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ABSTRACT

In this paper, we solve blind image deconvolution prob-

lem that is to remove blurs form a signal degraded image

without any knowledge of the blur kernel. Since the problem

is ill-posed, an image prior plays a significant role in accurate

blind deconvolution. Traditional image prior assumes coeffi-

cients in filtered domains are sparse. However, it is assumed

here that there exist additional structures over the sparse coef-

ficients. Accordingly, we propose new problem formulation

for the blind image deconvolution, which utilize the structural

information by coupling Student’s-t image prior with overlap-

ping group sparsity. The proposed method resulted in an ef-

fective blind deconvolution algorithm that outperforms other

state-of-the-art algorithms.

Index Terms— image restoration, blind deconvolution,

Bayesian, Student’s-t prior, group sparsity, MM algorithm

1. INTRODUCTION

Image deconvolution is the problem of restoring an image x
from its blurred and noisy version y. Generally, the image y
is modeled as

y = h⊗ x+ ε , (1)

where ⊗ denotes two-dimensional convolution, h is blur ker-

nel, and ε is noise term. Since there exists infinitely many

solution for x, (1) is an ill-posed problem [1, 2]. Hence, a

regularization reflecting our prior knowledge is necessary to

be imposed on the image x to obtain a meaningful solution.

The regularization is generally embedded by assigning prior

distribution p(x) in the Bayesian formulation of the problem.

The choice of the image prior is varying, but the most

popular one is the sparsity-enforcing prior. It is well-known

that when high-pass filters are applied to natural images, the

resulting coefficients are sparse [3, 4]; i.e., most of the co-

efficients are zero or very small while only a small number

of them are large (e.g., at the edges). This important charac-

teristic has been utilized in many image deconvolution algo-

rithms. Fergus et al. [5] introduced a mixture-of-Gaussians

(MoG) prior with a filtered image representation and showed

the proposed approach was practical. After the success of his

work, many researchers have subsequently suggested other

kinds of the sparsity-enforcing image prior such as total vari-

ation [6, 7], hyper-Laplacian [8], and Student’s-t [9].

When the blur kernel h in (1) is unknown in addition to

the unknown image x, it becomes a “blind” image deconvo-

lution problem. This is much difficult to solve than the non-

blind image deconvolution problem since there exist infinitely

many possible combinations of x and hmaking it severely ill-

posed. Levin et al. [10] reveals that the conventional sparsity-

enforcing priors [5, 6, 7, 8] confront a limitation in the case of

blind image deconvolution; they indicate that these priors fla-

vor the blurred image over the correct one because the blurred

image often has more zero coefficients (i.e. more sparse) than

the clear image in high-pass filtered domains.

To avoid this “no-blur” solution, Levin et al. [11] em-

ploy a marginal likelihood optimization. Krishnan et al. [12]

suggest a normalized sparsity measure to mitigate this prob-

lem. Moreover, Wipf and Zhang [13] emphasize the power

of image prior that can discriminate a good sharp image from

blurred images is critical to recovering the unknown image.

Both Babacan [14] and Perrone [15] are good examples of

this approach. They [13, 14, 15] all utilized non-convex im-

age priors to strongly promote the sparsity of the signal, re-

gardless of the natural statistics, and achieved state-of-the-art

blind image deconvolution result.

To overcome the limitation of the traditional image pri-

ors, there is another growing interest for structured sparsity

[16, 17, 18, 19]. In fact, all the image priors presented in

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] assumes the coefficient

in the filtered domains is sparse; however, large values of the

coefficients generally do not occur in isolation. Hence au-

thors in [16, 17, 18, 19] assumes the coefficients exhibits a

simple form of structure that is called structured sparsity. Liu

et al. [20] adapt the group sparsity regularizer to recover a

noise corrupted image, and it is proven to be very effective

in alleviating staircase effects. Shi et al. [21] also shows a

hyper-Laplacian constrained with overlapping group sparsity

leads to a good image deconvolution result.

In this paper, we utilize the structured sparsity [16, 17,

18, 19] to solve the blind image deconvolution problem.

We presented new problem formulation for the blind image

deconvolution, which incorporates conventional Student’s-t

image prior [9] with overlapping group sparsity regular-

izer [19]. The proposed problem formulation resulted in an
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effective blind image deconvolution algorithm that outper-

forms recently introduced state-of-the-art algorithms such

as [11, 14, 15]. We verified this result in the experimental

section.

The rest of this paper is organized as follows. Section 2

describes our modeling of the blind deconvolution problem.

The inference algorithm is outlined in section 3. In Section 4

we present the experimental results. Section 5 concludes the

paper.

2. PROBLEM FORMULATION

Since we are in the discrete domain, convolution in (1) is

equivalent to vector-matrix multiplication. Then we can

rewrite the model as

y = Hx+ ε = Xh+ ε . (2)

y, x, and ε are lexicographically arranged n2 dimensional

vector. H and X are the two-dimensional convolution matri-

ces obtained from the kernel h ∈ R
k2

and image x ∈ R
n2

respectively. We further assume the noise ε is i.i.d Gaus-

sian with variance σ2, then we obtain following observation

model:

p(y|x, h) = N (y|Hx, σ2I) . (3)

From Bayesian perspective, the goal of blind image de-

convolution is to infer the unknown (latent) variables x and

h. Estimating these variables is usually done by maximiz-

ing a posterior distribution: p(x, h|y) ∝ p(y|x, h)p(x)p(y)
where p(y|x, h) is likelihood defined as (3). p(x) and p(h)
are the prior distributions for the unknown image and the un-

known blur kernel respectively. This approach is commonly

referred to as the maximum a posterior (MAP) estimation.

2.1. Kernel Prior

For the kernel prior, we choose the flat prior: p(h) ∝ 1. Con-

sidering the second part (i.e. y = Xh + ε) in (2), we have

n2 observations and aim at estimating k2 coefficients while

solving the kernel h. Since the image size is usually much

larger than the kernel size (i.e. k2 << n2), n2 observations

should be sufficient to obtain a good kernel estimate. Based

on the fact, many authors [13, 14, 15] also used the flat prior

on the kernel, enforcing only its non-negativity and normal-

ization constraints.

2.2. Student’s-t Image Prior

The image prior p(x) is based on m filtered versions of the

image: gm = Fmx, where Fm are two dimensional con-

volution matrix obtained from high-pass filters: {fm}Mm=1.

Specifically, we use the first-order differences between 4 lo-

cal neighbors.

Assuming that each pixel gm,i at index i follows Gaussian

distribution with distinct precision γm,i, and the precision is

Gamma random variable with the shape parameter α and the

scale parameter β, we can define a hierarchical joint distribu-

tion for each (gm,i, γm,i) as follows:

p(gm,i, γm,i) ∝ pm,i(gm,i|γm,i)p(γm,i)

∝ N (gm,i|0, γ−1
m,i)Gamma(γm,i|α, β) .

(4)

The marginalization of (4) with respect to rm,i is equivalent to

Student’s-t distribution. Hence, this hierarchical prior closely

resembles the Student’s-t prior enforcing the sparseness of the

image pixels in the filtered domains [9]. Also, notice that new

auxiliary variable γm,i is introduced, which will be estimated

jointly.

By multiplying (4) across all the spatial indexes i and the

filter indexes m, we can obtain Student’s t image prior as fol-

lows:

p(x, γ) ∝ p(x|γ) p(γ)

∝
M
∏

m=1

N (x|0, (FT
mdiag{γm}Fm)−1)

×
M
∏

m=1

N
∏

i=1

Gamma(γm,i|α, β)

(5)

with γm = (γm,1, . . . , γm,N)T .

MAP estimation is equivalent to minimizing the negative

log posterior. Accordingly, with the equation (3), (5), and

p(h) ∝ 1, we get the following optimization problem for the

blind image deconvolution:

min
x,γ,h

− log p(x, γ, h|y)

= min
x,γ,h

− log(p(y|x, h))− log(p(x, γ)) − log(p(h))

= min
x,γ,h

||Hx− y||2 + λ1 ψ(x, γ) ,

(6)

where λ1 = 1/σ2 is a regularization parameter, and

ψ(x, γ) =
M
∑

m=1

xTFT
mdiag{γm}Fmx

+ 2

M
∑

m=1

N
∑

i=1

((1 − α) log γm,i + βγm,i).

(7)

ψ(x, γ) is a regularization term obtained from Student’s-t im-

age prior promoting the sparsity of coefficients in the filtered

domains. However, it dose not take account the structural in-

formation among the coefficients.

2.3. Overlapping Group Sparsity

To capture the structural information among the coefficients,

we define two-dimensional W ×W points group in the two-



dimensional signal s as follows:

s̃(i,j),W =











s(i−m1,j−m1) · · · s(i−m1,j+m2)

s(i−m1+1,j−m1) · · · s(i−m1+1,j+m2)

...
. . .

...

s(i+m2,j−m1) · · · s(i+m2,j+m2)











∈ R
W×W ,

(8)

withm1 =
⌊

W−1
2

⌋

,m2 =
⌊

W
2

⌋

, where ⌊x⌋ denotes the floor

function, and W is the window size. Hence, s̃(i,j),W is a

group of W ×W contiguous samples centered at (i, j).
By stacking the columns of s̃(i,j),W , a vector s(i,j),W is

obtained: s(i,j),W = s̃(i,j),W (:). Then, the overlapping group

sparsity (OGS) functional [20, 21] is

ϕOGS(s) =

n
∑

i,j=1

∥

∥s(i,j),W
∥

∥

2
. (9)

ϕOGS takes account all the overlapping groups of pixels on

the spatial domain of the signal s. With (9), we define OGS

regularization term for the blind deconvolution problem:

φ(x) =

M
∑

m=1

ϕOGS(gm) , (10)

where gm = Fmx. If W = 1, φ is the commonly used

anisotropic TV prior. In this sense, φ is also referred as gen-

eralized total variation [22].

Therefore, we present a novel problem formulation,

which incorporates Student’s-t image prior and the overlap-

ping group sparsity, to solve the blind image deconvolution

problem as follows:

min
x,γ,h

(

R(x) = ||Hx− y||2 + λ1ψ(x, γ) + λ2φ(x)
)

(11)

where the functionalψ(x, γ) and φ(x) is given by (7) and (10)

respectively. λ1 and λ2 are the regularization parameters.

3. INFERENCE ALGORITHM

We use majorization-minimization (MM) as in [20, 19, 22]

to derive a computationally efficient algorithm to solve the

problem (11). To find a majorizor of R(x) in (11), we first

find a majorizor of ϕOGS(v) in (9). To this end, note that

1

2 ‖u‖2
‖v‖22 +

1

2
‖u‖2 ≥ ‖v‖2 (12)

for all v and u 6= 0 with equality when u = v. Substituting

each group of ϕOGS(v) into (12) and summing them, we get a

majorizor of ϕOGS(v)

P (v, u)

=
1

2

n
∑

i,j=1

(

1
∥

∥u(i,j),W
∥

∥

2

∥

∥v(i,j),W
∥

∥

2

2
+
∥

∥u(i,j),W
∥

∥

2

)

(13)

with

P (v, u) ≥ ϕOGS(v) , P (u, u) = ϕOGS(u) (14)

provided
∥

∥u(i,j),W
∥

∥

2
6= 0 for all i, j. With a simple calcula-

tion, P (v, u) can be rewritten as

P (v, u) =
1

2
vTΛ(u)v + C, (15)

where C is constant that dose not depend on v, and Λ(u) is a

diagonal matrix with each diagonal component

[Λ(u)]l,l =

m2
∑

i,j=−m1

[

m2
∑

w1,w2=−m1

|u(r−i+k1,t−j+k2)|2
]

−
1

2

(16)

with l = (t− 1)n+ r, and r, t = 1, 2, . . . , n.

Substituting each ϕOGS(gm) in (10) into (14), a majorizor

of R(x) in (11) can be obtained by

G(x, x′) = ||Hx− y||2 + λ1ψ(x, γ) + λ2φ
′(x, x′)

≥ R(x) = ||Hx− y||2 + λ1ψ(x, γ) + λ2φ(x) ,
(17)

where

φ′(x, x′)

=
M
∑

m=1

P (gm, g
′

m) =
M
∑

m=1

xTFT
mΛ(Fmx

′)Fmx,
(18)

where x′ is the estimation of x at the previous iteration.

MM algorithm solve the problem (11) by iteratively mini-

mizingG(x, x′) in (17). Since the first term in G(x, x′) is the

simple quadratic, and the second and the third term are also

differentiable, we can summarize an optimization algorithm

for solving the minimization problem (11) as follows:

Algorithm 1 for solving the minimization problem (11)

Inputs: y, {Fm}Mm=1, α, β, λ1, λ2, W , and max-iter L.

Initialization: x(0) = y, h(0) = h0, γ
(0)
m,i = 1, l = 0.

Iteration:

1. Obtain convolution matrix H from h(l).

2. g
(l)
m = Fmx

(l).

3. Compute Λ(g
(l)
m ) according to (16).

4. γ
(l+1)
m,i = (α+ 1/2)/(β + (1/2)(g

(l)
m,i)

2).

5. x(l+1) = (HTH +
∑M

m=1 F
T
m(λ1 ∗ diag{γ(l)m }
+λ2∗Λ(g(l)m ))Fm)−1HT y.

6. Obtain convolution matrix X from x(l).

7. h(l+1) = (XTX)−1XT y.

8. l = l + 1.

Until l < L.

Output: x(L), h(L).



ker01 ker02 ker03 ker04 ker05 ker06 ker07 ker08

Img01 42.49 22.85 43.95 24.87 31.50 16.65 105.58 51.12 26.62 17.12 28.29 17.82 49.07 20.87 58.55 26.14

26.07 25.45 33.21 31.08 17.07 17.59 60.31 46.52 17.37 14.39 29.91 17.95 32.49 30.54 41.06 37.99

Img02 55.61 49.42 60.51 54.6 49.98 36.06 102.26 74.03 29.35 35.42 29.44 20.14 57.25 38.23 69.12 55.23

42.29 34.91 33.83 35.25 31.66 33.47 45.18 54.54 38.33 23.64 76.32 31.36 32.28 33.82 34.66 37.55

Img03 35.26 28.66 42.45 43.96 17.99 15.36 67.39 70.82 17.18 13.94 21.16 26.75 27.18 24.35 37.74 27.83

19.43 19.25 19.76 23.58 12.90 15.26 25.17 28.26 11.86 12.37 9.65 13.13 11.98 16.59 25.52 27.63

Img04 79.76 75.56 136.58 201.12 52.11 24.01 97.35 261.48 38.20 23.05 76.19 65.30 101.42 120.18 118.15 424.02

45.68 42.27 75.88 71.99 19.51 22.43 126.19 52.47 17.39 20.27 39.69 30.62 54.55 56.94 58.35 57.95

Table 1. SSD error of 32 test images, achieved by (Top Left) Levin et al. [11] , (Top Right) Babacan et al. [14] , (Bottom Left)

Perrone et al. [15], and (Bottom Right) the proposed method with the same non-blind deblurring algorithm [23].
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Fig. 1. Cumulative histogram of SSD error ratio

4. EXPERIMENT

We evaluated the proposed algorithms and the other state-of-

the-art algorithms [11, 14, 15] on the dataset from Levin et al.

[10]. The dataset is made of 4 images of size 255×255 pixels

blurred with 8 different blur kernels, and it is provided with

ground truth sharp images and blur kernels.

In practice, we employed a multiscale approach to deal

with the large blur support problem [5]. The input image and

the blur are down sampled at each level by
√
2, and the pa-

rameter, λ1 and λ2, are divided by the number 2. Then the

algorithm 1 was applied at each scale. The number of levels

of the pyramid is computed such that at the top level the blur

kernel has a support of 3 pixels. We used the fixed parame-

ter values for all the tests, λ1 = 4.5e−5, λ2 = 5e−6, α =
1e−18, β = 1/1700, W = 3, and 4500 iterations for each

pyramid level. The parameter values have been found exper-

imentally. For the other algorithms, we used the parameters

provided by the authors.

First, we measured the sum of squared distance (SSD)

between the recovered images and the ground truth images

in Table. 1. To measure the effectiveness of estimated blur

kernels, the SSD ratio proposed in [10] was computed. The

SSD ratio is defined by
∑N

i=1(x
L
i −xGi )2/

∑N

i=1(x
H
i −xGi )2,

where xG is the ground truth image, xL is the image obtained

Fig. 2. Blind deconvolution results on Img04 with ker04.

by solving a non-blind deconvolution with the estimated blur,

and xH is the image obtained by solving a non-blind decon-

volution with the ground truth blur. For all the tests, we used

the non-blind deconvolution algorithm from Levin et. al [23]

with λ = 10−3.

In Fig.1, we plot the cumulative histogram of SSD ratios

(e.g., bin=3 counts the percentage of test examples achiev-

ing SSD ratio below 3). Our algorithm performs SSD ratio

equal to 2 for more than 60% of the images, clearly outper-

forming the method from Levin et al. [11] and Babacan et al.

[14]. Our method is on par with high performing blind image

deconvolution algorithm (logMM) from Perrone et al. [15].

Lastly, Fig. 2 presents some of the estimated images and blur

kernels from the experiment.

5. CONCLUSION

In this paper, we presented a blind image deconvolution al-

gorithm employing structural information among the sparse

coefficients. Specifically, a novel problem formulation com-

bining Student’s-t image prior and overlapping group sparsity

is proposed. Its effectiveness has been demonstrated by the

experiment. Future work may include faster approximation

of the algorithm using ADMM [24] and extensive analysis on

the effect of the group size in OGS term.
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