retaining the same
frame rate;

• Blocks mixing: new recordings with equal or higher polyphony
can be created by combining different parts of the signals within
the same context. In frequency domain we directly achieve a sim-
ilar result using the mixmax principle [21], overlapping blocks of
the log mel spectrogram two at the time.

Similar techniques have been used in [22, 23].
The amount of augmentation performed depends on the scarcity

of the data available and the difficulty of the task. For the experi-
ments described in Section 4—where specified—we expanded the
dataset using the aforementioned techniques by approximately 16
times. A 4-fold increase comes from the time stretching (using
stretching coefficients of 0.7, 0.85, 1.2, 1.5), 3-fold increase from
sub-frame time shifting and 9-fold increase from blocks mixing
(mixing 2 blocks at the time, using 20 non-overlapping blocks of
equal size for each context). We did not test other amounts or pa-
rameters of augmentations. In order to avoid extremely long training
times, the augmented data was split in length 25 sequences only.

4. EVALUATION

4.1. Dataset

We evaluate the performance of the proposed method on a database
consisting of recordings 10 to 30 minutes long, from ten real-life
contexts [24]. The contexts are: basketball game, beach, inside a
bus, inside a car, hallway, office, restaurant, shop, street and stadium
with track and field events. Each context has 8 to 14 recordings,
for a total of 103 recordings (1133 minutes). The recordings were
acquired with a binaural microphone at 44.1 kHz sampling rate and
24-bit resolution. The stereo signals from the recordings are con-
verted to mono by averaging the two channels into a single one. The
sound events were manually annotated within 60 classes, including
speech, applause, music, break squeak, keyboard; plus 1 class for
rare or unknown events marked as unknown, for a total of 61 classes.
All the events appear multiple times in the recordings; some of them
are present in different contexts, others are context-specific. The
average polyphony level—i.e. the average number of events active
simultaneously—is 2.53, the distribution of polyphony levels across
all recordings is illustrated in Fig. 3.

The database was split into training, validation and test set
(about 60%, 20% and 20% of the data respectively) in a 5-fold
manner. All results are presented as averages of the 5-fold cross
validation results, with the same train/validation/test partitions used
in previous experiments on the same dataset ([10, 12]). The hy-
perparameters of the network, e.g. the number and size of hidden
layers, learning rate, etc., were chosen based on validation results of
the first fold.

4.2. Neural networks experiments

The network has an input layer with 40 units, each reading one com-
ponent of the feature frames, and 4 hidden layers with 200 LSTM
units each (100 reading the sequence forwards, 100 backwards). We
train one network with the original data only, which is the same used
in previous works, and one using the data augmentation techniques
reported in Section 3.3 to further reduce overfitting. To compare
the performance with standard LSTM layers, we also train a similar
network architecture without bidirectional units on the same dataset
without augmentation.

The network is initialised with uniformly distributed weights in
[−0.1, 0.1] and trained using root mean squared error as a cost func-
tion. Training is done by back propagation through time (BPTT)
[25]. The extracted features are presented as sequences clipped from
the original data—in sequences of 10, 25 and 100 frames—in ran-
domly ordered minibatches of 600 sequences, in order to allow par-
allel processing. After a mini-batch is processed the weights are
updated using RMSProp [26]. The network is trained with a learn-
ing rate η = 0.005, decay rate ρ = 0.9 and Gaussian input noise of
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Fig. 3: Distribution of polyphony level across the dataset.
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0.2 (hyperparameters chosen based on the validation set of the first
fold). At test time we present the feature frames in sequences of 100
frames, and threshold the outputs with a fixed threshold of 0.5, i.e.,
we mark an event k as active if yk ≥ 0.5, otherwise inactive.

For each experiment and each fold we train 5 networks with
different random initialisations, select the one that has the highest
performance on the validation set and then use it to compute the re-
sults on the test data. The networks were trained on a GPU (Tesla
K40t), with the open-source toolkit Currennt [27] modified to use
RMSprop.

4.3. Metrics

To evaluate the performance of the system we compute F1-score
for each context in two ways: average of framewise F1-score
(F1AvgFram) and average of F1-score in non-overlapping 1 second
blocks (F11-sec) as proposed in [4], where each target class and
prediction is marked as active on the whole block if it is active in at
least one frame of the block. The overall scores are computed as the
average of the average scores for each context.

4.4. Results

In Table 1 we compare the average scores over all contexts for the
FNN in [12] to our BLSTM and LSTM networks trained on the same
data, and BLSTM network trained with the augmented data. The
FNN uses the same features but at each timestep reads a concatena-
tion of 5 input frames (the current frame and the two previous and
two following frames). It has two hidden layers with 1600 hidden
units each, downsampled to 800 with maxout activations.

The BLSTM network achieves better results than the FNN
trained on the same data, improving the performance by relative
13.5% for the average framewise F1 and 4.3% for the 1 second
block F1. The unidirectional LSTM network does not perform as
well as the BLSTM network, but is still better than the FNN. The
best results are obtained by the BLSTM network trained on the
augmented dataset, which improves the performance over the FNN
by relative 15.1% and 6.8% for the average framewise F1 and for
the 1 second block F1 respectively.

In Table 2 we report the results for each context for the FNN in
[12] (FNN), our BLSTM trained on the same data (BLSTM) and our

Table 1: Overall F1 scores, as average of individual contexts
scores, for the FNN in [12] (FNN) compared to the proposed LSTM,
BLSTM and BLSTM with data augmentation (BLSTM+DA).

Method F1AvgFram F11-sec

FNN [12] 58.4% 63.0%
LSTM 62.5% 63.8%
BLSTM 64.0% 64.6%
BLSTM+DA 64.7% 65.5%

BLSTM trained on the augmented data (BLSTM+DA). The results
show that the proposed RNN, even without the regularisation from
the data augmentation, outperforms the FNN in most of the contexts.

The F1-scores for different polyphony levels are approximately
the same, showing that the method is quite robust even when several
events are combined. It is interesting to notice that the RNNs have
around 850K parameters each, compared to 1.65M parameters of the
FNN trained with the same data. The RNNs make a more efficient
and effective use of the parameters, due to the recurrent connections
and the deeper structure with smaller layers.

5. CONCLUSIONS

In this paper we proposed to use multilabel BLSTM recurrent neural
networks for polyphonic sound event detection. RNNs can directly
encode context information in the hidden layers and can learn the
longer patterns present in the data. Data augmentation techniques
effectively reduce overfitting, further improving performance. The
presented approach outperforms the previous state-of-the-art FNN
[12] tested on the same large database of real-life recordings, and
has half as many parameters. The average improvement on the whole
data set is 15.1% for the average framewise F1 and 6.8% for the 1
second block F1.

Future work will concentrate on finding novel data augmentation
techniques. Concerning the model, further studies will develop on
attention mechanisms and extending RNNs by coupling them with
convolutional neural networks.

Table 2: Results for each context in the dataset for the FNN in [12] (FNN), and our approach without data augmentation (BLSTM) and with
data augmentation (BLSTM+DA).

F1AvgFram F11-sec

FNN [12] BLSTM BLSTM+DA FNN [12] BLSTM BLSTM+DA

basketball 70.2% 77.4% 78.5% 74.7% 79.0% 79.9%
beach 49.7% 46.6% 49.6% 58.1% 48.7% 51.5%
bus 43.8% 45.1% 49.4% 52.7% 47.3% 52.7%
car 53.2% 67.9% 71.8% 52.4% 66.4% 69.5%
hallway 47.8% 58.1% 54.8% 55.0% 59.9% 57.1%
office 77.4% 79.9% 74.4% 77.7% 79.8% 74.8%
restaurant 69.8% 76.5% 77.8% 73.7% 76.9% 77.7%
shop 51.5% 61.2% 61.1% 57.6% 60.9% 61.7%
street 62.6% 65.3% 65.2% 62.9% 63.3% 63.9%
stadium 58.2% 61.7% 64.3% 64.9% 64.2% 66.2%
average 58.4% 64.0% 64.7% 63.0% 64.6% 65.5%
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[22] Jan Schlüter and Thomas Grill, “Exploring data augmentation
for improved singing voice detection with neural networks,” in
International Society for Music Information Retrieval Confer-
ence (ISMIR), 2015.

[23] Brian McFee, Eric J. Humphrey, and Juan P. Bello, “A software
framework for musical data augmentation,” in International
Society for Music Information Retrieval Conference (ISMIR),
2015.

[24] Toni Heittola, Annamaria Mesaros, Antti Eronen, and Tuomas
Virtanen, “Audio context recognition using audio event his-
tograms,” in Proc. of the 18th European Signal Processing
Conference (EUSIPCO), 2010, pp. 1272–1276.

[25] Paul J Werbos, “Backpropagation through time: what it does
and how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp.
1550–1560, 1990.

[26] Tijmen Tieleman and Geoffrey Hinton, “Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude,” COURSERA: Neural Networks for Machine Learning,
vol. 4, 2012.

[27] Felix Weninger, “Introducing currennt: The munich open-
source cuda recurrent neural network toolkit,” Journal of Ma-
chine Learning Research, vol. 16, pp. 547–551, 2015.

5


	1  Introduction
	2  Recurrent neural networks
	2.1  Feedforward neural networks
	2.2  Recurrent neural networks
	2.3  Long short-term memory

	3  Method
	3.1  Feature extraction
	3.2  Proposed neural network
	3.3  Data augmentation

	4  Evaluation
	4.1  Dataset
	4.2  Neural networks experiments
	4.3  Metrics
	4.4  Results

	5  Conclusions
	6  References

