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ABSTRACT

In this work, we consider enhancement of multichannel speech
recordings. Linear filtering and subspace approaches have been con-
sidered previously for solving the problem. The current linear fil-
tering methods, although many variants exist, have limited control
of noise reduction and speech distortion. Subspace approaches, on
the other hand, can potentially yield better control by filtering in the
eigen-domain, but traditionally these approaches have not been opti-
mized explicitly for traditional noise reduction and signal distortion
measures. Herein, we combine these approaches by deriving optimal
filters using a joint diagonalization as a basis. This gives excellent
control over the performance, as we can optimize for noise reduction
or signal distortion performance. Results from real data experiments
show that the proposed variable span filters can achieve better per-
formance than existing filters. In terms of output SNR, the gain was
more than 8 dB, and more than 0.1 in mean opinion score in the
conducted experiments.

Index Terms— Speech enhancement, joint diagonalization, op-
timal filtering, multichannel enhancement, tradeoff filter

1. INTRODUCTION

Noise reduction, or speech enhancement, is an essential tool in
many important applications, including hearing aids, teleconferenc-
ing, and mobile telephony. The topic has, therefore, attracted a lot
of attention, resulting in many different speech enhancements meth-
ods. Roughly, these can be categorized into linear filtering meth-
ods [1], spectral subtractive methods [2], statistical methods [3–5],
and subspace methods [6, 7]. These works are all on single-channel
speech enhancement, while multichannel enhancement, which is the
topic of this paper, has also been attracting considerable attention
(see, e.g., [8–11]). We refer the interested reader to [1, 12, 13] for
overviews of recent advances in noise reduction.

While many different approaches to speech enhancement have
been considered, we here consider the linear filtering and subspace
approaches. In the methods based on linear filtering, noise reduction
is obtained by convolution of the observed signal, which comprises
both the signal of interest and the additive noise, with the impulse
response of a filter. The noise reduction problem then amounts to
designing this filter so that it meets some requirements, in terms
of, for example, noise reduction and speech distortion. For exam-
ple, when the mean-square error (MSE) is used as a performance
measure and the filter is optimized so as to minimize the MSE, the
classical Wiener filter is obtained. In subspace methods [14, 15], a
diagonalization of the involved correlation matrices is obtained by
means of, for example, the Karhunen-Loève transform, the eigen-
value decomposition, or the singular value decomposition, and this

This work was supported by the Danish Council for Independent Re-
search, grant ID: DFF 1337-00084, and the Villum foundation.

is then used for noise reduction by identifying bases for the speech-
plus-noise subspace (also sometimes simply called the signal sub-
space) and the noise subspace, respectively. Of particular relevance
to the present work, is the prior use of joint diagonalization for noise
reduction, something that has previously been done in [7] and later
in [8, 16] to account for colored noise.

In this paper, we express the multichannel noise reduction prob-
lem as a linear filtering problem using joint diagonalization of the
correlation matrix of the signal of interest and the noise. More
specifically, we consider filter designs, wherein the filter coefficients
are formed as linear combinations of a desired number of eigenvec-
tors. This way, speech distortion can be traded for more noise re-
duction in a simple way by changing the number of eigenvectors.
We also proposed enhancement filters based on the joint diagonal-
ization in [17,18], but these were only derived for the single-channel
case. Moreover, these enhancement methods used an indirect ap-
proach where the noise is estimated first and subtracted from the
observation to obtain the enhanced signal, whereas the filters pro-
posed herein estimates the desired signal directly. In the proposed
framework, a number of noise reduction filters, which are referred to
as variable span filters, are derived. These include maximum SNR,
minimum distortion, Wiener, and tradeoff filters. Compared to pre-
vious subspace methods, this enable us to quantify, and optimize for,
the noise reduction and speech distortion performances.

The remainder of the paper is organized as follows: in Section
2, the signal model and problem formulation are presented. Then, in
Section 3, the variable span filters are proposed. Finally, we present
some experimental results in Section 4 and conclude on the work in
Section 5.

2. NOISE REDUCTION PROBLEM

We consider the scenario where we have an array of microphones,
consisting of M sensors, that captures a sound field containing a
desired speech source as well as noise. This usual, multichannel
signal model [19, 20] can also be written as

ym(t) =gm(t) ∗ s(t) + vm(t) = xm(t) + vm(t), (1)

form = 1, 2, . . . ,M , where (·)m denotes a variable associated with
sensor m, ym(t) is the observed signal, gm(t) is the room impulse
response from the source to sensor m, and vm(t) is the undesired
noise. Furthermore, we introduced an additional variable, xm(t) =
gm(t)∗s(t), which will be treated as the desired speech signal, since
we do not consider the dereverberation problem herein.

If we then apply the short-time Fourier transform (STFT) on the
observed signal, we instead get a time-frequency domain model:

Ym(k, n) = Xm(k, n) + Vm(k, n), m = 1, 2, . . . ,M, (2)

with Ym(k, n),Xm(k, n), and Vm(k, n) being the STFTs of ym(t),
xm(t), and vm(t), respectively at frequency bin k ∈ {0, 1, . . . ,K−



1} and time frame n. That is, each of these variables are zero-mean
and complex. To facilitate the derivation of noise reduction methods,
we introduce a more convenient vector model as

y(k, n) = [Y1(k, n) · · · YM (k, n)]T = x(k, n) + v(k, n),

where we have defined x(k, n) and v(k, n) similarly to y(k, n).
If we assume that the desired speech, Xm(k, n), and the noise,
Vm(k, n), are uncorrelated, we can write the correlation matrix of
y(k, n) as

Φy(k, n) = E
[
y(k, n)yH(k, n)

]
= Φx(k, n) + Φv(k, n),

with Φx(k, n) and Φv(k, n) being the correlation matrices of
x(k, n) and v(k, n), respectively.

A general assumption in many multichannel, speech enhance-
ment methods operating in the STFT domain is that Xm(k, n) =
Gm(k)S(k, n), for m = 1, 2, . . . ,M , where Gm(k) and S(k, n)
are the STFTs of gm(t) and s(t), respectively. Clearly, the rank of
Φx(k, n) is equal to 1 when this assumption holds. The assumption,
however, is only valid when the analysis window of the STFT is in-
finitely long, but this is obviously never the case in practice [21]. As
a consequence, the rank of Φx(k, n) will instead be a positive in-
teger between 1 and M . Studying noise reduction algorithms while
taking this fact into account is, therefore, of great interest and is one
of the contributions of this paper.

Since short time windows are often preferred in the computa-
tion of the STFT, there will inevitably be some correlation between
consecutive time frames. We take this interframe correlation into ac-
count in the filter designs in Section 3. To achieve this, we consider
N consecutive frames, and rewrite the observations as

y(k, n) =
[
yT (k, n) yT (k, n− 1) · · · yT (k, n−N + 1)

]T
= x(k, n) + v(k, n), (3)

where x(k, n) and v(k, n) are defined similarly to y(k, n). The
correlation matrix of the stacked observations, y(k, n), is then

Φy(k, n) = E
[
y(k, n)yH(k, n)

]
= Φx(k, n) + Φv(k, n),

with Φx(k, n) and Φv(k, n) being the correlation matrices of
x(k, n) and v(k, n), respectively. Moreover, the rank of these are
assumed to be equal to P < MN and MN .

If we chose sensor 1 as our reference sensor, the multichannel,
speech enhancement problem in the STFT domain is then to recover
X1(k, n) from the observations y(k, n) as well as possible. That
is, we should have large degree of noise reduction and only little
distortion of the desired signal.

To approach the speech enhancement problem, we first consider
a joint diagonalization of the signal and noise correlation matrices
[22]:

BH(k, n)Φx(k, n)B(k, n) = Λ(k, n), (4)

BH(k, n)Φv(k, n)B(k, n) = IMN , (5)

with B(k, n) being a full-rank square matrix (of size MN ×MN ),
Λ(k, n) a diagonal matrix whose main elements are real and non-
negative, and IMN the MN ×MN identity matrix. Moreover, the
matrices Λ(k, n) and B(k, n) are the eigenvalue and -vector matri-
ces, respectively, of Φ−1

v (k, n)Φx(k, n), i.e.,

Φ−1
v (k, n)Φx(k, n)B(k, n) = B(k, n)Λ(k, n). (6)

The rank of the matrix Φx(k, n) is assumed to be equal to P , so the
eigenvalues of Φ−1

v (k, n)Φx(k, n) can be ordered as λ1(k, n) ≥
λ2(k, n) ≥ · · · ≥ λP (k, n) > λP+1(k, n) = · · · = λMN (k, n) =
0. That is, the first P and last MN − P eigenvalues of the matrix
product Φ−1

v (k, n)Φx(k, n) are positive and exactly zero, respec-
tively. The vectors b1(k, n),b2(k, n), . . . ,bMN (k, n) denote the
corresponding eigenvectors. Equipped with these observations, the
noisy signal correlation matrix can also be diagonalized as

BH(k, n)Φy(k, n)B(k, n) = Λ(k, n) + IMN . (7)

The joint diagonalization can be interpreted as a particular spa-
tiotemporal filterbank decomposition withMN subbands, where the
noise is whitened and equalized in all subbands. That is, enhance-
ment filters derived based on such decomposition are robust against
non-white noise.

Before moving on to the filter designs, we also introduce the
subband input SNR for the considered noise reduction problem:

iSNR(k, n) =
φX1(k, n)

φV1(k, n)
, (8)

where φX1(k, n) = E
[
|X1(k, n)|2

]
and φV1(k, n) =

E
[
|V1(k, n)|2

]
are the variances of X1(k, n) and V1(k, n), respec-

tively.

3. VARIABLE SPAN FILTERING

In this section, we then present the variable span filters for noise re-
duction in the framework presented in Section 2. First, we introduce
the STFT domain filtering operation, i.e.,

Z(k, n) = hH(k, n)y(k, n), (9)

with Z(k, n) denoting the resulting estimate of the desired signal
X1(k, n). Furthermore, h(k, n) is a complex-valued filter of length
MN defined as h(k, n) =

[
hT (k, n) · · · hT (k, n−N + 1)

]T
,

where h(k, n − i) is a filter of length M containing all the com-
plex gains applied to the sensor outputs at frequency bin k and time
frame n − i. We can always write the filter using bi(k, n), i =
1, 2, . . . ,MN as basis vectors, since B(k, n) is full rank, i.e.,

h(k, n) = B(k, n)a(k, n), (10)

where a(k, n) =
[
A1(k, n) A2(k, n) · · · AMN (k, n)

]T
, is

the filter representation in the new basis. This means that, instead
of finding h(k, n) directly like in conventional approaches, we can
equivalently tackle the filter design problem by finding the coordi-
nates Ai(k, n), i = 1, 2, . . . ,MN . If we substitute (10) into (9),
we obtain

Z(k, n) = aH(k, n)BH(k, n) [x(k, n) + v(k, n)] . (11)

Using previous assumptions, the variance of Z(k, n) becomes

φZ(k, n) = aH(k, n)Λ(k, n)a(k, n) + aH(k, n)a(k, n). (12)

We then decompose a(k, n) into two subvectors as a(k, n) =[
a′T (k, n) a′′T (k, n)

]T
, where a′(k, n) is a vector contain-

ing the first P coefficients of a(k, n) and a′′(k, n) is a vec-
tor containing the last MN − P coefficients of a(k, n). Simi-
larly, we have B(k, n) = [B′(k, n) B′′(k, n)], and Λ′(k, n) =
diag[λ1(k, n), λ2(k, n), . . . , λP (k, n)], where B′(k, n) is a matrix
of size MN × P containing the first P columns of B(k, n) and



B′′(k, n) is a matrix of size MN × (MN − P ) containing the
last MN − P columns of B(k, n). From (12) we can see that
aH(k, n)a(k, n) = a′H(k, n)a′(k, n) + a′′H(k, n)a′′(k, n) rep-
resent the residual noise. Intuitively, many optimal noise reduction
filters with no more than P constraints should satisfy a′′(k, n) =
0(MN−P )×1. This enable us to simplify the problem as

Z(k, n) = a′H(k, n)B′H(k, n) [x(k, n) + v(k, n)] (13)
= Xfd(k, n) + Vrn(k, n),

whereXfd(k, n) and Vrn(k, n) denote the filtered desired signal and
the residual noise, respectively. In other words, we only need to
determine a′(k, n). The variance of Z(k, n) thus becomes

φZ(k, n) = a′H(k, n)
[
Λ′(k, n) + IP

]
a′(k, n). (14)

We can then deduce that the subband output SNR is

oSNR
[
a′(k, n)

]
=

a′H(k, n)Λ′(k, n)a′(k, n)

a′H(k, n)a′(k, n)
, (15)

and, further derivations reveal that oSNR [a′(k, n)] ≤ λ1(k, n).
It is also useful to quantify the distortion introduced by the filter.

This can, for example, be measured using the subband desired signal
reduction factor defined as

ξsr
[
a′(k, n)

]
=

φX1(k, n)∑P
p=1 λp(k, n) |Ap(k, n)|

2
. (16)

Obviously, we have no distortion only when ξsr [a′(k, n)] = 1.
If we take a close look on (15), we can see that the sub-

band output SNR is maximized if and only if A1(k, n) 6= 0 and
A2(k, n) = · · · = AP (k, n) = 0. Consequently, the maximum
SNR filter is hmax(k, n) = A1(k, n)b1(k, n), whereA1(k, n) 6= 0
is an unknown and arbitrary complex number. It can be shown that,
if we choose theA1(k, n) that minimizes the MSE corresponding to
distortion,

Jds
[
a′(k, n)

]
= E

[∣∣∣X1(k, n)− a′H(k, n)B′H(k, n)x(k, n)
∣∣∣2] ,

under the assumption of P = 1, we get

hmax(k, n) =
b1(k, n)b

H
1 (k, n)

λ1(k, n)
Φx(k, n)i, (17)

where i is the first column of IMN .
The minimum variance distortionless response (MVDR) filter

can also be found in this framework. Minimizing the MSE with
respect to distortion, Jds, for an arbitrary P yields the MVDR filter

hMVDR(k, n) =

P∑
p=1

bp(k, n)b
H
p (k, n)

λp(k, n)
Φx(k, n)i. (18)

From (17) and (18), we see that there is a clear link between this and
the maximum SNR filter. Hence, we propose a class of minimum
distortion (MD) filters given by

hMD,Q(k, n) =

Q∑
q=1

bq(k, n)b
H
q (k, n)

λq(k, n)
Φx(k, n)i, (19)

where 1 ≤ Q ≤ P . The variableQwill control the tradeoff between
noise reduction and signal distortion, i.e., higher Q means less noise
reduction but also less distortion and vice versa.

We can also derive a Wiener-type filter in this framework, by
first introducing an error signal E(k, n) = Z(k, n)−X1(k, n) and
then the general MSE

J
[
a′(k, n)

]
= E

[
|E(k, n)|2

]
= Jds

[
a′(k, n)

]
+ Jrs

[
a′(k, n)

]
,

where Jrs [a′(k, n)] = a′H(k, n)a′(k, n) is the MSE of the residual
noise. Minimizing the above MSE yields the Wiener filter:

hW(k, n) =

P∑
p=1

bp(k, n)b
H
p (k, n)

1 + λp(k, n)
Φx(k, n)i. (20)

We can see that the MVDR and Wiener filters are very close to each
other; they only differ by the weighting function, which strongly
depends on the spatiotemporal subband SNR. The Wiener filter will
have an output SNR at least as high as the MVDR filter, but its signal
reduction factor will be equal to or higher than that of the MVDR
filter.

Finally, tradeoff filters can be obtained by solving

min
a′(k,n)

Jds
[
a′(k, n)

]
s. t. Jrs

[
a′(k, n)

]
= βφV1(k, n), (21)

where 0 ≤ β ≤ 1, to ensure that filtering achieves some degree of
noise reduction. Solving this yields

hT,µ(k, n) =

P∑
p=1

bp(k, n)b
H
p (k, n)

µ+ λp(k, n)
Φx(k, n)i, (22)

where µ ≥ 0 is a Lagrange multiplier. Inspired by the MD filter
design, we introduce the most general tradeoff filter

hGT,µ,Q(k, n) =

Q∑
q=1

bq(k, n)b
H
q (k, n)

µ+ λq(k, n)
Φx(k, n)i, (23)

where Q does not have to be equal to P . Clearly, all previous filter
designs can be obtained using the above tradeoff filter.

4. EXPERIMENTS

We then proceed with the experimental evaluation of the proposed
filter designs. For comparison, the multichannel, STFT-domain
Wiener filter in [23] was included in the evaluation. We consid-
ered a scenario with reverberant speech signals contaminated by dif-
fuse babble noise and white Gaussian sensor noise. The speech sig-
nals were two female and two male speech signals from the Keele
database [24], amounting to a total of 10 seconds. The speech sig-
nals were single-channel, and were therefore synthesized spatially
using a room impulse response (RIR) generator [25]. The simu-
lated room had dimensions 3 × 4 × 3 m, and the source was lo-
cated at (0.75, 1, 1.5) m, while the microphones were placed at
(1.5 + d[m − M−1

2
], 2, 1) m for m = 0, . . . ,M − 1 with d de-

noting the microphone spacing. The sensor spacing was 5 cm and
the number of microphones was M = 3. Additionally, the speed of
sound was 343 m/s, the 60 dB reverberation time was 0.2 s, the room
impulse response length was 2,048, and the microphone type was
omnidirectional. We then generated our clean, multichannel speech
signals including reverberation using this setup. The sensor noise
was white Gaussian in each channel, while the diffuse noise was
babble noise. To obtain the diffuse babble noise, we used a single-
channel babble noise signal from the AURORA database [26] and
assumed a spherical noise field. Under this assumption, a multichan-
nel diffuse noise signal can be generated as described in [27]. In all
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Fig. 1. Filter performances versus (top) the filter length, and (bottom) the assumed signal subspace rank.

evaluations, the sensor and diffuse noise were added at signal-to-
sensor-noise ratios and signal-to-diffuse-noise ratios of 30 dB and
0 dB, respectively. Using mixtures of the speech and these differ-
ent noise types, we then conducted evaluations of the aforemen-
tioned filters in terms of their output SNRs, signal reduction fac-
tors, and PESQ scores. The PESQ scores were obtained using an
implementation (http://ecs.utdallas.edu/loizou/speech/software.htm)
of the PESQ standard for speech quality assessment [28], i.e., they
are objective but should reflect the subjective quality. In each of the
evaluations, enhancement of the speech signal simultaneously mixed
with the two noise types were considered, and the performance of the
filters were measured over time and averaged.

To compute the coefficients of the proposed filters, we need
estimates of the correlation matrices Φx and Φv. Estimation of
these has not been investigated thoroughly before, and will con-
stitute a research contribution in itself. Since the focus herein is
rather on the design of optimal enhancement filters, we therefore
estimate the needed statistics directly from the separated signals.
We expect, however, that techniques such as VAD [29], minimum
statistics [30], sequential methods [31], and multichannel PSD es-
timators [11, 32] can be generalized for practical statistics estima-
tion. It is important to note that the traditional Wiener also re-
quired information about the statistics of the desired signal (or the
noise). These have also been estimated from the separated signals
in our evaluation to make the comparison fair. The estimation of
the correlation matrix of a vector a(k, n) was done recursively as
Φ̂a(k, n) = (1 − ξ)Φ̂a(k, n − 1) + ξa(k, n)aH(k, n), where ξ
is the forgetting factor, and Φ̂a(k, n) denotes an estimate of Φa at
frequency bin, k, and time instance n. The forgetting factors for all
statistics estimators in the considered evaluations were 0.05. Fur-
thermore, the STFT’s of the signals from the different channels were
calculated using rectangularly windowed blocks of 40 samples and
an FFT length of 64. The blocks were overlapping by 50 %, and af-
ter enhancement, the blocks were combined using overlap-add with
Hanning windows.

First, the filter performances were investigated versus the tempo-
ral filter length, N , to investigate the benefit of exploiting interframe
correlation. We considered a scenario with an assumed signal sub-
space rank of Q = 3, and the simulation setup described above. The
results from this evaluation are presented in Figure 1. As expected,
the maximum SNR filter has the highest output SNR in most cases,
i.e., for filter lengths larger than 2. Since the output SNRs and signal
reduction factors are measured from the filter outputs and not using
the theoretical expressions in (15) and (16), we can not expect the
theoretical relationships to always hold such that the maximum SNR
filter always has the highest output SNR. The minimum distortion

filter has a somewhat lower output SNR but on the other hand has a
lower distortion according to the measured signal reduction factors.
Compared to the traditional Wiener filter exploiting interframe cor-
relation (Trad. Wiener), the proposed Wiener filter has a higher out-
put SNR and almost the same amount of distortion. The measured
PESQ scores are quite similar to the output SNR measurements, ex-
cept that the maximum SNR is worse than all other filters for high
filter lengths. Most importantly, the proposed Wiener filter outper-
forms the traditional Wiener also in terms of PESQ score. For higher
filter lengths, the difference in PESQ score is around 0.1, which will
be audible. Finally, we evaluated the filters for different assumed
signal subspace ranks. The filter length was fixed to 6, and, using
this setup, we obtained the results in Figure 1. The performance
of the maximum SNR and traditional Wiener filters are nearly same
for all ranks as expected. Moreover, we see that the output SNRs
of the proposed minimum distortion and Wiener filters decrease for
an increasing rank, but the signal reduction factor is also lowered at
the same time. For all ranks, the proposed Wiener filter has higher
output SNR than the traditional one, and their distortion levels are
comparable for ranks larger than 2. In terms of PESQ scores, we
see that the maximum SNR has the lowest PESQ score for all ranks.
Both Wiener filters outperform the minimum distortion filter for all
ranks, and for ranks larger than 2, the proposed Wiener filter has
a significantly higher PESQ score than the traditional Wiener filter.
Our informal listening test confirmed these findings.

5. CONCLUSION
We considered the topic of multichannel speech enhancement and
proposed a new class of so-called variable span filters in the STFT
domain. These are designed by, first, conducting a joint diagonal-
ization of the correlation matrices of the signal of interest and the
noise. The filters are then formed by using the so-obtained eigen-
vectors as a basis and the eigenvalues as weights. By varying the
number of eigenvectors and -values that are included in the filter de-
signs, we obtain a very flexible design with a high degree of control
over the amount of noise reduction and signal distortion. In this fil-
ter design framework, we proposed maximum SNR, minimum dis-
tortion, Wiener, and tradeoff filters. Compared to state-of-the-art
subspace methods for speech enhancement, the proposed methods
can easily be evaluated in terms of, and optimized for, their output
SNRs and signal reduction factors. Our evaluations on real speech
data that were spatially synthesized, show that the proposed variable
span filters can outperform their traditional counterparts. For exam-
ple, the Wiener filter in the proposed variable span framework, can
outperform the traditional Wiener filter in terms of both output SNR
(more than 8 dB improvement) and mean opinion scores (improve-
ment greater than 0.1).
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