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ABSTRACT 

In this paper, we propose a modification of the standard Equivalent 
Source Method (ESM) for Near-Field Acoustic Holography (NAH). 
As in EMS, we aim at modeling the acoustic pressure radiated from 
a vibrating object, and its surface velocity, as the joint effect of a set 
of equivalent sources located within or dose to the object itself. The 
estimation of the equivalent source strengths (weigths) comes from 
the solution of a highly ill-conditioned problem. Rather than solving 
this problem in the least-squares sense, we exploit the 3D model of 
the vibrating object, along with a rough estimate of its physical pa­
rameters, to restrict the space of the solutions. More specifically, we 
make use of Finite Element Analysis for populating a compressed 
dictionary of possible equivalent source weights. NAH is then ap­
proached by seeking a sparse linear combination of the entries of the 
dictionary. Experiments carried on a public database prove the effec­
tiveness of the proposed technique, especially when the number of 
available microphones is limited, and in the presence of a significant 
level of measurement noise. 

Index Terms- Near-field acoustic holography, Equivalent 
Source Method, Modal Analysis, Microphone arrays 

1. INTRODUCTION 

Near-field acoustic holography (NAH) enables modal analysis of vi ­
brating objects by means of acoustic measurements. Microphones 
are positioned very dose to the vibrating surface, in order to cap­
ture evanescent wave components of the radiated soundfield, which 
carry information about the surface velocity. The measured sound­
field is typically referred to as acoustic hologram. Being contact­
less, NAH constitutes an effective alternative to vibrometric anal­
ysis by means of accelerometric sensors. For many tasks, indeed, 
contact-less is highly desirable, for instance when the object sur­
face is delicate (e.g., fragile plates of historical musical instruments, 
thinly varnished objects, etc.). Furthermore, not charging the struc­
ture from an inertial point of view, the analysis can be performed 
also on very small objects. In many situations, NAH is also prefer­
able over optical techniques (e.g., laser vibrometry), as no problems 
arise when light-reftecting surfaces are analyzed. 

Many methods for NAH were proposed in the literature. Most 
ofthem are based on the inversion of the first Rayleigh's integral [1], 
which relates the normal velocity of a planar surface with the acous­
tic pressure generated by effect of vibration. This inverse problem 
is highly ill-conditioned, thus many regularization techniques have 
been investigated [2, 3, 4]. An interesting regularization method was 
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proposed in [5], where vibration modes of star-shaped planar plates 
are described by a linear combination of plane-waves components. 
Using this model, the solution to the NAH problem is approximated 
using a compressive sampling approach, finding a sparse solution in 
the space spanned by plane-wave basis functions. This technique 
was named Nearfield ACoustic HOlography with Sparse regulariza­
tion (NACHOS) by its authors, wh ich released an implementation in 
the NACHOS toolbox, along with the NACHOS database [6]. 

A class of more general methods for NAH is that based on the 
inversion of the Kirchhoff-Helmholtz (KH) integral, which provides 
a relationship between the normal velocity of arbitrari ly shaped sur­
faces and the near-field radiated soundfield. The discretization of 
the KH integral leads to the Boundary Elements Method (BEM) [7] , 
useful to solve the forward problem, i.e. that of estimating the acous­
tic pressure given the knowledge of the normal velocity. The inverse 
problem can be handled by the Inverse BEM (IBEM), introduced to 
enable NAH for arbitrarily complex surface geometries [8]. The vi­
brating surface is approximated by means of convex polygons (typi­
cally triangles or rectangles), properly connected each other, all con­
tributing to model the radiated soundfield. 

Although leading to accurate results, the applicability of IBEM 
is severely limited by its extreme computational complexity. An in­
teresting approximation of IBEM is the Equivalent Source Method 
(ESM) for NAH [9], originally introduced as the wave superposition 
method [10]. ESM models the radiated soundfield as being gen­
erated by a set of equivalent (virtual) sources located within (or in 
proximity of) the vibrating objects. ESM-based NAH operates in 
two steps. The first step involves the solution of an inverse problem 
to find the strengths (complex weights) of the equivalent sources that 
generate the measured acoustic pressure. Then, a suitable propaga­
tor function is applied to the equivalent sources, in order to infer 
the velocity on the surface of the vibrating source. The computa­
tional cost of ESM is therefore highly reduced compared to IBEM 
[11]. Unfortunately, ESM is dependent on the number and position­
ing of the equivalent sources, which highly inftuence the accuracy 
of the estimation. Some works in the literature attempted to derive 
rules and guidelines for the optimal positioning of equivalent sources 
(e.g. , [12]), nevertheless this task still represents an open issue. 

In this paper we propose a novel technique for NAH, which com­
bines the ftexibility of the ESM with the advantages of seeking the 
solution in a sparse domain. The proposed technique aims at being 
robust in those situations where it is not possible to use a large num­
ber of microphones and in the presence of measurement noise (e.g., 
interferences or residual reverberation when the measurement room 
is not perfectly anechoic). In particular, we propose a modification 
of the standard ESM scheme, restricting the ESM solution space to a 
suitable compressed dictionary. More specifically, given a 3D model 
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(mesh) of the vibrating object, we predict the theoretical normal sur­
face velocity by means of Finite Element Analysis (FEA) [13]. The 
theoretical velocity field is then back-propagated to the equivalent 
source positions to compute the corresponding weights. Several sets 
of source weights are collected by varying the physical parameters 
of the object material (which are unknown, in general), for each 
mode of vibration detected by FEA. The resulting sets of source 
weights are then processed through principal component analysis, 
in order to build a compressed dictionary. The sparse linear combi­
nation of equivalent source weights that best fits the measured acous­
tic hologram represents the ESM solution, which is finally forward­
propagated to the surface to estimate the real normal velocity. The 
proposed method was validated considering the aforementioned pub­
lic NACHOS database, and compared with the NACHOS technique 
and the standard ESM. Experimental results confirm the effective­
ness of the dictionary-based ESM approach. 

The rest of the paper is structured as folIows. Sect. 2 introduces 
some background on physical acoustics. The proposed solution to 
NAH is then described in Sect. 3. The experimental results are re­
ported in Sect. 4, and Sect. 5 draws some final conclusions. 

2. BACKGROUND 

In this section we introduce the theoretical background at the base 
of the proposed NAH method. We start describing the Kirchoff­
Helmholtz integral equation, which provides the relationship be­
tween the normal velocity and the acoustic pressure radiated from 
a vibrating surface. Then, we will outline the standard equivalent 
source method for NAH problems. 

2.1. Kirchhoff-Helmholtz integral 

Let us consider a vibrating object occupying a volume V with an 
arbitrarily-shaped bounding surface S. We denote a point on S with 
the position vector s, and with n the unit vector normal to S at s. By 
applying the Green's theorem, the Fourier transform of the acoustic 
pressure at a point r outside the volume is given by the Kirchhoff­
Helmholtz (KH) integral equation for exterior (radiation) problems 
[I], which can be expressed as [10] 

p(r,w) = hp(s,w) :n9w(r , s)dS- jwPo h V n (S,w)9w(r, s) ds , 

(1) 
where w is the angular frequency; pes, w) is the Fourier transform of 
the surface acoustic pressure; V n (s, w) is the surface normal velocity 
at s; and po:::::; 1.2 kg/m3 is the air mass density at 20°C. The term 

1 e-j-;;-llr-sll 

9w(r, s) = 47r Il r - sll 

is the free-field Green's function, which describes acoustic wave 
propagation from s to r, c being the speed of sound. Equation (1) 
provides the integral relationship between the surface velocity and 
the radiated acoustic pressure, and constitutes the basis of the equiv­
alent source method summarized in Section 2.2. 

2.2. Equivalent source method for NAH 

A complex acoustic radiator can be modeled as a superposition of el­
ementary sources located within (or close to) the volume V occupied 
by the radiator itself, and (1) can be reformulated as [10] 

per, w) = jwpo Iv q(a, w)9w(r , a) da, (2) 
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where q( a , w) represents the velocity flow of a source located at a 
point a within the volume V. For simplicity, we will refer to q( a, w) 
as a complex equivalenl source weighl. NAH can be approached 
in a simple and efficient way by discretizing (2) [9]. More specif­
ically, we consider a finite set of N equivalent sources located at 
al, . .. , a N inside (or in the vicinity 01') the vibrating object. The 
acoustic hologram, measured at M positions rl , ... , r M, can be 
represented in matrix form as 

where q(w) = [q(al ,w), ... ,q(aN ,w)]T are the unknown equiva-
lent source weights; m = 1, . .. , M; and n = 1, .. . , N. 

On the basis of this representation, the NAH solution is com­
puted in two steps. First of all, the equivalent source weights are 
estimated by inverting (3) in the least-squares sense, i.e. 

q(w) = [q(al , w), .. . , q(aN,wW = -. _l_G~p , (4) 
JWpo 

where G~ is the Moore-Penrose pseudo-inverse of G p . Then, the 
vibration mode at w is given by the surface normal velocity at B 
discrete points on the object surface, estimated as [9] 

v(w) = G v(w)q(w) , (5) 

where SI , . .. , SB are the surface points coordinates, b = 1, ... , B ; 
nb denotes the unit vector normal to the surface at Sb. 

3. DICTIONARY-BASED EQUIVALENT SOUR CE 
METHOD 

The NAH solution provided by (4) relies on the inversion of the 
system (3), which is in general highly ill-conditioned. This makes 
the standard ESM method very sensitive to the measurement noise 
present in the acoustic hologram p and highly dependent on the 
choice of the set of equivalent sources (i.e., number of sources and 
their positioning) [9]. As a consequence, although (2) is a valid and 
equivalent formulation of the KH integral (1), its discretization and 
the measurement noise may severely impact on the NAH solution. 

In this section we propose a modification of the standard ESM 
methodology, which consists of two main novel contributions: 

• computation of a dictionary of ideal equivalent source 
weights, to restrict the space of solutions provided by (4); 

• inversion of (3) using LASSO regression [14], i.e. seeking a 
sparse solution among the entries of the dictionary. 

Details about the creation of the dictionary will be given in Section 
3.1 , while the sparse regression will be introduced in Section 3.2. 

3.1. Dictionary creation 

Prediction of vibration modes via finite element analysis: FEA 
can be exploited for predicting the theoretical modes of vibration 
of an arbitrary surface, given a 3D mesh model of the object under 
analysis , the boundary conditions, and the set of the physical param­
eters of the material. Unfortunately, the latter can be only roughly 
estimated in most of the cases, due for instance to non-ideal char­
acteristics and inhomogeneous behavior of the physical structure of 
the object. This lack of knowledge prevents an accurate prediction 
of the modes of vibration. Nevertheless, we can fruitfully use FEA 
to compute a variety of possible theoretical modes of vibrations for a 



given 3D mesh model, by varying the physical parameters in a wide 
range around the average values for a specific material. 

For a generic orthotropic material (e.g. , wood), for which the 
material and mechanical properties differ along three mutually­
orthogonal twofold axes of rotational symmetry, we must consider 
U = 10 independent material parameters: three Young's moduli; 
three shear moduli; three Poisson's ratios; and the density. When 
considering an isotropie material (e.g., aluminum, steel), instead, its 
properties are constant along all the spatial directions, thus U = 4 
parameters are sufficient for its characterization. Let us denote the 
average values for a specific material with B = [BI, . .. , Bu] . For 
each parameter, we uniforml y sampie the range [Bi - D,.Bi , Bi + D,.Bi] 
at K i points. A total of K = K 1 • K 2 .... . Ku combinations are thus 
considered to perform Kindependent FEAs for a given 3D mesh. 
Each FEA detects a set of Zeigensolutions corresponding to the 
vibration modes for a specific configuration of physieal parameters. 
More specifically, FEA results in the following set of theoretical 
surface normal velocities, for k = 1, ... ,K: 

y-~ ~ y-k(wz ) = [Vn(Sl ,wz), . . . ,Vn(SB ,wzW , (6) 

where SI, . .. , SB are the 3D coordinates of the incenters of convex 
polygons that approximate the vibrating surface, B being the total 
number of polygons; z is the index of the vibration mode, and W z is 
the corresponding eigenfrequency. 

Computation of equivalent source weights: A set of equivalent 
source weights corresponding to the theoretical vibration modes y-~ 
can be obtained by inverting the system (5) in the least-squares sense. 
Specifically, for each vibration mode z = 1, ... , Z and for each 
parameter configuration k = 1, .. . , K , we compute 

(7) 

Note that such a problem is, in general, ill-conditioned. We there­
fore resort to use a Tikhonov regularization scheme [15], by suitably 
tuning the regularization parameter using the L-curve method [16]. 
It is important to observe that ill-conditioning has limited effect on 
the solution in this case, as we rely on practieally noiseless data y-~ 
that outcome from FEA. 

Weights compression: In order to obtain a compact dictionary, 
and to reduce the risk of da ta overfitting, we exploit the redundancy 
contained in the sets of weights q~. We do so by means of Principal 
Component Analysis (PCA) [17]. More specifically, for each vibra­
tion mode, we group the equivalent source weights in the matrix 

(8) 

on whieh PCA is performed. We then select the first L z loading vec­
tors w;, ... , w fz representing at least 99% of the total data energy. 
The compressed source weights for the zth mode are thus given as 

(9) 

By concatenating these terms for all the vibration modes, we obtain 
the compressed dietionary of equivalent source weights as 

D = [SI, S2 , ... , Sz] . (10) 

3.2. Near-field acoustic holography 

We are now ready to reformulate the NAH problem taking into ac­
count the dictionary (10). We first observe that, for the zth vibration 
mode, the columns of S z form an orthogonal basis for the vectors 
q; ,q; ,. .. , q~. We can therefore assurne, for the zth vibration 
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mode, that a generie set of equivalent source weights q(wz ) can be 
approximated by linearly combining the columns of S z. When an 
arbitrary frequency w is considered, however, no information about 
the index z of the corresponding vibration mode is available. There­
fore, we should consider the entire dietionary to model the equiva­
lent source weights as q(w) ~ DI' , where the vector I' contains 
the coefficients of the linear combination. Clearly, when w = W z , 

the coefficient vector I' is non-zero only for the entries associated to 
the zth vibration mode, in order to activate only the columns of D 
corresponding to S z. This means that q(w) is obtained as a sparse 
linear combination of the columns of the compressed dictionary D. 

As we are working with FEA predictions of theoretical vibration 
modes, it is possible to furt her reduce the space ofpossible solutions 
by selecting a subset of the dictionary D. For the kth parameter con-
figuration, Bk = [Bl ,k, .. . , Bu,k]' FEA identifies the set of eigenfre-
quencies Wz,k , Z = 1, . .. , Z, associated to all the vibration modes. 
By collecting the FEA results for k = 1, ... K, it is possible to deter­
mine the set of eirnfrequencies detected for the zth vibration mode, 
i.e. I z = {wz, k} k=l . As a consequence, the zth vibration mode is 
associated to a frequency in the range F z = [min(Iz),rnax(Iz)]. 
Using this information, we can consider a reduced dictionary D w 

formed by the terms S z compatible with the analyzed frequency w. 
Specifically, D w includes all the terms S z such that w E Fz . There­
fore, we can finally express the equivalent source weights as 

q(w) ~ D wß , (11) 

where ß is still a sparse coefficient vector, but shorter than 1'. 
Inserting (11) into (3) leads to 

p(w) = jwpoG p(w)Dwß . (12) 

The coefficient vector ß can be estimated using a LASSO regular­
ization scheme [14] to promote the sparsity of the solution, Le. 

j3 = argrnin (1I p(w) - jwpoGp(w)Dwß II ~ + .\ IIßll l) , (l3) 
ß 

where the regularization parameter .\ is chosen through generalized 
cross-validation [18]. The surface velocity is finally estimated as 

(14) 

4. EXPERIMENTAL VALIDATION 

Setup and database description: For the validation of the pro­
posed method we used data extracted from the NACHOS database 
[6], considering measurements acquired over a thin rectangular alu­
minum plate of size 500 x 400 x 4 rnrn3 excited with a force hammer. 
The database provides the acoustic pressure measured by a rectangu­
lar array of 1920 microphones, regularly spaced on a grid positioned 
20 rnrn over the vibrating plate. The groundtruth plate velocity, mea­
sured by means of a laser vibrometer, is also provided. Details ab out 
the acquisition setup can be found in [5]. 

The proposed dietionary-based equivalent source method (D­
ESM) was tested considering the setup shown in Fig. 1. More specif­
ically, we considered two rectangular mierophone arrays of 32 and 
64 elements, by sampling the grid of 1920 positions available from 
the NACHOS database. In both the cases, the microphones were se­
lected to cover the whole area above the vibrating plate. The equiva­
lent sources were placed on a plane at a distance of 20 rnrn under the 
bottom surface of the plate, disposed on a regular rectangular grid of 
size 24 x 20 points. 



Fig. 1. Setup geometry: a regular grid of microphones (circles) is located on 
a plane above the aluminum plate; equivalent sources (dots) are positioned 
on a regular grid under the plate. 

500 1 QC() 1 500 2000 2500 3COO 3500 500 1000 1500 2COO 2500 3QC() 3500 
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(a) 32 microphones (b) 64 microphones 

Fig. 2. Correlation score of vibration mode estimation. 

The dictionary of equivalent source weights was populated fol­
lowing the procedure discussed in Section 3.1. As the aluminum is 
isotropic, we considered the four nominal physical parameters of 
the pure aluminum: density 81 = 2700kgj m3 ; Young's modu­
lus 82 = 69 GPa; Poisson 's ratio 83 = 0.34; and shear modulus 
84 = 25 GPa. We varied each parameter in the range ± 10% of the 
nominal value, uniformly sampling this range at 5 points, leading 
to a total of K = 54 combinations. A triangular mesh model of 
the plate with 2860 elements was created, and FEA was performed 
using the built-in Matlab® Partial Difference Equation Toolbox. 

Results: The proposed D-ESM method was tested to reconstruct 
32 modes of vibration of the vibrating plate, in the range from 50 Hz 
to 3.3 kHz, in correspondence of the frequencies marked as rele­
vant in the NACHOS database. D-ESM was compared to: i) the 
standard ESM, using the equivalent sources configuration described 
above; ii) the NACHOS technique, provided along with the NA­
CHOS database; and iii) the groundtruth plate velocity. 

To evaluate the accuracy of mode estimation, we consider the 
normalized correlation between the estimated plate velocity v( w) 
and the groundtruth plate velocity v(w), computed as 

c w = IvT(w)v(w)1 
() Il v(w) II·llv(w) 11 

The correlation scores for the considered frequency range are 
shown in Figures 2(a) and 2(b), relative to the 32- and 64-elements 
microphone arrays, respectively. We observe that D-ESM gener­
ally achieves better accuracy than both standard ESM and NACHOS 
techniques, for the two considered microphone configurations. At 
frequencies above 2.5 kHz the accuracy of D-ESM tends to degrade. 
This is mainly due to the poor accuracy of FEA in predicting theo­
retical vibration modes at high frequencies, where a finer 3D mesh 
model would be required. Nevertheless, above 2 kHz also ESM and 
NACHOS exhibit a pretty unstable behavior, especially when 32 mi­
crophones are considered, thus proving the effectiveness of the pro­
posed technique when only a few microphones are available. 

Examples of mode estimation at two selected frequencies are 
shown in Fig. 3, relative to NAH using 64 microphones. As ex­
pected from the correlation scores in Fig. 2(b), D-ESM accurately 
estimates the vibration patterns of the plate, elearly highlighting all 
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(a) groundtruth (b) D·ESM (c) ESM (d) NACHOS 
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Fig. 3. Estimated surface velocity (magnitude). 

ü 
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Fig. 4. Average correlation score vs SNR. 

the nodal-lines and the anti-nodes. NACHOS introduces some small 
inaccuracies, while standard ESM presents more visible artifacts. 

As a final experiment, we tested the robustness of the proposed 
NAH technique against the measurement noise. It is important to 
notice that the measurements in the database are not noiseless, as 
their acquisitions were carried in a non-ideal room [5]. Neverthe­
less, we injected additive white noise on the acoustic pressure mea­
surements, wh ich has to be considered as an additional synthetic 
noise component. The correlation scores were averaged in the range 
[50 , 1500] Hz where results are more stable for all the compared 
methods, and for both the array configurations. Results are reported 
in Fig. 4. Note that the reported signal-to-noise ratio (SNR) is only 
relative to the synthetic noise component, as the actual SNR of orig­
inal da ta is not available. We observe that D-ESM turns to be the 
most robust method against the injected noise, maintaining its aver­
age accuracy around 50 % even when the SNR is elose to 0 dB. 

5. CONCLUSIONS AND FUTURE WORKS 

In this work, we proposed a novel technique for NAH. The surface 
velocity of a vibrating object is estimated by means of the ESM, 
suitably modified in order to seek the solution as a sparse linear 
combination of the entries of a compressed dictionary. This dic­
tionary is generated exploiting finite element analysis applied to a 
mesh model of the vibrating objecL Experimental results show that 
the proposed D-ESM approach represents an effective alternative to 
the standard ESM when a few microphones are available in noisy 
scenarios. Moreover, D-ESM is generally more accurate than the 
state-of-the-art method NACHOS in analyzing a planar surface, at 
the expense of disposing of a 3D mesh model of the plate. Neverthe­
less, it is worth noticing that D-ESM do not poses any restrictions on 
the object, whose geometry can be arbitrary (either not star-shaped, 
nor planar, etc.). Note also that, for arbitrary surfaces, the availabil­
ity of a mesh model is required also by state-of-the-art methods such 
as ESM and IBEM. 

In the next few months we are going to set up experiments on 
complex surfaces. In particular we aim at using D-ESM to analyze 
the vibration modes of violin plates and bodies, whose surfaces ex­
hibit holes and curvatures. 
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