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ABSTRACT

We address the problem of sharpness enhancement of 3D col-

ored meshes. The problem is modeled with graph signals and

their morphological processing is considered. A hierarchical

framework that decomposes the graph signal into several lay-

ers is introduced. It relies on morphological filtering of graph

signal residuals at several scales. To have an efficient sharp-

ness enhancement, the obtained layers are blended together

with the use of a nonlinear sigmoid detail enhancement and

tone manipulation, and of a structure mask.

Index Terms— Graph signal, morphology, color, multi-

layer decomposition, detail enhancement, sharpness.

1. INTRODUCTION

3D Meshes are widely used in many fields and applications

such as computer graphics and games. Recently, low cost sen-

sors have brought 3D scanning into the hands of consumers.

As a consequence, a new market has emerged that proposes

cheap software that, similarly to an ordinary video camera,

enables to generate 3D models by simply moving around an

object or a person. With such software one can now easily

produce 3D colored meshes with each vertex described by

its position and color. However, the quality of the mesh is

not always visually good. In such a situation, the sharpness

of the 3D colored mesh needs to be enhanced. In this paper

we propose an approach towards this problem. Existing tech-

niques for sharpness enhancement of images use structure-

preserving smoothing filters [1, 2, 3, 4] within a hierarchical

framework. They decompose the image into different layers

from coarse to fine details, making it easier for subsequent

detail enhancement. Some filters have been extended to 3D

meshes but most manipule only mesh vertices positions [5, 6].

Some recent works have considered the color information [7].

In this paper we present a robust sharpness enhancement tech-

nique based on morphological signal decomposition. The ap-

proach considers manifold-based morphological operators to

construct a complete lattice of vectors. With this approach, a

multi-layer decomposition of the 3D colored mesh, modeled
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as a graph signal, is proposed that progressively decomposes

an input color mesh from coarse to fine scales. The layers are

manipulated by non-linear s-curves and blended by a struc-

ture mask to produce an enhanced 3D color mesh. The paper

is organized as follows. In Section 2, we introduce a learned

ordering of the vectors of a graph signal. From this order-

ing, we derive a graph signal representation and define the

associated morphological graph signal operators. Section 3

describes the proposed method for multi-layer morphological

enhancement of graph signals. Last sections present results

and conclusion.

2. MATHEMATICAL MORPHOLOGY FOR 3D

COLORED GRAPH SIGNALS

2.1. Notations

A graph G = (V,E) consists in a set V = {v1, . . . , vm} of

vertices and a set E ⊂ V × V of edges connecting vertices.

A graph signal is a function that associates real-valued vec-

tors to vertices of the graph f : G → T ⊂ R
n where T is

a non-empty set of vectors. The set T = {v1, · · · , vm} rep-

resents all the vectors associated to all vertices of the graph

(we will also use the notation T [i] = vi = f(vi)). In this pa-

per 3D colored graphs signals are considered, where a color

is assigned to each vertex of a triangulated mesh.

2.2. Manifold-based color ordering

Morphological processing of graph signals requires the defi-

nition of a complete lattice (T ,≤) [8], an ordering of all the

vectors of T . Since there exits no admitted universal ordering

fo vectors, the framework of h-orderings [9] has been pro-

posed as an alternative. This consists in constructing a bi-

jective projection h : T → L where L is a complete lattice

equipped with the conditional total ordering [9]. We refer to

≤h as the h-ordering given by vi ≤h vj ⇔ h(vi) ≤ h(vj).
As argued in our previous works [10], the projection h cannot

be linear since a distortion of the space topology is inevitable.

Therefore, it is preferable to rely on a nonlinear mapping h.

The latter will be constructed by learning the manifold of

vectors from a given graph signal and the complete lattice

(T ,≤h) will be deduced from it.



2.2.1. Complete lattice learning

Given a graph signal that provides a set T of m vectors in R
3,

a dictionary D = {x′1, · · · , x
′
p} of p ≪ m vectors is built by

Vector Quantization [11]. A similarity matrix KD that con-

tains the pairwise similarities between all the dictionary vec-

tors x′i is then computed. The manifold of the dictionary vec-

tors is modeled using nonlinear manifold learning by Lapla-

cian Eigenmaps [12]. This is be performed with the decom-

position L = ΦDΠDΦ
T
D of the normalized Laplacian matrix

L = I−D
− 1

2

D KDD
− 1

2

D with ΦD and ΠD its eigenvectors and

eigenvalues, and DD the degree diagonal matrix of KD. The

obtained representation being only valid for the dictionary D,

it is extrapolated to all the vectors of T by Nyström extrapo-

lation [13] expressed by Φ̃ = D
− 1

2

DT K
T
DT D

− 1
2

D ΦD(diag[1] −
ΠD)

−1, where KDT is the similarity matrix between sets D
and T , and DDT its associated diagonal degree matrix. Fi-

nally, the bijective projection h : T ⊂ R
3 → L ⊂ R

p on the

manifold is defined as h(x) = (φ̃
1
(x), · · · , φ̃

p
(x))T with φ̃

k

the k-th eigenvector. The complete lattice (T ,≤h) is obtained

by using the conditional ordering after this projection.

2.2.2. Graph signal representation

The complete lattice (T ,≤h) being learned, a new graph sig-

nal representation can be defined. Let P be a sorted permu-

tation of the elements of T according to the manifold-based

ordering ≤h, one has P = {v′1, · · · , v
′
m} with v

′
i ≤h v

′
i+1,

∀i ∈ [1, (m − 1)]. From this ordered set of vectors, an

index graph signal can be defined. Let I : G → [1,m]
denote this index graph signal. Its elements are defined as

I(vi) = {k | v′k = f(vi) = vi}. Therefore, at each ver-

tex vi of the index graph signal I , one obtains the rank of

the original vector f(vi) in P , the set of sorted vectors, that

we will call a palette. A new representation of the original

graph signal f is obtained and denoted in the form of the pair

f = (I,P). Figure 1 presents such a representation for a

3D colored graph signal. The original graph signal f can be

directly recovered since f(vi) = P[I(vi)] = T [i] = vi.

f : G → R
3 I : G → [1,m] P

Fig. 1. From left to right: a 3D colored graph signal f , and

its representation in the form of an index graph signal I and

associated sorted vectors P .

2.3. Graph signal morphological processing

From this new representation of graph signals, morphologi-

cal operators can now be expressed for the latter. The erosion

of a graph signal f at vertex vi ∈ G by a structuring ele-

ment Bk ⊂ G is defined as: ǫBk
(f)(vi) = {P[∧I(vj)], vj ∈

Bk(vi)}. The dilation δBk
(f)(vi) can be defined similarly.

A structuring element Bk(vi) of size k defined at a vertex vi
corresponds to the k-hop set of vertices that can be reached

from vi in k walks, plus vertex vi. These graph signal mor-

phological operators operate on the index graph signal I , and

the processed graph signal is reconstructed through the sorted

vectors P of the learned complete lattice. From these basic

operators, we can obtain other morphological filters for graph

signals such a as openings γBk
(f) = δBk

(ǫBk
(f)) and clos-

ings φBk
(f) = ǫBk

(δBk
(f)).

3. MULTI-LAYER MORPHOLOGICAL

ENHANCEMENT

3.1. Graph signal multi-layer decomposition

We adopt the strategy of [14] that consists in decomposing a

signal into a base layer and several detail layers, each captur-

ing a given scale of details. We propose the following multi-

scale morphological decomposition of a graph signal into l

layers, as shown in Algorithm 1. To extract the successive

Algorithm 1 Morphological decomposition of a graph signal

d−1 = f , i = 0
while i < l do

Compute the graph signal representation at level i− 1:

di−1 = (Ii−1,Pi−1)
Morphological Filtering of di−1:

fi = MFBl−i
(di−1)

Compute the residual (detail layer):

di = di−1 − fi
Proceed to next layer:

i = i+ 1
end while

layers in a coherent manner, the layer f0 has to be the coars-

est version of the graph signal, while the residuals di have

to contain details that become finer across the decomposition

levels. This means that the sequence of scales should be de-

creasing and therefore the size of the structuring element in

the used morphological filtering (MF) should also decrease.

In terms of graph signal decomposition, this means that as the

process evolves, the successive decompositions extract more

details from the original graph signal (similarly as [15]). In

Algorithm 1, this is expressed by Bl−i which is a sequence

of structuring elements of decreasing sizes with i ∈ [0, l− 1].
Since each detail layer di is composed of a set of vectors dif-

ferent from the previous layer di−1, the graph signal repre-

sentation (Ii,Pi) has to be computed for the successive lay-



Fig. 2. From top to bottom, left to right: an original mesh f , and its decomposition into three layers f0, f1, and d1.

ers to decompose. Finally, the graph signal can then be rep-

resented by f =
∑l−2

i=0 fi + dl−1. The fi’s thus represent

different layers of f captured at different scales. The morpho-

logical filter we have considered for the decomposition is an

Open Close Close Open. The OCCO filter is a self-dual op-

erator that has excellent signal decomposition abilities [16]:

OCCOBk
(f) =

γBk
(φBk

(f))+φBk
(γBk

(f))

2 . In Figure 2, we

show an example with three levels of decomposition (l = 3)

to obtain a coarse base layer f0, a medium detail layer f1 and

a fine detail layer d1.

3.2. Graph signal enhancement

3.2.1. Proposed approach

Given a graph signal f = (I,P), we first construct its multi-

layer decomposition in l levels. The graph signal can be en-

hanced by manipulating the different layers with specific co-

efficients and adding the modified layers altogether. This is

achieved with the following proposed scheme:

f̂(vk) = S0(f0(vk)) +M(vk) ·

l−1∑

i=1

Si(fi(vk)). (1)

with fl−1 = dl−1. Each layer is manipulated by a nonlin-

ear function Si for detail enhancement and tone manipulation.

The layers are combined with the use of a structure mask M

that prevents from boosting noise and artifacts while enhanc-

ing the main structures of the original graph signal f . We

provide now details on Si and M .

3.2.2. Nonlinear boosting curve

In classical image detail manipulation, the layers are manip-

ulated in a linear way with specific layer coefficients (i.e.,

Si(x) = αix [17]). However this can over-enhance some

image details and requires hard clipping. Therefore, alterna-

tive nonlinear detail manipulation and tone manipulation have

ben proposed [14, 18, 19]. Similarly, we consider a nonlinear

sigmoid function of the form Si(x) = 1
1+exp(−αix)

, appro-

priately shifted and scaled. The parameter αi of the sigmoid

is automatically determined and decreases while i increases,

whereas its width increases from one level to the other (details

not provided due to reduced space).

3.2.3. Structure mask

As recently proposed in [19] for image enhancement, it is

much preferable to boost strong signal structures and to keep

unmodified the other areas. For graph signals, a vertex lo-

cated on an edge or a textured area has a high spectral dis-

tance with respect to its neighbors as compared to a vertex

within a constant area. Therefore, we propose to construct a

structure mask that accounts for the structures present in the

graph signal. A normalized sum of distances within a local

neighborhood is a good indicator of the graph signal structure,

and is defined as δ(vi) =

∑

vj∈B1(vi)

dEMD(H(vj),H(vi))

|B1(vi)|
with

dEMD the Earth Mover Distance between two signatures that

are compact representations of local distributions [20]. To

build H(vi), an histogram of size N is constructed on the in-

dex graph signal I as H(vi) = {(wk,mk)}
N
k=1 within the set

B1(vi) where mk is the index of the k-th element and wk its

appearance frequency. One has to note that N ≤ |B1(vi)|
since identical values can be found within the set B1(vi),
and two signatures can have different sizes. To compute the

EMD, ground distances are computed in the CIELAB color

space. Finally, we define the structure mask of a graph signal

as M(vi) = 1+ δ(vi)−∧δ

∨δ−∧δ
. One can notice that M(vi) ∈ [1, 2]

and will be close to 1 for constant areas and to 2 for ramp

edges. Figure 3 presents examples of structure masks on two

3D colored graph signals. The structure mask is computed

only once, and on the original graph signal (I,P) = f .

4. EXPERIMENTAL RESULTS AND CONCLUSION

We illustrate our approach on graph signals in the form 3D

colored meshes that represent 3D scans of several person

busts1. Such scans have recently received much interest to

generate 3D printed selfies and their perceived sharpness is

1Models from Cyberware and ReconstructMe.



Fig. 3. Graph signal structure masks used to modulate the

importance of detail enhancement. The original graph signals

can be seen in the next figures.

of huge importance for final consumers. We have used l = 3
levels of decomposition for computational efficiency. To as-

sess objectively the benefit of our method, we measure the

sharpness of the orignal signal f and modified signal f̂ with

the TenenGrad criterion [21, 22], after adapting it to 3D col-

ored meshes by using the morphological gradient (as in [22]

for images): TG(f) = 1
3|V|

∑
vi∈V

3∑
k=0

|δ(fk)(vi)− ǫ(fk)(vi)|

where the morphological δ and ǫ are performed on each chan-

nel fk on a 1-hop. It has been shown in [22] that a higher

value means a sharper signal and that this value is correlated

with perceived sharpness. Figure 4 presents a first result with

cropped and zoomed parts of the rendered mesh to better

evaluate the enhancement. On all figures, please note that

the enhancements are better visible at high resolution. It can

TG(f) = 3.86 TG(f̂) = 5.40

Fig. 4. Morphological colored mesh detail manipulation with

cropped zoomed areas.

be seen that our approach has enhanced the local contrast

without artifact magnification or detail loss. Figure 5 presents

several other results. The results have objectively a much

sharper appearance, and the enhancement is visually consis-

tent. On the last mesh of Figure 5, the effect is all the more

visible on the textured area of the shirt.

TG(f) = 4.01 TG(f̂) = 5.57

TG(f) = 5.40 TG(f̂) = 7.33

TG(f) = 12.49 TG(f̂) = 17.52

Fig. 5. Morphological colored mesh detail manipulation.

5. CONCLUSION

We have introduced an approach for 3D colored graph en-

hancement based on a morphological multi-layer decompo-

sition of graph signals. The use of nonlinear detail manip-

ulation with a structure mask enables to have an automatic

method that produces visually appealing results of enhanced

sharpness.
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