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ABSTRACT
Exploiting correlations in the audio, several works in the past
have demonstrated the ability to automatically match and
synchronize User Generated Video (UGV) files of the same
event. In this paper, we focus on the challenging acoustic
environment of a large scale athletic event. We show that
the chanting of the crowd produces an acoustic background
common in the audio streams of different UGVs and we de-
sign a novel audio fingerprinting method for organizing the
UGV collection based on that content. Results presented
with recordings from a crowded football match demonstrate
that the proposed approach provides significantly better audio
matching performance in comparison to three of the most
well known audio fingerprinting techniques.

Index Terms— audio matching, audio synchronization,
audio fingerprinting, content based management, user gener-
ated content

1. INTRODUCTION

With the proliferation of smart-phones and portable electronic
devices, more and more of us become engaged in the pro-
cess of capturing and sharing audiovisual content from public
events that we attend. Such content can be very valuable to
the broadcasters and producers as it may enrich the profes-
sional footage or provide coverage for parts of the event that
have not been captured by the professional equipment. Yet,
it is not trivial to organize this content in a way that it can
be usable for the said purpose. For example, as user gener-
ated content lacks metadata which is informative about the
exact location and time of recording, it would require enor-
mous time and effort from the professional editor to manu-
ally search for videos referring to a particular segment of the
event, or to group and temporally align multiple videos over-
lapping in space and time.

Fortunately, as several works have demonstrated in the
past, it is possible to automatically organize such content by
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exploiting the correlations in the audio streams available in
the UGV collection. Of fundamental importance for succeed-
ing in this task is to employ audio features which are robust
to different kinds of channel variations – as for example en-
vironmental noise, different recording locations, varying fre-
quency response of each recording device, etc – and which
at the same time allow for fast mining through large collec-
tions containing hundreds or thousands of UGVs. Respecting
these requirement, audio fingerprinting techniques, originally
designed for the purpose of song identification [1–3], have
been successfully employed from researchers working on the
management of user generated content in the past [4–8].

In this paper, our goal is to quantify the ability of differ-
ent fingerprinting techniques in audio matching and synchro-
nization, i.e. the process of identifying audio (and as a con-
sequence video) recordings overlapping in time, as well as
the time-offsets which are required for their time-alignment.
Being successful in this task is an important prerequisite for
various applications, as for example, to produce a linear plot
with multiple visual perspectives of the same event [5], or to
combine the audio streams from the different devices in order
to produce a new acoustic sequence of increased duration [8]
and enhanced quality [9, 10]. In this work, we focus on the
case of a large scale athletic event and in particular, a football
match taking place inside a crowded open stadium. We show
that the chanting of the crowd produces a distinct acoustic
background common to the generated audio streams, and we
propose a novel acoustic feature which is tailored for corre-
lating with this particular type of content. Results presented
with recordings from a real football match demonstrate that
the proposed approach provides significantly better perfor-
mance in comparison to three of the most well known audio
fingerprinting techniques.

2. METHODOLOGY

To find instances of the same event across a collection of M
video recordings, we perform three basic steps. First, the au-
dio is imported from each video file and stored at a separate
folder in standard PCM format. For each audio file, anNi×B
audio fingerprint matrix Fi is constructed and stored, where
Ni is the number of time-frames used in the analysis of the



ith recording while B depends on the dimensionality of each
audio fingerprinting technique. Third, all the M(M − 1)/2
pairwise combinations of fingerprints are presented as input
to an audio matching algorithm. For each pair ij, the process
provides us with a vector containing the values of a general-
ized cross-correlation function denoted as RFi,Fj (τ), where
τ ∈ Z spans all possible time-frame offsets between finger-
prints i and j. Similar as in [8], we use the maximum of the
cross-correlation

pij = max
τ

RFi,Fj
(τ), (1)

as the confidence metric for deciding whether recordings i
and j should be paired or not. A side product of this process is
the time-frame difference of arrival τ̂ij = arg maxτ RFi,Fj

(τ)
which potentially synchronizes recordings i and j. A pair
is assigned a “positive match” if pij , the so-called match
strength from now on, is equal or greater to the value of a
predefined threshold θ and a “negative match” in the opposite
case. The exact way that function RFi,Fj

(τ) is defined varies
in accordance to the nature of each fingerprinting technique.

For assessing the audio matching performance, we define
two simple metrics, namely, the Positive Match Score (PMS)
and the Negative Match Score (NMS). The PMS [resp. NMS]
is defined as PMS = Q+

N+ [resp. NMS = Q−

N− ] where Q+

[resp. Q−] is the number of pairs correctly assigned a positive
[resp. negative] match and N+ [resp. N−] is the number of
pairs which should have been assigned a positive [resp. neg-
ative] match. Obviously, N+ + N− = M(M − 2)/2 holds.
Naturally, the value of the threshold used within each ap-
proach needs to guarantee an optimal trade off between PMS
and NMS, as a large [resp. small] value of the threshold will
improve NMS [resp. PMS] in the cost of a low PMS [resp.
NMS].

2.1. Philips Robust Hash (PRH)

The first approach that we consider for audio fingerprinting is
a slightly modified version of the method presented in [2], lat-
ter exploited for audio organization by the authors in [4, 11].
The technique takes into account the sign of the energy differ-
ences simultaneously along the time and frequency axes. The
spectrum is divided into B non-overlapping subbands and the
widths of subsequent subbands increase in a logarithmic way
with frequency. Let Zi(n, b) symbolize the energy at the nth
time-frame and bth subband region. If we define ∆Zi(n, b) =
Zi(n, b)− Zi(n, b+ 1)− (Zi(n− 1, b)− Zi(n− 1, b+ 1))
then, the pixel value that corresponds to the bth subband at
the nt time-frame can be determined based on the following
equation:

Fi(n, b) =

{
1 if ∆Zi(n, b) > 0

-1 if ∆Zi(n, b) ≤ 0.
(2)

A time-offset and a matching decision for two recordings i
and j is obtained using the process described in the beginning

of section 2, with the generalized cross-correlation function
defined as

RFi,Fj (τ) =

∞∑
n=−∞

FTi (n)Fj(n+ τ), (3)

where (·)T denotes matrix transposition and Fi(n) is theB×
1 feature vector specific to time-frame n. Use of the binary
set {−1, 1} in Eq. (2) instead of the set {0, 1}, originally
proposed in [2], allows for implementation with a fast cross-
correlation algorithm such as Matlab function xcorr.

2.2. Audio chroma based fingerprinting

Correlating strongly to the harmonic information contained
in the audio signals, audio chroma is a well known feature
for content-based audio analysis [7, 12, 13]. Essentially, au-
dio chroma vector is a 12-dimensional representation of the
tonal content of an audio signal derived by combining bands
belonging to twelve pitch classes. For the needs of this paper,
our chroma feature vectors are obtained by using the toolbox
provided in [14]. At the nth time-frame, the sub-fingerprint
Fi(n) is 12 × 1 vector normalized so that ‖Fi(n)‖2 = 1.
We then proceed by considering RFi,Fj

(τ) = cij(τ), where
cij(τ) is the number of the non-zero elements along a diago-
nal of a matrix derived by following the procedure described
in section 5.2 of the work in [7]. Depending on the maximum
diagonal score, pair ij is assigned a positive or negative match
as explained at the beginning of section 2.

2.3. Wang’s method

The fingerprinting method of Wang [1] was among the first
ones to be used in the context of crowdsourced content man-
agement [5, 6, 8, 11]. The method operates by identifying lo-
cal peaks in the TF domain called “landmarks”. The combi-
natorial pairing of the landmarks into “hashes” significantly
increases the robustness to noise and other types of signal
degradation [1]. For implementing this method, we use the
Matlab toolbox provided in [15] by considering RFi,Fj

(τ) to
be equal to the number of hashes matched as a function of the
time-frame offset τ . In fact, the toolbox directly returns to
us an integer wij which represents the number of maximum
hashes matched, as well as the time-frame offset τ̂ij where
this occurs.

2.4. Proposed approach

The feature vector that we propose takes into account energy
variations in the frequency region from 0.5 to 1 kHz. We
have observed that this frequency region represents the most
energetic part of the spectrum for a chanting crowd event, a
fact that is also demonstrated in the spectrogram of the sound
signal in Fig. 1. For the fingerprint extraction process, we



Fig. 1. Spectrogram of a chanting crowd event, as received
at one of the smart-phone devices, in (a), and sketch of the
stadium with corresponding recording locations denoted with
black dots in (b).

need first define the auxiliary signal

Pi(n) =

n+L∑
m=n−L

kUB∑
k=kLB

|Xi(m, k)|, (4)

where Xi(m, k) is the STFT coefficient associated with the
mth time-frame and kth frequency bin of the audio signal at
recording i, kLB and kUB are the frequency indexes corre-
sponding to 500 and 1000 Hz respectively and L is a positive
integer used for time averaging. The sub-fingerprint at time n
is a scalar defined as

Fi(n) =

{
1 if Pi(n) ≥ Pi(n− 1),

-1 if Pi(n) < Pi(n− 1).
(5)

Following the steps described in the beginning of section 2,
a decision regarding a positive or negative match, as well as
the time-frame offset required for synchronizing files i and j
is taken upon the values of the generalized cross-correlation
defined as

RFi,Fj
(τ) =

∞∑
n=−∞

Fi(n)Fj(n+ τ). (6)

3. EXPERIMENTAL VALIDATION

While our scope is to present a fingerprinting process which is
suitable for the organization of UGV acquired in a large scale
sport event, we also present results for the case of a musical
concert. The case of a musical concert has been investigated
extensively in several studies in the past, but we believe that it
adds further value in the context of this paper, by highlighting
the inherent differences between those two types of acoustic
events and the way that this is reflected upon the audio match-
ing metrics provided by each audio fingerprinting technique.

The data required for the experiment was acquired as fol-
lows. For the athletic event, 5 participants contributed video
recordings using their smart-phones. Their locations, which

were fixed through the entire duration of the game, are il-
lustrated with black dots in Fig. 1(b). Throughout almost the
entire duration of the game, a big part of the crowd was chant-
ing, mainly following the organized fans of the hosting team,
distributed at the north side of the stadium, as shown in Fig.
1(b). On the other hand, the data in the music event was ex-
tracted from 7 different recording devices, at locations which
were static during each song but which varied from one song
to the other. The public address system located at the left and
right side of the stage, represented the most dominant acoustic
source during the concert.

More details with respect to the recording process in each
event can be found in [16] while access to the datasets is pro-
vided by the link in [17]. We briefly note here that in total, 41
and 50 audio recordings were used for the case of the concert
and the football match respectively, corresponding to 77 and
92 cases of positive match and 743 and 1133 cases of neg-
ative match. Finally, the average overlap duration between
positive match pairs in both event was equal to 2 minutes ap-
proximately.

For all fingerprinting methods we used a sampling rate of
8 kHz with an analysis frame of 512 samples length. A hop
size of 128 samples was used for all approaches except from
Wang’s algorithm which was implemented with a hop size of
256 samples. Finally, the value of L in Eq. (4) was set to
6. Using the audio, the video and the metadata which was
available for each file, it was easy to identify whether a pair
of recordings overlapped in time or not and this was used as
the groundtruth for evaluating the matching performance.

For illustrating the matching performance in relation to
each fingerprinting algorithm we decided to create two sep-
arate histograms with the match strength values, one for the
cases of negative and one for the cases of positive match pairs.
With respect to the concert, these histograms are shown for
the three state-of-the-art techniques and for the proposed tech-
nique in Fig. 2. For better clarity, the plot is shown with a
non-linear horizontal axis. It can be seen that the blue car-
dinality values corresponding to pairs of positive match are
generally well separated from the negative match cardinal-
ity values, plotted in red. Also, by simple visual inspection,
PRH and Wang’s method in Fig. 2(a) and 2(b) provide bet-
ter discrimination in comparison to chroma vector, where the
overlap between red and blue bars is evidently greater at the
intermediate match strength values in Fig. 2(c). The discrim-
ination between the positive and negative match pairs is also
very good with the proposed technique in Fig. 2(d). In terms
of the {PMS,NMS}metric, PRH and the proposed technique
achieve the best scores of {98.7%, 100%} for an empirically
defined threshold of θ = 7 · 103 and θ = 7.5 · 103 respec-
tively, both making one only false negative decision. The
respective values for Wang’s method and chroma vector are
93.5%, 99.9%} for θ = 10 and {83.1%, 98.1%} for θ = 9
respectively.

Contrary to the case of the concert, the distribution of the



Fig. 2. Histogram with the distribution of the match strength,
for the positive (blue) and negative (red) match pairs, in the
case of the concert, for PRH in (a), Wang’s method in (b),
chroma vector in (c) and proposed fingerprinting technique in
(d).

match strengths derived from the three state-of-the-art tech-
niques in the case of the football match are very little infor-
mative about the actual match class, as can be seen in Fig.
3(a)-(c). For the majority of the positive matches, it is difficult
to discriminate them from the negative match pairs, as their
strengths are in the same range of values. Interestingly, some
overlapping pairs appearing to exceed the match strength val-
ues of 15 and 7, in Fig. 3(a) and (b) respectively, associate
to pairs from recording locations 3 and 4, which are at a very
small distance as shown in Fig. 1(b). To our opinion, this
is evidence that the state-of-the-art fingerprinting techniques
detect a match because of the common acoustic “foreground”,
rather than because of the common background. To give an
impression about the decline of the performance in the case
of the football match, we note that, for an NMS of 97%, the
PMS values are now equal to 19.6%, 19.6% and 17.1% for
PRH, Wang’s method and chroma vector respectively.

Finally, from Fig. 3(d) it becomes apparent that the pro-
posed technique provides a substantially better audio match-
ing metric, by clearly discriminating negative from positive
matches. For a threshold value of θ = 900, a PMS of 98.9
% with an NMS of 99.4% is achieved. This proves that the
acoustic feature designed in section 2.4 correlates better to the
common acoustic background and at the same time, manages
to absorbs the variance characterizing channel pairs as far as
100 meters apart.

It is worth noting that the proposed approach not only
solved the audio matching problem for the particular football
match collection, but also provided with correct time-frame
offsets τ̂ij . In fact, by listening to the overlapping region of

Fig. 3. Histogram with the distribution of the match strength,
for the positive (blue) and negative (red) match pairs, in the
case of the athletic event, for PRH in (a), Wang’s method in
(b), chroma vector in (c) and proposed method in (d). For
better illustration, parts of the histogram are shown with a
zoomed scale in (a) and (b).

the time-aligned audio streams, it was confirmed that the esti-
mated time-frame offsets were correct in all cases of positive
match. Certainly, a decline in the performance should be ex-
pected for shorter overlap durations than the ones obtained in
these specific experiments, but such an investigation is out-
side of the scope of this paper.

4. CONCLUSION

Using an acoustic feature designed to correlate with the chant-
ing of the crowd, this paper demonstrated the ability to auto-
matically match and synchronize crowdsourced content ac-
quired during a large scale athletic event. On the other hand,
three of the most well known fingerprinting techniques failed
in providing reliable matching decisions for organizing the
same UGV collection. To our opinion, there are three basic
differences in the acoustic conditions associated to the case
of a concert and an athletic event; First, there is an enor-
mous number of uncorrelated sound sources (the spectators)
rather than a few number of dominant sound sources. Second,
the sound sources are distributed over a large spatial region
rather than being concentrated at one or a few specific loca-
tions. Finally, music has a higher rate of change, and goes
through more drastic frame-to-frame changes than the sound
of a crowd chanting in the football stadium. As a general
conclusion, one should not expect a single fingerprinting tech-
nique to cope well with all types of crowdsourced content, as
different acoustic features are more suitable than others, de-
pending on the nature of the public event.
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