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Abstract

In this paper, we introduce the Neural Acoustic Processing Library (NAPLib), a toolbox 

containing novel processing methods for real-time and offline analysis of neural activity in 

response to speech. Our method divides the speech signal and resultant neural activity into 

segmental units (e.g., phonemes), allowing for fast and efficient computations that can be 

implemented in real-time. NAPLib contains a suite of tools that characterize various properties of 

the neural representation of speech, which can be used for functionality such as characterizing 

electrode tuning properties, brain mapping and brain computer interfaces. The library is general 

and applicable to both invasive and non-invasive recordings, including electroencephalography 

(EEG), electrocorticography (ECoG) and magnetoecnephalography (MEG). In this work, we 

describe the structure of NAPLib, as well as demonstrating its use in both EEG and ECoG. We 

believe NAPLib provides a valuable tool to both clinicians and researchers who are interested in 

the representation of speech in the brain.
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1. INTRODUCTION/BACKGROUND

Humans are unique in their ability to understand speech. As such, much research has gone 

into understanding the human auditory cortex, a brain region that plays an important role in 

the process of speech perception. However, progress in understanding the central auditory 

system has been hindered by lack of tools that can effectively and efficiently quantify the 

representation of speech at different stages of neural transformations, a problem that plagues 

both invasive and noninvasive recording methods.

Many non-invasive studies utilizing EEG and MEG in recent years have focused on 

understanding speech processing for applications to various hearing and language disorders 

[1, 2, 3]. Additionally, invasive recordings can be used to study auditory neuroscience, as 

well as performing brain mapping, an essential clinical procedure for epilepsy patients who 
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go under surgical resection of seizure foci. Several approaches for brain mapping have 

already been developed, including electrical cortical stimulation (ECS) [4, 5], cortico-

cortical evoked potentials (CCEP) [6], and mapping based on high gamma activity [7]. 

While these methods are effective for their intended applications, they do not provide 

information about tuning properties of electrodes or characterize the neural encoding of 

speech. Additionally, ECS can induce seizures in subjects.

Traditionally, quantification of the tuning properties of auditory brain regions is performed 

by calculating spectro-temporal receptive fields (STRFs), which are linear maps between 

stimulus and response that quantify a neuron’s or neural population’s ideal stimulus [8]. 

However, STRFs suffer from several drawbacks. First, STRFs assume a linear relationship 

between stimulus and response, an assumption which has been proven false, particularly in 

higher-level processes [9, 10]. Additionally, STRFs are dependent on the particular 

algorithm chosen for regularization (e.g., norm and sparsity constraints), which can limit 

their interpretability [11]. Finally, solving the linear regression typically requires the 

computation of the inverse of large matrices, making them computationally intractable for 

real-time systems.

In this paper, we present the Neural Acoustic Processing Library (NAPLib)1, a library for 

studying brain regions involved in speech processing. Recent studies have shown the 

encoding of acoustic-phonetic features in speech cortices [12]; since each phonemic 

category has unique spectro-temporal properties, studying the responsiveness of neural 

activity to these categories informs us about spectro-temporal properties of responsive 

regions [13]. These methods do not make linear model assumptions, and they are 

computationally efficient meaning that they can be implemented in real-time [12]. We 

include both real-time and offline processing tools, and we demonstrate the use of this 

toolbox in both noninvasive and invasive neural recordings.

2. TOOLBOX DESCRIPTION

NAPLib is comprised of two main libraries for real-time and offline processing. The offline 

toolbox is developed in both MATLAB and Python, and provides functionality for source 

selectivity analysis [12], quantification of response delay, and analysis of phoneme similarity 

patterns in neural and acoustic space. The real-time toolbox, developed in Simulink, 

provides quantification of electrode responses to speech and shows the selectivity of sources 

to segmental units, such as phonemes. Additionally, we provide a small, open-source corpus 

of American English.

2.1. Speech stimuli

NAPLib quantifies spatial and temporal properties of neural responses to phoneme 

categories as subjects listen to continuous speech. In order to implement this technique, the 

continuous speech signal must be temporally aligned with the corresponding phoneme 

sequence. With the library, we provide a small, open-source corpus of American English 

with forced alignments generated using the Penn Phonetics Lab Forced Aligner [14]. We 

1Available at http://naplab.ee.columbia.edu/NAPLib.
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provide 25 minutes of speech (see Table 1 for details). NAPLib is generalizable to any 

phonetically aligned corpus (e.g., TIMIT [15]). Additionally, there are many open-source 

toolkits that can be used to generate forced alignments for existing and custom corpora and 

stimuli [16].

2.2. Offline processing

The offline toolbox is developed in both MATLAB and in Python. It contains three modules: 

data preprocessing, noise reduction and artifact rejection, and phoneme analysis.

2.2.1. Preprocessing—The preprocessing module aligns the phoneme labels (or other 

segmental unit) of the stimulus with the neural recording, allows the user to choose a scalp 

map (EEG) or electrode locations (ECoG) for visualization purposes, and performs filtering. 

For EEG, we provide filters from 2 to 15 Hz; this frequency is because speech information is 

mainly encoded in theta and alpha frequency [17]. For ECoG, we provide a built-in filter for 

high gamma activity from 70 to 150 Hz, since high gamma is correlated with neural spiking 

activity and encodes phonetic feature information [18, 12]. In offline processing, filters are 

non-causal and zero-phase.

2.2.2. Noise reduction—Users can choose from different noise reduction techniques 

including common average referencing, principal component analysis decomposition, and 

trial rejection based on visual inspection and setting a threshold.

2.2.3. Phoneme analysis—After preprocessing, denoising, and artifact rejection, the data 

can be fed into the phoneme analysis pipeline. Phoneme analysis can be used to perform 

brain mapping for speech selective regions, finding response delay and phonetic selectivity 

of electrodes, and quantifying the degree to which acoustic variability is reflected in neural 

data.

Selection of segmental unit: At the start of phoneme analysis, users can choose the unit that 

the rest of analysis will be based on. In addition to individual phonemes (default), we 

include functionality for grouping phones based on phonetic features (manner of 
articulation, place of articulation), phone length, and speakers. This allows for the study of 

acoustic, phonetic, and speaker features. In addition, this unit selection is easily 

generalizable and users can generate their own method for creating segmental units (e.g., 

syllables). When performing phonetic analyses, we recommend using individual phonemes 

for ECoG and EEG group analysis, while clustering labels into manner of articulation for 

single subject EEG due to noise concerns.

Average electrode response to phonemes: The average response elicited by each phoneme 

is an important tool for visualizing the feature selectivity of an electrode [12]. The average 

response  of electrode e for phoneme k occurring n = 1, 2, …, Nk times in the stimulus 

is given by:
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(1)

where  is the neural response at time of phone onset and τ defines the temporal 

window over which the average is computed.

Response delay: The latency between speech stimulus S and neural response R varies based 

on the brain region from which it was recorded [19]. We quantify the distinction between 

phonemes at each time point using the F-statistic (between-group variability divided by 

within-group variability) and define response delay as the time point that shows maximum 

distinction between categories. Consider Ri(k, t) as ith neural instance to phoneme category 

k, where t denotes the sample time after the onset of phoneme. The response time is given 

by:

(2)

where K denotes the number of phoneme categories and N denotes the total number of 

phones in the corpus (all categories). Categories are by default individual phonemes, but this 

can be generalized to any specified segmental unit.

Phoneme selectivity of channels: In order to characterize the selectivity of the neural 

response to phonemic categories at individual electrodes, we calculate the phoneme 

selectivity index (PSI) vectors as described in [12]. Each electrode is characterized by a 

[K×1] vector, with each element corresponding to the PSI of one phoneme; each PSI has a 

value ranging from 0 to K that quantifies the number of phonemes that elicit a statistically 

distinguishable response from the target phoneme (Wilcoxon rank-sum test).

Quantification of distinction between phonemes: We calculate the distance (default is 

Euclidean) between the responses to phonemes for each phoneme pair at every time lag, 

yielding a time-varying pairwise phoneme distance matrix. This analysis focuses on the 

similarities and distinctions between categories rather than on individual items. We also 

provide functionality to visualize the distance matrices in two and three dimensions using 

multi-dimensional scaling (MDS) [20] and t-SNE [21].

Comparison of phoneme properties between stimuli and response: Speech is a 

continuous signal that changes over time; even within a single category, the acoustic 

properties change from the start to the end of the phone. In order to find how neural 

responses and acoustic properties of speech sounds are related through time, we define a 

neural-acoustic covariance matrix. This is a two-dimensional matrix that demonstrates the 

similarity between patterns of phones in the acoustic space and the corresponding neural 

Khalighinejad et al. Page 4

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responses at each time point. The acoustic similarity matrix is calculated using the acoustic 

spectrogram of phones [22].

Functional connectivity of electrodes: The functional connectivity of recording regions is 

quantified by finding the covariance between distinction patterns of different electrodes.

Group analysis: We provide an option of group analysis specifically recommended for 

analysis of EEG data when one subject does not provide sufficient signal to noise ratio. In 

this case, the response to the same phone is averaged between different subjects, after which 

all of the other analyses can be utilized.

2.3. Real-time processing

The real-time processing toolbox is implemented in Simulink and utilizes similar methods to 

the offline toolbox, which are simplified to create efficient computations.

Figure 1 illustrates the mechanism of real-time processing. Audio is a sound file that 

includes the stimulus as one channel and the phoneme labels as the other. As the subject 

listens to continuous speech, the phoneme labels are sent to the processor while the neural 

responses are recorded simultaneously. In preprocessing, users can choose between EEG and 

ECoG filters, then, through a rate-transition module, both phoneme labels and neural data 

will be resampled to 100 Hz. Next, neural data will be saved in a buffer with a window size 

of M samples (default: 600ms), and phoneme labels will be delayed by N samples. This 

defines the maximum number of samples after the phoneme onset which goes to phoneme 

response analyzer. For the data shown in Fig. 2A, M is equal to 60 samples (600 ms) and N 
is equal to 50 samples (500 ms).

In the phoneme response analyser block of the toolbox the following analysis are 

implemented: selection of segmental unit, average electrode response to phonemes, response 
delay, and phoneme selectivity.

3. EXPERIMENTS

To show the efficacy of our toolbox, we demonstrate analyses from neural recordings in both 

EEG and ECoG.

3.1. Neural Recordings

We recorded neural activity from subjects as they listened to the provided NAPLib corpus. 

We recorded from 22 EEG participants with a 62-channel recording system. The ECoG 

participants were undergoing neurological assessment for epilepsy surgery; one patient had a 

high-density microelectrode grid array over temporal lobe auditory speech cortex, while the 

other had stereo EEG implanted in Heschl’s gyrus. All subjects provided written informed 

consent. The Institutional Review board (IRB) of Columbia University at Morningside 

Campus approved all procedures.
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3.2. Average electrode response and phoneme selectivity in EEG and ECoG

In this section we demonstrate how NAPLib can be used to visualize and quantify phonetic 

selectivity in both invasive and non-invasive recordings. Results shown are using the offline 

module, but we would like to emphasize that these analyses can also be implemented using 

the real-time module.

Figure 2A shows the average response of an example electrode (FCz) in EEG generated by 

group analysis including 22 subjects. Due to poor spatial resolution, it is typical to find 

broad responses to many phonemic categories. Because EEG recordings are also noisy, we 

also recommend averaging responses over subjects using group analysis.

ECoG recordings provide much higher spatial resolution, resulting in the average response 

and corresponding PSI vector shown in Figure 2B from a depth electrode in Heschl’s gyrus. 

This electrode responds to unvoiced sibilants and affricates (PSI > 25), which all contain 

strong power in high frequency channels. This suggests that this electrode has broad tuning 

to high frequencies, and indeed, we can see that the STRF of this electrode closely matches 

the average spectrogram of these phonemes (Figure 2C).

3.3. Response delay

Figure 3 shows the F-test value at each time point based on the onse of phonemes. Phonemes 

are categorised based on manners of articulation. Figure illustrated the time differences 

between acoustic phonemes, ECoG (an electrode in Heschl’s gyrus), and EEG (FCz, 22 

subjects). The local maxima are denoted with asterisks.

3.4. Mapping time

In order to quantify the duration which is needed to find a significant phoneme response, we 

used the ANOVA F-test. In EEG, the reported duration is based on significant distinction 

between manners of articulation. In ECoG, the duration for both manner of articulation and 

individual phoneme categories is reported. The p-value is assessed by the F-distribution with 

correction for multiple comparisons implemented via false discovery rate (q < 0.01). The 

calculated time duration does not include the natural silences of speech.

3.5. Locating speech-responsive regions

Determining the location of response is important for a variety of both clinical and research 

applications. Figure 5A shows the percentage of time that EEG electrode responses display a 

statistically significant response to speech over a 10 minute duration. Figure 5B shows the 

time needed to elicit a statistically significant response to speech a patient with an implanted 

ECoG microelectrode array.

4. CONCLUSIONS

In this paper we introduce the Neural Acoustic Processing Library (NAPLib), a free and 

open source toolbox for studying the neural representation of speech. The toolbox quantifies 

temporal and spectral responsiveness of electrodes based on responses to segmental 

linguistic categories (phonemes). Using such an approach allows for fast, efficient 
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computations that can be implemented in real-time. As a proof of concept, we demonstrate 

use of the toolbox using both invasive (ECoG) and non-invasive (EEG) recordings.
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Fig. 1. 
Schematic of the real-time processing toolbox.
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Fig. 2. 
Average response to phonemes in (A) EEG and (B) ECoG. The PSI vector for the ECoG 

electrode is shown at right. (C) Average spectrogram of combined phonemes/jh,ch,s,sh/and 

the STRF of the ECoG electrode.

Khalighinejad et al. Page 10

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
F-test over time and response delay for acoustic phonemes (gray), one electrode in EEG 

(red) and one electrode in ECoG (blue).
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Fig. 4. 
Duration needed to find a significant electrode (ANOVA F-test). Error bars shows standard 

deviation.
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Fig. 5. 
(A) Scalp locations of responsive electrodes to speech over a duration 10 minutes. 

Percentages indicate the fraction of the recording time that an electrode displayed a 

statistically significant response to speech (ANOVA F-test). (B) The location of responsive 

grid electrodes to speech in a subject implanted with an ECoG array.
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Table 1

Statistics of corpus.

Utterances Phonemes Speakers

148 8450 a male & a female
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