Loading [a11y]/accessibility-menu.js
Projection-based dual averaging for stochastic sparse optimization | IEEE Conference Publication | IEEE Xplore

Projection-based dual averaging for stochastic sparse optimization


Abstract:

We present a variant of the regularized dual averaging (RDA) algorithm for stochastic sparse optimization. Our approach differs from the previous studies of RDA in two re...Show More

Abstract:

We present a variant of the regularized dual averaging (RDA) algorithm for stochastic sparse optimization. Our approach differs from the previous studies of RDA in two respects. First, a sparsity-promoting metric is employed, originated from the proportionate-type adaptive filtering algorithms. Second, the squared-distance function to a closed convex set is employed as a part of the objective functions. In the particular application of online regression, the squared-distance function is reduced to a normalized version of the typical squared-error (least square) function. The two differences yield a better sparsity-seeking capability, leading to improved convergence properties. Numerical examples show the advantages of the proposed algorithm over the existing methods including ADAGRAD and adaptive proximal forward-backward splitting (APFBS).
Date of Conference: 05-09 March 2017
Date Added to IEEE Xplore: 19 June 2017
ISBN Information:
Electronic ISSN: 2379-190X
Conference Location: New Orleans, LA, USA

Contact IEEE to Subscribe

References

References is not available for this document.