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ABSTRACT 

Traditional visual speech recognition systems consist of 
two stages, feature extraction and classification. Recently, 
several deep learning approaches have been presented which 
automatically extract features from the mouth images and aim 
to replace the feature extraction stage. However, research on 
joint learning of features and classification is very limited. In 
this work, we present an end-to-end visual speech recognition 
system based on Long-Short Memory (LSTM) networks. To 
the best of our knowledge, this is the first model which simul­
taneously learns to extract features directly from the pixels 
and perform classification and also achieves state-of-the-art 
performance in visual speech classification. The model con­
sists of two streams which extract features directly from the 
mouth and difference images, respectively. The temporal dy­
namics in each stream are modelled by an LSTM and the fu­
sion of the two streams takes place via a Bidirectional LSTM 
(BLSTM). An absolute improvement of 9.7% over the base 
line is reported on the OuluVS2 database, and 1.5% on the 
CUAVE database when compared with other methods which 
use a similar visual front-end. 

Index Terms- Visual Speech Recognition, Lipreading, 
End-to-End Training, Long-Short Term Recurrent Neural 
Networks, Deep Networks 

1. INTRODUCTION 

Speech is an audiovisual signal which consists of the audio 
vocalisation and the corresponding mouth configuration. Al­
though most of the information is carried by the audio signal, 
the visual signal also carries complementary and redundant 
information. This visual information, which is not affected 
by acoustic noise, can significantly improve the performance 
of speech recognition in noisy environments. 

Traditionally, visual speech recognition systems consist 
of two stages, feature extraction from the mouth region of in­
terest (ROI) and classification [1, 2, 3]. The most common 
feature extraction approach is the use of a dimensionality re­
duction/compression method, with the most popular being the 
Discrete Cosine Transform (DCT), which results in a com­
pact representation of the mouth ROI. In the second stage, 
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a dynamic classifier, like Hidden Markov Models (HMMs) 
or Long-Short Term Memory (LSTM) recurrent neural net­
works, is used to model the temporal evolution of the features. 

Recently, several deep learning approaches for visual 
speech recognition have been presented. The vast major­
ity also follow a two stage approach where deep bottleneck 
architectures are used for feature extraction. First, high di­
mensional features are extracted from the mouth ROI which 
are compressed to a low dimensional representation at the 
bottleneck layer of a deep network and then fed to a classifier. 
Ngiam et al. [4] applied principal component analysis (PCA) 
to the mouth ROI and trained a deep autoencoder to extract 
bottleneck features. The features from the entire utterance 
were fed to a support vector machine ignoring the temporal 
dynamics of the speech. Ninomiya et al. [5] also applied 
PCA to the mouth ROIs and used a deep autoencoder to 
extract bottleneck features but an HMM was used in order 
to take into account the temporal dynamics. Sui et al. [6] 
extracted local binary patterns from the mouth ROI and used 
a deep autoencoder to reduce their dimensionality. Then, the 
bottleneck features were concatenated with DCT features and 
fed to an HMM. A similar approach has also been followed in 
audiovisual speech recognition [7,8, 9] where a shared rep­
resentation of the input audio and visual features is extracted 
from the bottleneck layer. 

Few works have also been presented which extract bottle­
neck features directly from the pixels. Li [10] used a convo­
lutional neural network (CNN) in order to extract bottleneck 
features from dynamic representations of images, which are 
fed to an HMM for classification. In our previous work [11], 
we extracted bottleneck features directly from the raw mouth 
ROI using a deep feedforward network and then trained an 
LSTM for classification. Noda et aI . [12] used a CNN to pre­
dict the phoneme that corresponds to an input mouth ROJ, and 
then an HMM is used together with audio features in order to 
classify an utterance. 

Despite the success of deep learning methods in feature 
extraction, work on end-to-end visual speech recognition has 
been very limited. To the best of our knowledge, only Wand 
et al. [13] developed an end-to-end system for lipreading. 
The system consists of one feedforward layer followed by 
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Fig. 1: Overview of the end-to-end visual speech recognition 
system. Two streams are used for feature extraction directly 
from the raw images. The first stream extracts features from 
the raw mouth ROI and the second stream from the diffmouth 
ROI in order to capture local temporal dynamics. The ~ and 
~~ features are also computed and appended to the bottle­
neck layer. The encoding layers are pre-trained using RBMs. 
The temporal dynamics are modelled by an LSTM in each 
stream. A BLSTM is used to fuse the information from both 
streams and provides a label for each input frame. 

two LSTM layers and trained to perform lipreading directly 
from raw mouth ROIs. The system was tested on a subject­
dependent experiment on the GRID corpus[14] and although 
it outperformed other baseline systems it failed to outperform 
the state-of-the-art results [15]. 

In this paper, we present an end-to-end visual speech 
recognition system which jointly learns the feature extraction 
and classification stages. To the best of our knowledge, this 
is the first end-to-end model which performs visual speech 
recognition from raw mouth ROIs and achieves state-of-the­
art performance. The system consists of two streams, one 
which encodes static information and one which encodes 
local temporal dynamics. The former operates on the raw 
mouth ROIs and the latter on the difference (dift) images. An 
LSTM models the temporal dynamics in each stream and the 
fusion of both streams occurs through a BLSTM. 

We perform subject independent experiments on two dif­
ferent datasets, OuluVS2 and CUAVE. An absolute improve­
ment of 9.7% over the baseline is reported on the OuluVS2 
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Fig. 2: Example of mouth ROI extraction from CUAVE 

database, and 1.5% on the CUAVE database when compared 
with other methods which use a similar visual front-end. 

2. DATABASES 

The databases used in this study are the OuluVS2 [16] and 
CUAVE [17]. The OuluVS2 contains 52 speakers saying 10 
utterances, 3 times each, so in total there are 156 examples 
per utterance. The utterances are the following: "Excuse 
me", "Goodbye", "Hello", "How are you", "Nice to meet 
you", "See you", "I am sorry", "Thank you", "Have a good 
time", "You are welcome". The mouth ROls are provided and 
they are down scaled to 26 by 44 in order to keep the aspect 
ratio constant. 

The CUAVE dataset contains 36 subjects speaking digits 0 
to 9,5 times each, so in total there are 180 examples per digit. 
The normal portion of the database is used where the subjects 
are in frontal position. Sixty eight points are tracked on the 
face using the tracker proposed in [18]. The faces are first 
aligned using a neutral reference frame in order to normalise 
them for rotation and size differences. This is done using 
an affine transform using 5 stable points, two eyes corners in 
each eye and the tip of the nose. Then the center of the mouth 
is located based on the tracked points and a bounding box with 
size 90 by 150 is used to extract the mouth ROI as shown in 
Fig. 2. Finally, the mouth ROIs are downscaled to 30 by 50. 

3. END-TO-END VISUAL SPEECH RECOGNITION 

The proposed deep learning system for visual speech recogni­
tion is shown in Fig. 1. It consists of two independent streams 
which extract features directly from the raw input. The first 
stream mainly encodes static information by extracting fea­
tures directly from the raw mouth ROJ. The second stream 
encodes the local temporal dynamics by extracting features 
from the diff mouth ROI, which is computed by taking the 
difference between two consecutive frames. 

Both streams follow a bottleneck architecture in order to 
compress the high dimensional input image to a low dimen­
sional representation at the bottleneck layer. The same ar­
chitecture as in [19] is used, where 3 sigmoid hidden layers 
are used with sizes of 2000, 1000 and 500, respectively, fol­
lowed by a linear bottleneck layer. These encoding layers are 



Table 1: Classification Accuracy on the Oulu VS2 database. 
The end-to-end models are evaluated using the protocol sug­
gested in [22] where 40 subjects are used for training and val­
idation and 12 subjects are used for testing. t These models 
use a leave-one-subject-out cross validation for evaluation. 

Method 

End-to-End (Raw Image) 

End-to-End (Diff Image) 

End-to-End (Raw + DiffImages, Fig. 1) 

DCT + HMM [22] t 

Latent Variable Models [22] t 

Classification 
Accuracy 

78.0 

75.8 

84.5 

74.8 

73.0 

pre-trained in a greedy layer-wise manner using Restricted 
Boltzmann Machines (RBMs) [20]. The ~ (first derivatives) 
and ~~ (second derivatives) [21] features are also computed, 
based on the bottleneck features, and they are appended to the 
bottleneck layer. In this way, during training we force the en­
coding layers to learn representations which produce good ~ 
and ~~ features. 

Finally, an LSTM layer is added on top of the encoding 
layers in order to model the temporal dynamics of the fea­
tures in each stream. The LSTM outputs of each stream are 
concatenated and fed to a BLSTM in order to fuse the infor­
mation from both streams. The output layer is a softmax layer 
which provides a label for each input frame. The entire sys­
tem is trained end-to-end which enables the joint learning of 
features and classifier. In other words, the encoding layers 
learn to extract features from raw images which are useful for 
classification using LSTMs. 

4. EXPERIMENTAL SETUP 

4.1. Evaluation Protocol 

We first partition the data into training and test sets. The pro­
tocol suggested by the creators of the OuluVS2 database is 
used [22] where 40 subjects are used for training and vali­
dation and 12 for testing. We randomly divided the 40 sub­
jects into 30 and 10 subjects for training and validation pur­
poses, respectively. This means that there are 900 training 
utterances, 300 validation utterances and 360 test utterances. 

The evaluation protocol suggested in [4] was used for ex­
periments on the CUAVE database. The odd-numbered sub­
jects (18 in total) are used for testing and the even-numbered 
subjects are used for training. We further divided the latter 
ones into 12 subjects for training and 6 for validation. This 
means that there are 600, 300 and 900 training, validation and 
test utterances, respectively. 
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Table 2: Classification Accuracy on the CUAVE database. 
The end-to-end model is trained using the same protocol as 
[4, 23] where 18 subjects are used for training and validation 
and 18 for testing. * This model is trained on 28 subjects and 
tested on 8 subjects. t These models are trained and tested 
using a 6-fold cross validation. t This model uses a visual 
front-end which is significantly more complicated than ours. 

Method Classification 
Accuracy 

End-to-End (Raw Image) 71.4 

End-to-End (Diff Image) 65.9 

End-to-End (Raw + Diff Images, Fig. 1) 78.6 

Deep Autoencoder + SVM [4] 68.7 

Deep Boltzmann Machines + SVM [23] 69.0 

AAM +HMM [24] t 75.7 

Patch-based Features + HMM [25] * 77.1 

Visemic AAM + HMM [26] t t 83.0 

4.2. Preprocessing 

Since all the experiments are subject independent we first 
need to reduce the impact of subject dependent characteris­
tics. This is done by subtracting the mean image, computed 
over the entire utterance, from each frame. 

The next step is the normalisation of data. As recom­
mended in [20] the data should be z-normalised, i.e. the mean 
and standard deviation should be equal to 0 and 1 respectively, 
before training an RBM with linear input units. Hence, each 
image is z-normalised before pre-training the encoding layers. 

4.3. Training 

RBM Training: A Gaussian-Bernoulli RBM [20] is used 
for the first layer since the input (pixels) is real-valued, fol­
lowed by two Bernoulli-Bernoulli RBMs and one Bernoulli­
Gaussian RBM for the linear bottleneck layer. Each RBM 
is trained for 20 epochs with a mini-batch size of 100 and 
L2 regularisation coefficient of 0.0002 using contrastive di­
vergence. The learning rate is fixed to 0.1 for the Bernoulli­
Bernoulli RBMs and to 0.001 when one layer (input or bot­
tleneck) is real-valued as suggested in [20] . 

End-to-End Training: The AdaDelta algorithm [27], which 
automatically computes the learning rate in each epoch, was 
used for training with a mini-batch size of 20 utterances. 
Early stopping with a delay of 5 epochs was also used in or­
der to avoid overfitting. Gradient clipping was applied to the 
LSTM layers. The label of the last frame in each utterance 
was used in order to label the entire utterance. 



Fig. 3: CUAYE confusion matrix. The labels for X and Y 
axes correspond to digits 0 to 9. 

S. RESULTS 

Results for the OuluYS2 database are shown in Table 1. Since 
this database has been released recently only the baseline re­
sults provided by the creators are available. The best provided 
baseline result, 74.8%, is achieved by HMMs in combination 
with DCT features. We first test each stream of the end­
to-end model individually, i.e., just the encoding layers and 
the LSTM layer are considered. It is interesting to note that 
both streams outperform the baseline performance. The best 
overall result is achieved by the end-to-end 2-stream model, 
shown in Fig. 1, with a classification accuracy of 84.5%. We 
should also emphasise that the baseline performance is evalu­
ated using a leave-one-subject-out cross validation approach 
which means there are 51 subjects for training and validation 
and only one subject for testing in each iteration. On the other 
hand, we use much fewer subjects for training and validation, 
40, and many more subjects for testing, 12, which makes the 
problem more challenging. Even in this case, the end-to-end 
system results in a significant improvement over the baseline 
performance. 

Results for the CUAYE database are shown in Table 2. 
There is not a standard evaluation protocol for this database 
which makes comparison between different works difficult. 
Only [4] and [23] use the same evaluation protocol as in this 
study. We see that the single-stream end-to-end model based 
on raw mouth ROIs outperforms both previous works. The 
2-stream end-to-end model outperforms all approaches that 
use a similar visual front-end. This includes [24] where a 6-
fold cross validation was used with 30 subjects for training 
and validation and 6 for testing, and [25] where 28 subjects 
were used for training and validation and 10 for testing. In 
this study, we use much fewer subjects, 18, for training and 
validation and many more subjects for testing, 18. Only [26] 
achieves a higher performance than our end-to-end system, 
but a much more complicated visual front-end is used, with a 
cascade of active appearance models (AAM), and the model 
is evaluated using a 6-fold cross-validation. 

Figures 3 and 4 show the confusion matrices for both 
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Fig. 4: OuluYS2 confusion matrix. The labels for X and Y 
axes correspond to the 10 phrases described in section 2. 

datasets. In the OuluYS2 dataset, the most confusions were 
between phrases 3 (Hello) and 8 (Thank you) and between 
phrases 6 (See you) and 9 (Have a good time). In the CUAYE 
dataset, number pairs zero and two, six and nine were most 
frequently confused. Zero and two share similar viseme se­
quences near the end of the utterance while six and nine share 
similar viseme sequences at the start of the utterance which 
explains the more frequently occurring confusions for these 
number pairs. 

Finally, we should also mention that we experimented 
with convolutional neural networks for the encoding layers 
but this led to worse performance than the proposed system. 
This is also reported in [13] and it is likely due to the small 
training sets. We also used data augmentation which im­
proved the performance but did not exceed the performance 
of the proposed system. 

6. CONCLUSION 

In this work, we present an end-to-end visual speech recog­
nition system which jointly learns to extract features directly 
from the pixels and perform classification using LSTM net­
works. Results on subject independent experiments demon­
strate that the proposed model achieves state-of-the-art per­
formance on the OuluYS2 and CUAYE databases when com­
pared with models which use a similar visual front end. The 
model can be easily extended to multiple streams so we 
are planning to add an audio stream in order to evaluate its 
performance on audiovisual speech recognition tasks. 
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