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ABSTRACT

Being able to predict whether a song can be a hit has impor-
tant applications in the music industry. Although it is true
that the popularity of a song can be greatly affected by exter-
nal factors such as social and commercial influences, to which
degree audio features computed from musical signals (whom
we regard as internal factors) can predict song popularity is
an interesting research question on its own. Motivated by the
recent success of deep learning techniques, we attempt to ex-
tend previous work on hit song prediction by jointly learning
the audio features and prediction models using deep learning.
Specifically, we experiment with a convolutional neural net-
work model that takes the primitive mel-spectrogram as the
input for feature learning, a more advanced JYnet model that
uses an external song dataset for supervised pre-training and
auto-tagging, and the combination of these two models. We
also consider the inception model to characterize audio infor-
mation in different scales. Our experiments suggest that deep
structures are indeed more accurate than shallow structures
in predicting the popularity of either Chinese or Western Pop
songs in Taiwan. We also use the tags predicted by JYnet to
gain insights into the result of different models.

Index Terms— Hit song prediction, deep learning, con-
volutional neural network, music tags, cultural factors

1. INTRODUCTION

The popularity of a song can be measured a posteriori ac-
cording to statistics such as the number of digital downloads,
playcounts, listeners, or whether the song has been listed in
the Billboard Chart once or multiple times. However, for mu-
sic producers and artists, it would be more interesting if song
popularity can be predicted a priori before the song is ac-
tually released. For music streaming service providers, an
automatic function to identify emerging trends or to discover
potentially interesting but not-yet-popular artists is desirable
to address the so-called “long tail” of music listening [1]. In
academia, researchers are also interested in understanding the
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factors that make a song popular [2,3]. This can be formulated
as a pattern recognition problem, where the task is to gener-
alize observed association between song popularity measure-
ments and feature representation characterizing the songs in
the training data to unseen songs [4].

Our literature survey shows that this automatic hit song
prediction task has been approached using mainly two differ-
ent information sources: 1) internal factors directly relating
to the content of the songs, including different aspects of au-
dio properties, song lyrics, and the artists; 2) external factors
encompassing social and commercial influences (e.g. concur-
rent social events, promotions or album cover design).

The majority of previous work on the internal factors of
song popularity are concerned with the audio properties of
music. The early work of Dhanaraj and Logan [4] used sup-
port vector machine to classify whether a song will appear
in music charts based on latent topic features computed from
audio Mel-frequency cepstral coefficients (MFCC) and song
lyrics. Following this work, Pachet et al. [5] employed a large
number of audio features commonly used in music informa-
tion retrieval (MIR) research and concluded that the features
they used are not informative enough to predict hits, claiming
that hit song science is not yet a science. Ni et al. [6] took
a more optimistic stand, showing that certain audio features
such as tempo, duration, loudness and harmonic simplicity
correlate well with the evolution of musical trends. How-
ever, their work analyzes the evolution of hit songs [7–9],
rather than discriminates hits from non-hits. Fan et al. [10]
performed audio-based hit song prediction of music charts in
mainland China and UK and found that Chinese hit song pre-
diction is more accurate than the UK version. Purely lyric-
based hit song prediction was relatively unexplored, except
for the work presented by Singhi and Brown [11].

On the other hand, on external factors, Salganik et al. [12]
showed that the song itself has relatively minor role than the
social influences for deciding whether a song can be a hit.
Zangerla et al. [13] used Twitter posts to predict future charts
and found that Twitter posts are helpful when the music charts
of the recent past are available.

To our best knowledge, despite its recent success in var-
ious pattern recognition problems, deep learning techniques
have not be employed for hit song prediction. In particular,
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in speech and music signal processing, convolutional neural
network (CNN) models have exhibited remarkable strength in
learning task-specific audio features directly from data, out-
performing models based on hand-crafted audio features in
many prediction tasks [14–16].

We are therefore motivated to extend previous work on
audio-based hit song prediction by using state-of-the-art
CNN-based models, using either the primitive, low-level
mel-spectrogram directly as the input for feature learning, or
a more advanced setting [17] that exploits an external mu-
sic auto-tagging dataset [18] for extracting high-level audio
features. Moreover, instead of using music charts, we use a
collection of user listening data from KKBOX Inc., a leading
music streaming service provider in East Asia. We formulate
hit song prediction as a regression problem and test how we
can predict the popularity of Chinese and Western Pop music
among Taiwanese KKBOX users, whose mother tongue is
Mandarin. Therefore, in addition to testing whether deep
models outperform shallow models in hit song prediction, we
also investigate how the culture origin of songs affects the
performance of different CNN models.

2. DATASET

Because we are interested in discriminating hits and non-hits,
we find it informative to use the playcounts a song receives
over a period of time from streaming services to define song
popularity and formulate a regression problem to predict song
popularity. In collaboration with KKBOX Inc., we obtain a
subset of user listening records contributed by Taiwanese lis-
teners over a time horizon of one year, from Oct. 2012 to
Sep. 2013, involving the playcounts of close to 30K users
for around 125K songs. Based on the language metadata pro-
vided by KKBOX, we compile a Mandarin subset featuring
Chinese Pop songs and a Western subset comprising of songs
sung mainly in English. There are more songs in the West-
ern subset but the Mandarin songs receive more playcounts
on average, for Mandarin is the mother tongue of Taiwanese.

The following steps are taken to gain insights into the data
and for data pre-processing. First, as the songs in our dataset
are released in different times, we need to check whether we
have to compensate for this bias, for intuitively songs released
earlier can solicit more playcounts. We plot in Fig. 1 the
average playcounts of songs released in different time peri-
ods, where Q1 denotes the first three months starting from
Oct. 2012 and –Q1 the most recent three months before Oct.
2012, etc. The y-axis is in log scale but the actual values are
obscured due to a confidentiality agreement with KKBOX.
From the dash lines we see that the average playcounts from
different time periods seem to be within a moderate range in
the log scale for both subsets, exempting the need to compen-
sate for the time bias by further operations.

Second, we define the hit score of a song according to the
multiplication of its playcount in log scale and the number of

Fig. 1. The average playcounts (in log scale) of songs released
in different time periods.

Fig. 2. The distribution of hit scores (see Section 2 for defini-
tion) in the (left) whole and (right) test sets.

users (also in log scale) who have listened to the song. We
opt for not using the playcounts only to measure song pop-
ularity because it is possible that the playcount of a song is
contributed by only a very small number of users.

Third, to make our experimental results on the two subsets
comparable, we sample the same amount of 10K songs in our
experiment for both subsets. These songs are those with the
highest playcounts within the subset. It can be seen from Fig.
2 that the distributions of hit scores of the sampled songs are
similar. The solid lines in Fig. 1 show that after this sampling
the time bias among the sampled songs remains moderate.

Finally, we randomly split the songs to have 8K, 1K, and
1K songs as the training, validation, and test data for each
of the subsets. Although it may be more interesting to split
the songs according to their release dates so as to ‘learn from
the past and predict the future,’ we leave this as a future work.
Our focus here is to study whether deep models perform better
than shallow models in audio-based hit song prediction.

The scale and the time span of the dataset are deemed
appropriate for this study. Unlike previous work on musical
trend analysis that may involve more than ten years’ worth of
data (e.g. [6], [19]), for the purpose of our work we want to
avoid changes in public music tastes and therefore it is better
to use listening records collected within a year.



3. METHODS

We formulate hit song prediction as a regression problem and
train either shallow or deep neural network models for pre-
dicting the hit scores. Given the audio representation xn for
each song n in the training set, the objective is to optimize the
parameters Θ of our model f(·) by minimizing the squared er-
ror between the ground truth yn and our estimate, expressed
as minΘ

∑
n ‖yn − fΘ(xn)‖22. As described below, a total

number of six methods are considered, All of them are im-
plemented based on the lasagne library [20], and the model
settings such as learning rate update strategy, dropout rate,
and numbers of feature maps per layer are empirically tuned
by using the validation set.

3.1. Method 1 (m1): LR

As the simplest method, we compute 128-bin log-scaled mel-
spectrograms [21] from the audio signals and take the mean
and standard deviation over time, leading to a 256-dim feature
vector per song. The feature vectors are used as the input to
a single-layer shallow neural network model, which is effec-
tively a linear regression (LR) model. The mel-spectrograms
are computed by short-time Fourier transform with 4,096-
sample, half-overlapping Hanning windows, from the middle
60-second segment of each song, which is sampled at 22 kHz.
In lasagne, we can implement the LR model by a dense layer.

3.2. Method 2 (m2): CNN

Going deeper, we use the mel-spectrograms directly as the in-
put, which is a 128 by 646 matrix for there are 646 frames
per song, to a CNN model. Our CNN model consists of two
early convolutional layers, with respectively 128-by-4 and 1-
by-4 convolutional kernels, and three late convolutional lay-
ers, which all has 1-by-1 convolutional kernels. Unlike usual
CNN models, we do not use fully connected layers in the lat-
ter half of our model for such fully convolutional model has
been shown more effective for music [14, 17, 22].

3.3. Method 3 (m3): inception CNN

The idea of inception was introduced in GoogLeNet for visual
problems [23]. It uses multi-scale kernels to learn features.
We make an audio version of it by adding two more parallel
early convolutional layers with different sizes: 132-by-8 and
140-by-16, as illustrated in the bottom-right corner of Fig. 3.
To combine the output of these three kernels by concatena-
tion, the input mel-spectrogram needs to be zero-padded.

3.4. Method 4 (m4): JYnet (a CNN model) + LR

While generic audio features such as mel-spectrogram may be
too primitive to predict hits, we employ a state-of-art music
auto-tagging system referred to as the JYnet [17] to compute

Fig. 3. Architecture of the investigated CNN models.

high-level tag-based features. JYnet is another CNN model
that also takes the 128-bin log-scaled mel-spectrograms as the
input, but the model is trained to make tag prediction using
the MagnaTagATune dataset [18]. The output is the activa-
tion scores of 50 music tags, including genres, instruments,
and other performing related tags such as male vocal, female
vocal, fast and slow. From the output of JYnet (i.e. 50-dim
tag-based features), we learn another LR model for predicting
hit scores, as illustrated in the bottom-left corner of Fig. 3.

3.5. Methods 5 and 6 (m5 & m6): Joint Training

We also try to combine (m4) with (m2) or (m3) to exploit
information in both the mel-spectrograms and tags, leading to
(m5) and (m6). Instead of simply combining the results of
the two models fΘ1(·) and fΘ2(·) being combined, we add
another layer on top of them for joint training, as illustrated
in Fig. 3. The learning objective becomes:

min
w,Θ1,Θ2

∑
n

‖yn − wfΘ1(xn)− (1− w)fΘ2(xn)‖22 , (1)

where w determines their relative weight. In this way, we
can optimize the model parameters of both models jointly.
However, when method 4 is used in joint training we only
update the parameters of its LR part, as JYnet is treated as an
external, pre-trained model in our implementation.

4. EXPERIMENTAL RESULTS

We train and evaluate the two data subsets separately. For
evaluation, the following four metrics are considered:
• Recall@100: Treating the 100 songs (i.e. 10%) with

the highest hit scores among the 1,000 test songs as the
hit songs, we rank all the test songs in descending order
of the predicted hit scores and count the number of hit
songs that occur in the top 100 of the resulting ranking.
• nDCG@100: normalized discounted cumulative gain

(nDCG) is another popular measure used in ranking



Table 1. Accuracy of Hit Song Prediction

Method Mandarin subset Western subset
recall nDCG Kendall Spearman recall nDCG Kendall Spearman

(m1) audio+LR 0.1900 0.1997 0.1679 0.2480 0.1400 0.1271 0.0674 0.1002
(m2) audio+CNN 0.2300 0.2334 0.1806 0.2678 0.1300 0.1294 0.1031 0.1564
(m3) audio+inception CNN 0.2500 0.2369 0.2286 0.3374 0.1800 0.1989 0.1093 0.1636
(m4) tag+LR 0.2400 0.2372 0.1671 0.2473 0.2000 0.1774 0.0918 0.1372
(m5) (m2)+(m4) 0.2500 0.2558 0.2018 0.2971 0.1800 0.1791 0.1300 0.1941
(m6) (m3)+(m4) 0.3000 0.2927 0.2665 0.3894 0.2100 0.2413 0.1341 0.1996

problems [24]. It is computed in a way similar to re-
call@100, but the positions of recalled hit songs in the
ranking list are taken into account.

• Kendall’s τ : we directly compare the ground truth and
predicted rankings of the test songs in hit scores (with-
out defining which songs are hit songs) and compute a
value that is based on the number of correctly and in-
correctly ranked pairs [25].

• Spearman’s ρ: the rank correlation coefficient (consid-
ering the relative rankings but not the actual hit scores)
between the ground truth and predicted rankings.

The result is shown in Table 1, which is obtained by aver-
aging the result of 10 repetition of each method. The follow-
ing observations can be made. First, by comparing the result
of (m1), (m2) and (m3), we see that better result in most of
the four metrics is obtained by using deeper and more compli-
cated models for both subsets. This suggests the effectiveness
of deep structures for this task. Furthermore, by comparing
the result of the two subsets, we see that audio-based hit song
prediction is easier for the Mandarin subset, confirming the
findings of Fan et al. [10].

Second, as both (m1) and (m4) use LR for prediction, by
comparing their result we see that the tag-based method (m4)
outperforms the simple audio-based method (m1) in all the
four metrics for the Western subset, demonstrating the effec-
tiveness of the JYnet tags. This is however not the case for
the Mandarin subset for Kendall’s τ and Spearman’s ρ.

Third, from the result of (m5) and (m6), we see that the
joint learning structure can further improve the result for both
subsets. The best result is obtained by (m6) in all metrics.

To gain insights, we employ JYnet to assign genre labels
to all the test songs and examine the distribution of genres in
the top-50 hit songs determined by either automatic models or
the ground truth. For each song, we pick the genre label that
has the strongest activation as predicted by JYnet. The result-
ing genre distributions are shown in Fig. 4. We see from the
result of ground truth that the Western hits have more diverse
genres. The predominance of ‘Pop’ songs in the Mandarin
subset might explain why 1) hit song prediction in this subset
is easier and 2) (m4) alone cannot improve τ and ρ. More-
over, for the Western subset, we see that the genre distribu-
tion of (m4) is more diverse than that of (m3), despite that

Fig. 4. The predominate tags (predicted by JYnet) for the
top-50 hit songs determined by different methods for the (top)
Mandarin and (bottom) Western subsets. From left to right:
(a) the tag-based model (m4), (b) the audio-based model
(m3), (c) the hybrid model (m6), and (d) the ground truth.

(m3) achieves slightly higher nDCG and Spearman’s ρ. This
might imply that the ability to match the genre distribution of
the ground truth is another important performance indicator.

5. CONCLUSION

In this paper, we have introduced state-of-the-art deep learn-
ing techniques to the audio-based hit song prediction prob-
lem. Instead of aiming at classifying hits from non-hits, we
formulate it as a regression problem. Evaluations on the lis-
tening data of Taiwanese users of a streaming company called
KKBOX confirms the superiority of deep structures over shal-
low structures in predicting song popularity. Deep structures
are in particular important for Western songs, as simple shal-
low models may not capture the rich acoustic and genre di-
versity exhibited in Western hits. For future work, we hope
to understand what our neural network models actually learn,
to compare against more existing methods (preferably using
the same datasets), and to investigate whether our models can
predict future charts or emerging trends.
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