
 

  

 

Aalborg Universitet

Estimation of Multiple Pitches in Stereophonic Mixtures using a Codebook-based
Approach

Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

Published in:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017

DOI (link to publication from Publisher):
10.1109/ICASSP.2017.7952143

Publication date:
2017

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Hansen, M. W., Jensen, J. R., & Christensen, M. G. (2017). Estimation of Multiple Pitches in Stereophonic
Mixtures using a Codebook-based Approach. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017 (pp. 186-190). IEEE. https://doi.org/10.1109/ICASSP.2017.7952143

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/ICASSP.2017.7952143
https://vbn.aau.dk/en/publications/8780ee86-44d9-4265-bbb5-acac7027c58b
https://doi.org/10.1109/ICASSP.2017.7952143


ESTIMATION OF MULTIPLE PITCHES IN STEREOPHONIC MIXTURES
USING A CODEBOOK-BASED APPROACH

Martin Weiss Hansen, Jesper Rindom Jensen, and Mads Græsbøll Christensen

Audio Analysis Lab, AD:MT, Aalborg University, Denmark
{mwh,jrj,mgc}@create.aau.dk

ABSTRACT
In this paper, a method for multi-pitch estimation of stereo-
phonic mixtures of multiple harmonic signals is presented.
The method is based on a signal model which takes the am-
plitude and delay panning parameters of the sources in a
stereophonic mixture into account. Furthermore, the method
is based on the extended invariance principle (EXIP), and a
codebook of realistic amplitude vectors. For each fundamen-
tal frequency candidate in each of the sources, the amplitude
estimates are mapped to entries in the codebook, and the
pitch and model order are estimated jointly. The performance
of the proposed method is evaluated using mixtures of real
signals. Experiments show an increase in performance when
knowledge about the panning parameters is utilized together
with the codebook of magnitude amplitudes when compared
to a state-of-the-art transcription method.

Index Terms— Multi-pitch estimation, music informa-
tion retrieval, model-order selection, vector quantization.

1. INTRODUCTION

Often, music signals contain multi-pitch signals, e.g., when
multiple instruments are played simultaneously. Knowing
these fundamental frequencies is useful in many applica-
tions where the harmonic signal model is used in, such as,
enhancement [1], source localization [2], automatic music
transcription [3] and source separation [4].

Several multi-pitch estimation methods exist, e.g., non-
parametric methods, such as those based on the autocor-
relation function (ACF) estimation, like [5], and statistical
parametric, model-based approaches, such as the maximum
likelihood (ML) method [6], which can be used iteratively
to resolve multiple fundamental frequencies, using, e.g., the
harmonic matching pursuit (HMP) [7], and the expectation-
maximization (EM) algorithm [6]. Within the area of auto-
matic music transcription, the main goal is to form score-like
representations [3], resulting in discrete pitch estimates, even
though the pitch is a continuous parameter. Such methods are
often based on spectrogram factorization methods, where an
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input time-frequency representation is decomposed into note
templates and activations. Examples are non-negative matrix
factorization (NMF) [8] and probabilistic latent component
analysis (PLCA) [9, 10]. Multi-pitch estimation is a difficult
problem, especially when the fundamental frequencies of the
sources have overlapping harmonics, or when they are related
in a simple way. A method for multi-pitch estimation of pi-
ano recordings, where overtones might overlap, is presented
in [11]. The method is based on a smooth autoregressive
model of the spectral envelope of the overtones of each note.
The spectral smoothness principle is presented in [12].

In this paper, we present a method for multi-pitch esti-
mation for stereophonic mixtures of sources consisting of,
possibly multiple, harmonic signals, that might have over-
lapping harmonics. As opposed to the single-channel meth-
ods described in the above, in the work presented here, mix-
tures are assumed to contain several harmonic signals with
amplitude and delay panning applied. The method is based
on a multi-channel signal model, where the panning parame-
ters are taken into account. The fundamental frequencies are
estimated jointly with the model order, iteratively for each
source. The least squares (LS) amplitude estimates are then
mapped to entries in a codebook trained using amplitude vec-
tors of monophonic signals, and the fundamental frequency
and model order of each source are re-estimated using the
mapped amplitudes. In this way, the fundamental frequen-
cies of harmonic sources, with overlapping harmonics, can
be resolved. In relation to the work presented in [13], where a
codebook-based approach for multi-pitch estimation was pro-
posed, the work presented in this paper is based on a stereo-
phonic signal model, introduced in [14], in which a pitch es-
timator, which takes the amplitude and delay panning param-
eters into account when estimating the fundamental frequen-
cies of stereophonic mixtures of single-pitch signals, was pro-
posed. Furthermore, in the work presented here, the model
order of each harmonic source is estimated jointly with its
fundamental frequency. It should be noted that we are here
estimating continuous pitch of the signals considered, result-
ing in a full parameterization of the signals in the mixture.
Furthermore, it should be noted that we here consider the
panning parameters known, and we consider estimating the
parameters a separate problem.



2. SIGNAL MODEL

Consider a complex-valued K-channel mixture of M har-
monic sources at time n. The data in the kth channel is repre-
sented by a snapshot xk ∈ CN , i.e.,

xk = [xk(0) xk(1) · · · xk(N − 1)]T ,

for k = 0, . . . ,K − 1. It should be noted here that a complex
signal model is used because it may lead to simpler expres-
sions, and lower computational complexity. It should also be
noted that although the signal model is complex, it can be
used with real signals by applying the Hilbert transform. We
assume that (1) is generated by M sources spatially rendered
by applying amplitude and delay panning. An example of an
amplitude panning law, which could be applied for a stereo-
phonic mix, i.e., K = 2, is [15]

gk,m =

{
cos θm, for k = 0.

sin θm, for k = 1.
(1)

where k ∈ {0, 1} is the channel number for a stereophonic
mixture, and θm is the angle between the pan direction and the
left loud speaker (k = 0) for the mth source. The aperture of
the loud speakers is assumed to be 90◦ [15], resulting in equal
amplitudes for θm = 45◦, while only one of the channels will
be active when θm = 0◦ or θm = 90◦. Delays can also be
used to enhance the spatial perception [16, 17], where a delay
τk,m is added to one of the channels of a source. However,
this type of panning is less common than amplitude panning.
Furthermore, it should be noted that sources might share pan-
ning parameters, e.g., when chords are played. The data in
channel k is modeled as a linear superposition of M , i.e.,

xk(n) =

M∑
m=1

gk,msm(n− τk,m) + ek(n),

with

sm(n) =

Lm∑
l=1

αm,le
jω0,mln,

where ω0,m is the fundamental frequency of the mth source,
Lm is the model order, and αm,l = Am,le

jφm,l is the complex
amplitude, where Am,l is the real amplitude of the lth har-
monic of the mth source, φm,l its phase. The noise ek(n) is
assumed to be white and complex Gaussian, and the signal is
assumed to be stationary during the interval n = 0, . . . , N−1.
A vector signal model can then be stated as

xk =

M∑
m=1

ZmG(k,m)αm + ek, (2)

where Zm is a Vandermonde matrix, defined as Zm =
[zm,1 · · · zm,Lm

], zm,l = [1 ejω0,ml · · · ejω0,ml(N−1)]T ,

and

G(k,m) =

gk,me
−jω0,mfsτk,m · · · 0

...
. . .

...
0 · · · gk,me−jLmω0,mfsτk,m

 ,
which is defined by the panning parameters (1) and τk,m. Fur-
thermore, the vector of complex amplitudes is given byαm =
[αm,1 · · · αm,Lm ]T , and ek = [ek(0) ek(1) · · · ek(N −
1)]T . The likelihood of the observed signal, parametrized by
ψ = [ω0,1 gk,1 τk,1 α

T
1 · · · ω0,M gk,M τk,M αTM ]T , is

defined as p(x;ψ), where x is obtained by stacking xk, for
all channels. Here, we are interested in estimating the set of
fundamental frequencies ω0 = [ω0,1 · · · ω0,M ]T , while the
other parameters are considered nuisance parameters.

3. PROPOSED METHOD

We now derive the joint multi-channel multi-pitch and model
order estimator. We wish to find the parameters of the multi-
pitch mixture, i.e., ψ̂ = arg maxψ ln p(x;ψ). For white
Gaussian noise, and mutually independent parameters, this
resembles the NLS method, i.e.,

ω̂0 = arg min
{ω0,m}∈Ω

∥∥∥∥∥x−
M∑
m=1

ZmG(k,m)αm

∥∥∥∥∥
2

2

, (3)

where Ω is the set of possible frequencies. However, solving
(3) for all ω0,m at once is a multidimensional problem. One
possible approach for estimating the parameters is to use an
iterative method, such as the harmonic matching pursuit [7,
6], which is used herein. The method is based on a residual at
iteration i at time n, defined as

r
(i)
k (n) = r

(i−1)
k (n)−

Li∑
l=1

gk,mαm,le
jω0,ml(n−τk,m), (4)

and is used to estimate the model parameters iteratively for
each modeled harmonic source m. The method is initialized
using the observed signal, i.e., r(0)

k (n) = x(n). As previously
mentioned, the fundamental frequencies of the M sources are
estimated jointly with the model order. The MAP model se-
lection criterion [18, 6] is used as a model selection rule, i.e.,

M̂m = arg min
Mm

K−1∑
k=0

−ln p
(
xk; ψ̂m,Mm

)
+

1

2
ln |Ĥm|,

where M̂m is the model of themth source, and |·| denotes the
determinant of a matrix. The determinant of the Hessian, Ĥm,
can be approximated using the Fisher information matrix, and
a normalization matrix is introduced (see [18]), based on (2)
i.e.,

K =


(N3+K3−N2K2)−

1
2 0 0 0

0 N− 1
2 0 0

0 0 (K3N)−
1
2 0

0 0 0 N− 1
2 I2L

 ,



where I2L is a 2L× 2L identity matrix, such that

ln |Ĥm| = ln |K−2|+ ln |KĤmK|, (5)

where the last term, which is of order O(1), is ignored, and
the first term is used as a penalty term. We can now state the
joint pitch and model order estimator used to compute initial
estimates for sources m = 1, . . . ,M , i.e.,

{
ω̂0,m, L̂m

}
= arg min
αm,{ω0,m,Lm}

ln |K−2|
2

+N

K−1∑
k=0

ln
∥∥βk,m∥∥2

2
, (6)

where βk,m = r
(m−1)
k − ZmG(k,m)αm, and r

(m)
k =

[rmk (0) rmk (1) · · · rmk (N−1)]T . It should be noted that the
cost function is multi-modal, and we therefore perform the
minimization with respect to ω0,m using a grid search. The
LS estimates of the amplitudes αm for each candidate ω0,m

are [19]

α̂m =

[
K−1∑
k=0

GH(k,m)ZHmZmG(k,m)

]−1

·

K−1∑
k=0

GH(k,m)ZHmr
(m−1)
k ,

(7)

which are estimated for each of the m sources. The fun-
damental frequencies and amplitudes of the M sources are
then obtained by computing the residual (4) and estimating
the fundamental frequency using (6) and the amplitudes using
(7). However, estimating the amplitudes of overlapping har-
monics is an ill-posed problem. To solve this, we propose to
map the vector Âm, where each entry is the magnitude of the
corresponding entry in α̂m to entries in a codebook of realis-
tic amplitudes, each with unit norm, using a vector quantizer,
i.e.,

Âm → Am ∈ C.

In principle this can be done for all possible ω0,m, but to re-
duce the computational requirements, we restrict the possible
fundamental frequency candidates to be the 100 minima of
the cost function in (6). In this work, the mapping of ampli-
tudes α̂m to codebook entries is done, according to the EXIP
[20, 21], by finding

Ãm = min
γm∈R+,Am∈C

∥∥∥Âm − γmAm

∥∥∥2

2
, (8)

where γm is a scaling factor, to limit the size of the code-
book. The codebook is generated by jointly estimating the
fundamental frequency and the model order of a set of record-
ings of monophonic signals. The dimension of the amplitude
vectors varies with the model order and the fundamental fre-
quency. To further limit the size of the codebook, the dimen-
sion of the amplitude vectors is converted to fixed dimension
using a non-square transform, in this case zero padding, if the

model order is less than the fixed dimension, and truncation
vice versa [22]. The amplitudes Ãm in (8) are combined with
the phases of the initial amplitude estimates α̂m to result in
the amplitude estimates of the mth source, i.e.,

α̃m = [Ã1,me
j∠α̂1,m · · · ÃLm,me

j∠α̂Lm,m ]T .

These amplitudes can be substituted in (6), i.e.,

{
ω̃0,m, L̃m

}
= arg min
αm,{ω0,m,Lm}

ln |K−2|
2

+N

K−1∑
k=0

ln
∥∥∥β̃k,m∥∥∥2

2
(9)

where β̃k,m = r
(m−1)
k − ZmG(k,m)α̃m. As an example of

what we want to avoid, the magnitude of the amplitudes of
the harmonics should not be allowed to evolve non-smoothly
across frequencies, i.e., the spectral smoothness principle is
used [12]. Using the approach proposed here, the magnitudes
of the harmonic amplitudes are constrained to have values that
would be considered realistic. The method proposed in this
section, which is based on the harmonic matching pursuit [7],
could be used to initialize an EM algorithm, to yield better
estimates [6]. It should be noted that the mixing parameters
are assumed known in this work, however, a method for joint
DOA and pitch estimator, such as the one in [2] could be used
to estimate the mixing parameters, where it could be exploited
that the parameters evolve slowly over time, to allow process-
ing of larger chunks of the signals.

4. EXPERIMENTS

We now present the experimental setup along with the evalu-
ation of the proposed multi-pitch estimator. The experiments
have been conducted using mixtures of real recordings of a
Bb trumpet (played with vibrato) and a French horn, from the
IOWA database1. Data from the MAPS database of piano sig-
nals [11] has also been used for the evaluation. The mixtures
generated using the IOWA database each contain recordings
of four notes played simultaneously (M = 4). A codebook of
amplitudes is trained using 10 recordings of different wood-
wind instruments each playing a succession of notes, ranging
from C4 (262 Hz) to B4 (494 Hz). The recordings are single-
channel with fs = 44.1 kHz, however, they are downsampled
to fs = 8 kHz. The ANLS joint pitch and model order es-
timator in [6] has been used to jointly estimate the pitch and
model order for segments of length N = 240 samples. The
pitch and model order estimates are then used to form LS esti-
mates of the amplitudes (7) for each frame of each signal, re-
sulting in 11544 amplitude vectors. Each amplitude vector is
scaled to have unit norm before vector quantization. The cho-
sen codeword is then scaled to match the original amplitude
vector. The codebook has been trained using K-means [23],
where the first 15 harmonics of the woodwind signals are con-
sidered. The dimension of the codebook is converted using a

1Available at http://theremin.music.uiowa.edu.



Fig. 1. Spectrogram (top) and pitch estimates (bottom) of
a multi-pitch mixture of two instruments, trumpet and horn,
playing the notes C4 (262 Hz), E4 (330 Hz), G4 (392 Hz) and
B4 (494 Hz), respectively.

non-square transform, as described in the previous section.
Different choices of the number of clusters for the training of
the codebooks have been considered, varying from 1 to 100
clusters. Empirically, a suitable number of codewords was
found to be 20, which is the number of clusters used here.

Two experiments were conducted. In the first experiment,
signals are generated by mixing two recordings of notes
played using a Bb trumpet, and two notes played using a
French horn, i.e., four notes, together forming a 7th chord,
using data from the IOWA database. It should be noted that
the training data set used for training the codebook, and the
test data set used to generate the mixtures are disjoint. In
total, eight mixtures are generated. The choice of notes is
done in a way similar to in [11]. Figure 1 showns an example
of a spectrogram of such a mixture, with pitch estimates.
Stereo versions of the mixtures of trumpet and horn signals
were generated by applying amplitude and delay panning, as
described in Section 2. As mentioned, the mixing parameters
are assumed known in this work, however, the parameters can
be found by adding search dimensions to (9). The panning
parameters of the trumpet submixture are θ = 25◦, τ0 = 0
ms, τ1 = 18 ms while for the horn submixture, they are
θ = 65◦, τ0 = 18 ms, τ1 = 0 ms. For the proposed method,
the fundamental frequencies are obtained by performing a
grid search from 100 Hz to fs/4 = 2000 Hz, with a step
size of 1 Hz. The performance of the proposed method has
been compared to the method presented in [10], which we
will denote BW20152 in the figures, and the MIRtoolbox [24]
implementation of the ESACF method [5]. For each mixture,
the gross error rate (GER) is calculated, which is the number
of fundamental frequencies that deviate more than a semitone
relative to the ground truth, which is generated using the joint
ANLS estimator [6]. The results are shown in Table 1.

2The source code is available at https://code.soundsoftware.
ac.uk/projects/amt_plca_5d.

Table 1. GERs for the experiment with IOWA mixtures. The
chords are listed using integer notation (t: trumpet, h: horn).

Notes (t-t-h-h) Proposed BW2015 ESACF

0-4-7-11 0.0557 0.4861 0.4345
0-3-7-8 0.1683 0.4226 0.4741
0-4-5-9 0.0223 0.5000 0.2378
0-1-5-8 0.0112 0.4980 0.2363
0-3-7-10 0.0281 0.5119 0.6692
0-4-7-9 0.0589 0.3393 0.2378
0-3-5-8 0.1026 0.4782 0.2241
0-2-5-9 0.0159 0.3254 0.4726

In the second experiment, data from the MAPS database,
i.e., recordings of a set of two-note chords using the ENST-
DkCl piano, was used. Eight recordings containing signals
with fundamental frequencies ranging from C3 (131 Hz) and
B5 (988 Hz) was chosen. The data used is single-channel, i.e,
K = 1, and the number of sources is M = 2. This type of
evaluation is similar to the one in [13], however, here the pitch
is estimated jointly with the model order. The metric used
is similar to the one used in the first experiment. The mean
GERs were 0.4064 for the proposed method, and 0.2006, for
the method presented in [10], respectively.

5. DISCUSSION

In this paper, a method for joint multi-pitch and model or-
der estimation of delay and amplitude panned mixtures of
harmonic sources has been proposed. The method presented
here extends the work in [14] and [13], where stereophonic
mixtures of monophonic sources, and single-channel multi-
pitch mixtures were considered, respectively. The proposed
method is based on a signal model that takes the panning
parameters of a mixture into account. Furthermore, a code-
book of amplitude vectors is used to quantize the magnitude
of the amplitudes when estimating the multiple fundamen-
tal frequencies. For the IOWA mixtures considered, the pro-
posed method outperforms the methods to which it has been
compared to, with mean GERs of 0.0578 for the proposed
method, 0.4482 for the BW2015 method [10], and 0.3733 for
the ESACF method [5], respectively. In the second experi-
ment, with piano data, the BW2015 method outperforms the
proposed method. However, it should be noted that the pro-
posed method is based on a harmonic signal model, whereas
piano signals can be considered to be quite inharmonic. Fur-
thermore, since the proposed method estimates continuous
pitch, it is possible to observe tonal details, such as vibrato.
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