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ABSTRACT
Tensor principal component analysis (TPCA) is a multi-linear extension of principal component analysis which converts a set of cor-

related measurements into several principal components. In this paper, we propose a new robust TPCA method to extract the principal
components of the multi-way data based on tensor singular value decomposition. The tensor is split into a number of blocks of the same
size. The low rank component of each block tensor is extracted using iterative tensor singular value thresholding method. The principal
components of the multi-way data are the concatenation of all the low rank components of all the block tensors. We give the block tensor
incoherence conditions to guarantee the successful decomposition. This factorization has similar optimality properties to that of low rank
matrix derived from singular value decomposition. Experimentally, we demonstrate its effectiveness in two applications, including motion
separation for surveillance videos and illumination normalization for face images.

Index Terms— tensor principal component analysis, tensor singular value decomposition, low rank tensor approximation, block tensor

1. INTRODUCTION

The high-dimensional data, also referred to as tensors, arise naturally in a number of scenarios, including image and video processing, and
data mining [1]. However, most of the current processing techniques are developed for two-dimensional data [2]. The principal component
analysis (PCA) is one of the most widely used one in two-dimensional data analysis [3].

The robust PCA (RPCA), as an extension of PCA, is an effective method in matrix decomposition problems [4]. Suppose we have a
matrix X ∈ Rn1×n2 , which can be decomposed as X = L0 +S0, where L0 is the low rank component of the matrix and S0 is the sparse
component. The RPCA method has been applied to image alignment [5], surveillance video processing [6], illumination normalization for
face images [7]. In most applications, the RPCA method should flatten or vectorize the tensor data so as to solve the problem in the matrix.
It doesn’t use the structural feature of the data effectively since the information loss involves in the operation of matricization.

Tensor robust principal component analysis (TRPCA) has been studied in [8, 9] based on the tensor singular value decomposition (t-
SVD). The advantage of t-SVD over the existing methods such as canonical polyadic decomposition (CPD) [10] and Tucker decomposition
[11] is that the resulting analysis is very close to that of matrix analysis [12]. Similarly, suppose we are given a tensor X ∈ Rn1×n2×n3 and
it can be decomposed into low rank component and sparse component. We can write it as

X = L0 + S0, (1)

where L0 denotes the low rank component, and S0 is the sparse component of the tensor. Fig. 1 is the illustration for TRPCA. In [8] the
problem (1) is transformed to the convex optimization model:

min
L0,S0

‖L0‖∗ + λ‖S0‖1, s. t. X = L0 + S0, (2)

where ‖L0‖∗ is the tensor nuclear norm (see section 2 for the definition), ‖S0‖1 denotes the `1-norm. In the paper [9] the problem (1) is
transformed to another convex optimization model as:

min
L0,S0

‖L0‖∗ + λ‖S0‖1,1,2, s. t. X = L0 + S0, (3)
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Fig. 1: Illustration of TRPCA.
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Fig. 2: Illustration of the concatenation of block tensors.
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Fig. 3: Illustration of the block tensor decomposition model.

where ‖S0‖1,1,2 is defined as Σi,j‖S0(i, j, :)‖F. The two methods solve the tensor decomposition problem based on the t-SVD.
The low rank and sparse matrix decomposition has been improved by the [13]. The main idea is incorporating multi-scale structures

with low rank methods. The additional multi-scale structures can obtain a more accurate representation than conventional low rank methods.
Inspired by this work, we notice that the sparse component in matrix is block-distributed in some applications, e.g. shadow and motion in
videos. For these images we find it is more effective to extract the low rank components in a another smaller scale of image data. Here we try
to extract low rank components in block tensor data that is stacked by small scale of image data. And when we decompose the tensor data into
many small blocks, it is easy to extract the principal component in some blocks that have few sparse components. We model our tensor data
as the concatenation of block tensors instead of solving the RPCA problem as a whole big tensor. Fig. 2 is the illustration of concatenation of
block tensors.

Based on the above motivation, we decompose the whole tensor into concatenation of blocks of the same size, then we extract low rank
component of each block by minimizing the tubal rank of each block tensor. Fig. 3 is the illustration of our method. And we get low rank
component of the whole tensor by concatenating all the low rank components of the block tensors. The proposed method can be used to some
conventional image processing problems, including motion separation for surveillance videos (Section 4.1) and illumination normalization
for face images (Section 4.2). The results of numerical experiments demonstrate that our method outperforms the existing methods in term of
accuracy.

2. NOTATIONS AND PRELIMINARIES

In this section, we describe the notations and definitions used throughout the paper briefly [14, 15, 16, 17].
A third-order tensor is represented as A, and its (i, j, k)-th entry is represented as Ai,j,k. A(i, j, :) denotes the (i, j)-th tubal scalar. A(i, :

, :), A(:, j, :) and A(:, :, k) are the i-th horizontal, j-th lateral and k-th frontal slices, respectively.‖A‖F =
√∑

i,j,k |aijk|2 and ‖A‖∞ =

maxi,j,k|aijk| tensor kinds of tensor norms.
We can view a three-dimensional tensor of size n1 × n2 × n3 as an n1 × n2 matrix of tubes. Â is a tensor which is obtained by taking

the fast Fourier transform (FFT) along the third mode ofA. For a compact notation we will use Â = fft (A, [], 3) to denote the FFT along the
third dimension. In the same way, we can also compute A from Â using the inverse FFT (IFFT).

Definition 2.1 (t-product) [12] The t-product E = A∗B of A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is an n1× n4× n3 tensor. The (i, j)-th
tube of E is given by

E(i, j, :) =

n2∑
k=1

A(i, k, :) • B(k, j, :), (4)

where • denotes the circular convolution between two tubes of same size.

Definition 2.2 (conjugate transpose) [14] The conjugate transpose of a tensor A of size n1 × n2 × n3 is the n2 × n1 × n3 tensor AT

obtained by conjugate transposing each of the frontal slice and then reversing the order of transposed frontal slices from 2 to n3.



Definition 2.3 (identity tensor) [14] The identity tensor I ∈ Rn×n×n3 is a tensor whose first frontal slice is the n× n identity matrix and
all other frontal slices are zero.

Definition 2.4 (orthogonal tensor) [14] A tensorQ is orthogonal if it satisfies

QT ∗ Q = Q ∗ QT = I. (5)

Definition 2.5 (f-diagonal tensor) [14] A tensor is called f-diagonal if each of its frontal slices is a diagonal matrix.

Definition 2.6 (t-SVD) [14] For A ∈ Rn1×n2×n3 , the t-SVD of A is given by

A = U ∗ S ∗ VT (6)

where U and V are orthogonal tensors of size n1 × n1 × n3 and n2 × n2 × n3 respectively, and S is a f-diagonal tensor of size n1 × n2 × n3.

We can obtain this decomposition by computing matrix singular value decomposition (SVD) in the Fourier domain, as it shows in
Algorithm 1. Fig. 4 illustrates the decomposition for the three-dimensional case.

Algorithm1 : t-SVD for 3-way data

Input: A ∈ Rn1×n2×n3

D ←fft(A,[],3),
for i = 1 to n3, do

[ U , S , V ] = svd(D(:, :, i)),
Û(:, :, i)=U, Ŝ(:, :, i))=S, V̂(:, :, i) =V,

end for
U ← ifft(Û ,[],3), S ← ifft(Ŝ,[],3), V ← ifft(V̂ ,[],3),
Output: U ,S,V
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Fig. 4: Illustration of the t-SVD of an n1 × n2 × n3 tensor.

Definition 2.7 (tensor multi-rank and tubal rank) [9] The tensor multi-rank of A ∈ Rn1×n2×n3 is a vector r ∈ Rn3 with its i-th entry
as the rank of the i-th frontal slice of Â, i. e. ri = rank(Â(:, :, i)). The tensor tubal rank, denoted by rankt(A), is defined as the number of
nonzero singular tubes of S, where S is from A = U ∗ S ∗ VT, i. e.

rankt(A) = # {i : S(i,i,:) 6= 0} = max
i

ri (7)

Definition 2.8 (tensor nuclear norm: TNN) [9] The tensor nuclear norm ofA ∈ Rn1×n2×n3 denoted by ‖A‖∗ is defined as the sum of
the singular values of all the frontal slices of Â. The TNN of A is equal to the TNN of blkdiag(Â). Here blkdiag(Â) is a block diagonal
matrix defined as follows:

blkdiag(Â) =


Â(1)

Â(2)

. . .
Â(n3)

 , (8)

where Â(i) is the i-th frontal slice of Â, i = 1, 2, ..., n3.

Definition 2.9 (standard tensor basis) [12] The column basis, denoted as e̊i, is a tensor of size n×1×n3 with its (i,1,1)-th entry equaling
to 1 and the rest equaling to 0. Naturally its transpose e̊Ti is called row basis.



3. ITERATIVE BLOCK TENSOR SINGULAR VALUE THRESHOLDING

We decompose the whole tensor which satisfies the incoherence conditions into many small blocks of the same size. And the third dimension
of the block size should be the same as the third dimension of the tensor. That is to say, given an input tensor X ∈ Rn1×n2×n3 and its
corresponding block size, we propose a multi-block tensor modeling that models the tensor data X as the concatenation of block tensors.
And each block tensor can be decomposed into two components, i.e. Xp = Lp + Sp, p = 1, · · · , P , where Lp and Sp denote the low rank
component and sparse component of block tensor Xp respectively.

As observed in RPCA, the low rank and sparse decomposition is impossible in some cases [4]. Similarly, we are not able to identify the
low rank component and sparse component if the tensor is of both low rank and sparsity. Similar to the tensor incoherence conditions [8], we
assume the block tensor data Lp in each block satisfies some block tensor incoherence conditions to guarantee successful low rank component
extraction.

Definition 3.1 (block tensor incoherence conditions) For Lp ∈ Rn×n×n3 , assume that rankt(Lp) = r and it has the t-SVD Lp =
Up ∗ Sp ∗ VT

p , where Up ∈ Rn×r×n3 and Vp ∈ Rn×r×n3 satisfy UT
p ∗ Up = I and VT

p ∗ Vp = I, and Sp ∈ Rr×r×n3 is an f-diagonal tensor.
Then Lp satisfies the tensor incoherence conditions with parameter µ if

max
i=1,...,n

‖UT
p ∗ e̊i‖F 6

√
µr

nn3
(9)

max
j=1,...,n

‖VT
p ∗ e̊j‖F 6

√
µr

nn3
(10)

and

‖Up ∗ VT
p ‖∞ 6

√
µr

n2n2
3

(11)

The incoherence condition guarantees that for small values of µ, the singular vectors are not sparse. Then the tensor Lp ∈ Rn×n×n3 can be
decomposed into low rank component and sparse component.

For extracting the low rank component from every block, we process the tensor nuclear norm of Lp, i. e. ‖Lp‖TNN = ‖blkdiag(L̂p)‖∗.
Here we can use singular value thresholding operator in the Fourier domain to extract the low rank component of the block tensor [18, 19].
The proposed method is called iterative block tensor singular value thresholding (IBTSVT). The thresholding operator used here is the soft
one Dτ as follows:

Dτ (Lp) = sign(blkdiag(L̂p))(|blkdiag(L̂p)| − τ)+, (12)

where “()+” keeps the positive part.
After we extract the low rank component L = L1 � L2 � · · · � LP , where � denotes concatenation operation, we can get the sparse

component of the tensor by computing the S = X − L. See Algorithm 2 in details.

Algorithm 2: IBTSVT

Input: tensor data X ∈ Rn1×n2×n3

Initialize: given µ, η, ε, τ , and
block tensors Xp of size n× n× n3, p = 1, · · · , P
while not converged do
1. Update η := η × µ,
2. Update τ := τ/η,
3. Compute Xp := Dτ (Xp), p = 1, · · · , P .
end while:
‖Xk+1 −Xk‖F/‖Xk‖F ≤ ε at (k + 1)-th step.
Output: L = X1 � X2 � · · ·� XP

In our method, the block size can’t be too large. The large size of the block will make the sparse part contain some low rank component.
And if the size of the block is too small, the computational time will be long. Because the number of t-SVDs is large. Generally, we can
choose our block size 2× 2× n3.

In our algorithm, we choose µ = 1.8, η = 1, ε = 10−2. But the thresholding parameter τ is difficult to determine. Here we can get
a value by experience. As discussed in [8], the thresholding parameter could be τ = 1/

√
nn3 for every block. This value is for denoising

problem in images or videos, where the noise is uniformly distributed. But for different applications, it should be different from 1/
√
nn3.

Because in these applications, the sparse component in data is not uniformly distributed, such as shadow in face images and motion in
surveillance videos.

4. EXPERIMENTAL RESULTS

In this section, we conduct numerical results to show the performance of the method. We apply IBTSVT method on two different real datasets
that are conventionally used in low rank model: motion separation for surveillance videos (Section 4.1) and illumination normalization for
face images (Section 4.2).



4.1. Motion Separation for Surveillance Videos

In surveillance video, the background only changes its brightness over the time, and it can be represented as the low rank component. And
the foreground objects are the sparse component in videos. It is often desired to extract the foreground objects from the video. We use the
proposed IBTSVT method to separate the foreground component from the background one.

We use the surveillance video data used in [6]. Each frame is of size 144 × 176 and we use 20 frames. The constructed tensor is
X ∈ R144×176×20 and the selected block size is 2× 2× 20. The thresholding parameter is τ = 20/

√
nn3.

Fig. 5 shows one of the results. We can find that IBTSVT method correctly recovers the background, while the sparse component
correctly identifies the moving pedestrians. It shows the proposed method can realize motion separation for surveillance videos.

Fig. 5: IBTSVT on a surveillance video. (a) original video; (b) low rank component that is video background; (c) sparse component that
represents the foreground objects of video.

4.2. Illumination normalization for face images

The face recognition algorithms are sensitive to shadow or occlusions on faces [7], and it’s important to remove illumination variations and
shadow on the face images. The low rank model is often used for face images [20].

In our experiments, we use the Yale B face database [7]. Each face image is of size 192× 168 with 64 different lighting conditions. We
construct the tensor data X ∈ R192×168×64 and choose the block size 2× 2× 64 . We set the thresholding parameter τ = 20/

√
nn3.

We compare the proposed method with multi-scale low rank matrix decomposition method [13] and low rank + sparse method [4]. Fig.
6 shows one of the comparison results. The IBTSVT method can result in almost shadow-free faces. In contrast, the other two methods can
only recover the faces with some shadow.

In order to further illustrate the effect of shadow elimination in the recovered face images, we carry on face detection with the recovered
data from different methods. In our experiments, we employ the face detection algorithm Viola-Jones algorithm [21] to detect the faces and
the eyes. The Viola-Jones algorithm is a classical algorithm which can be used to detect people’s faces, noses, eyes, mouths, and upper bodies.
In the first experiment we put all face images into one image of JPG format. Then we use the algorithm to detect faces in the newly formed
image. In the second experiment, we use the algorithm to detect the eyes of every face image. The second and third columns of Table 1 show
the detection accuracy ratios of Viola-Jones algorithm with different recovered face images. We test how long the three methods process the
64 face images as can be seen in the fourth column. The IBTSVT can improve the efficiency by parallel processing of the block tensors. From
the result of Table 1, we can find our method gives the best detection performance, because removing shadow of face images is helpful for
face detection.

face detection eye detection Time (s)
Original image 0.297 0.58 NULL
Low rank + sparsity 0.375 0.70 10
Multiscale low rank 0.359 1.00 4472
IBTSVT 0.844 1.00 715

Table 1: The accuracy ratios of faces and eyes detection by Viola-Jones algorithm and the computational time to process face images.



Fig. 6: Three methods for face with uneven illumination: (a) original faces with shadows; (b) low rank + sparse method; (c) multi-scale low
rank decomposition; (d) IBTSVT.

5. CONCLUSIONS

In this paper, we proposed a novel IBTSVT method to extract the low rank component of the tensor using t-SVD. The IBTSVT is a good way
to utilize the structural feature of tensor by solving TPCA problem in block tensor form. We have given the tensor incoherence conditions for
block tensor data. For applications, we considered motion separation for surveillance videos and illumination normalization for face images,
and numerical experiments showed its performance gains compared with the existing methods.
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