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Miranda Kreković †, Ivan Dokmanić ‡, and Martin Vetterli †

† School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
{miranda.krekovic,martin.vetterli}@epfl.ch

‡ Institut Langevin
CNRS, ESPCI Paris, PSL Research University

1 rue Jussieu, 75005 Paris, France
ivan.dokmanic@espci.fr

ABSTRACT

We study simultaneous localization and mapping with a device
that uses reflections to measure its distance from walls. Such a device
can be realized acoustically with a synchronized collocated source
and receiver; it behaves like a bat with no capacity for directional
hearing or vocalizing. In this paper we generalize our previous work
in 2D, and show that the 3D case is not just a simple extension,
but rather a fundamentally different inverse problem. While gener-
ically the 2D problem has a unique solution, in 3D uniqueness is
always absent in rooms with fewer than nine walls. In addition to
the complete characterization of ambiguities which arise due to this
non-uniqueness, we propose a robust solution for inexact measure-
ments similar to analogous results for Euclidean Distance Matrices.
Our theoretical results have important consequences for the design of
collocated range-only SLAM systems, and we support them with an
array of computer experiments.

Index Terms— Collocated source and receiver, first-order echoes,
indoor localization, room geometry reconstruction, point-to-plane
distance matrix (PPDM), SLAM.

1. INTRODUCTION

Imagine an omnidirectional bat who pilots indoors by listening to
echoes of its chirps, without any idea at all about where the echoes
are coming from. This unusual bat faces a conundrum which is the
theme of our paper: given the distances between a set of waypoints
and a set of walls in a room, can we reconstruct both the trajectory
and the shape of the room? Such simultaneous recovery belongs to a
class of problems famously known as simultaneous localization and
mapping, or SLAM [1].

Prior studies have demonstrated that multipath conveys essential
information about the room geometry and that this geometry can be
estimated from room impulse responses (RIRs) [2, 3, 5, 4]. Many
common setups consider multiple sources or microphone arrays [6,
7]. Assuming that the microphones are static, geometric relationships
between the propagation times enable us to relate the room estima-
tion problem to the so-called inverse problem for Euclidean distance
matrices (EDMs), which aims to reconstruct the points in a set from
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Fig. 1: Illustration ofN = 5 points ri andK = 3 planes Pj with the
corresponding distance matrix.

their pairwise distances [8]. Thanks to a wide range of applications, a
number of tools related to EDMs have been developed to reconstruct
the original points from noisy and incomplete distances [9, 10, 11].

A different approach is to assume a single omnidirectional sound
source and a single omnidirectional microphone collocated on one
single device [12, 13, 14]. There are several advantages of such
a setup: First, we do not assume pre-installed fixed beacons in the
room. Second, we work with first-order echoes only, which are rel-
atively easy to measure or estimate. Third, we do not require any
knowledge about the trajectory of the device or the measurement lo-
cations.

A particularity of the described setup is that the propagation times
directly reveal the distances between the measurement locations and
the walls, and unlike the most common setups, the problem is not a
specification of the inverse problem for EDMs. Nevertheless, it is
related to a similar inverse problem that has not yet been studied—
given the matrix of noisy point-to-plane distances (a PPDM), recon-
struct the generating points and planes.

In our previous work, we characterized this inverse problem in
2D [12]. In this paper we generalize our prior work in two major
ways. First, we expand the study from 2D to 3D. This expansion is
non-trivial—it so happens that the question of uniqueness has a fun-
damentally different answer in 3D. We show that new ambiguities
arise in addition to the usual invariance to rigid transformations char-
acteristic of EDMs. We identify the equivalence classes of rooms and
trajectories yielding the same measurements. Our analysis is exhaus-
tive in that we obtain a complete if and only if characterization. Fi-
nally, we propose an optimization-based estimator for the noisy case
which can be efficiently computed using off-the-shelf optimization
tools.

2. PROBLEM SETUP

We consider a scenario as in Fig. 1 with N waypoints {ri}Ni=1 and
K walls (planes) {Pj}Kj=1. We work with the parameterization of the
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plane Pj in Hessian normal form 〈nj ,x〉 = qj , where nj is a unit
normal, qj = 〈nj ,pj〉 is the distance of the plane from the origin and
pj is any point on the plane Pj . Our measurements are the distances
between the waypoints and planes:

di,j = dist(ri,Pj) = qj − 〈ri,nj〉 (1)

for i = 1, ..., N and j = 1, ...,K. We choose N so that N ≥ K,
and define D ∈ RN×K to be the points-to-planes distance matrix
(PPDM) with entries di,j .

2.1. Rank of the PPDM

Our first result is a simple proposition about the rank of the introduced
PPDM, similar in spirit to the rank property for EDMs:

Proposition 1. With D defined as above, we have

rank(D) ≤ d+ 1, (2)

where d is the dimension of the space.

Proof. Denoting N = [n1, . . . ,nK ] and R = [r1, . . . , rN ], we can
write D as

D = −RTN+ 1qT . (3)
Since rank(RTN) ≤ d and rank(1qT ) = 1, the statement follows
by the rank inequalities.

In other words, rank of a PPDM is independent of the number of
points and planes that generate it. In real situations the measurements
are unreliable: distances are noisy, it is impossible to obtain them all
or they are unlabelled. That results in a noisy and incomplete matrix
D. The low-rank property (or its approximate version in the noisy
case) gives us a simple heuristic for denoising D and estimating the
unobserved distances.

3. UNIQUENESS OF THE INVERSE PROBLEM

In this section we present a study of the uniqueness of the inverse
problem for PPDMs. As we will see, going from 2D to 3D brings
about an important change in the character of this problem.

3.1. Invariance to Rigid Motions

For completeness we state the following intuitive result:

Lemma 1. PPDMs are invariant to rigid motions of the plane-point
setup.

Proof. We represent rotations and reflections by an orthogonal ma-
trix Q ∈ Rd×d and translations by the vector b that acts on the points
pj and ri. We further denote by d′i,j the transformed distances. Then,
we can write

d′i,j = 〈Qnj ,Q(pj + b)〉 − 〈Qnj ,Q(ri + b)〉
(a)
= 〈nj ,pj + b〉 − 〈nj , ri + b〉
= 〈nj ,pj〉 − 〈nj , ri〉 = di,j

where (a) follows from the orthogonality of Q.

A consequence of this invariance is that the absolute position and
orientation of points and planes cannot be recovered from distances
only, and the corresponding degrees of freedom need to be specified
separately.

Equivalent result is known to hold for EDMs. However, in con-
trast to EDMs where the invariance to rigid transformations is the
only one, the inverse problem of retrieving points and planes from a
PPDM exhibits additional ambiguities.

3.2. Invariances Beyond Rigid Motions

To study the uniqueness of the inverse problem for PPDMs, we
first state a result that transforms the question of uniqueness into
a question about nullspace dimension of certain matrices. We will
denote room-trajectory setups as pairs of planes and waypoints:
R = ({Pj}), {ri}), and the corresponding PPDMs as D(R).

Lemma 2. Let R1 = ({Pj}), {ri}) and R2 = ({Qj}), {si}) be
two room-trajectory setups with the corresponding normals being
{nj} and {mj}. Then D(R1) = D(R2) if and only if

RT
0 N0 = 0

where R0
def
=

[
r1 . . . rN
−s1 . . . −sN

]
, N0

def
=

[
n1 . . . nK

m1 . . . mK

]
.

Proof. Assuming that di,j(R1) = di,j(R2), we obtain using (1) that〈
pj ,nj

〉
−
〈
ri,nj

〉
=
〈
qj ,mj

〉
−
〈
si,mj

〉
∀i, j. (4)

Instead of studying (4) directly, we assume that〈
pj ,nj

〉
=
〈
qj ,mj

〉
, (5)

so we arrive at the simplified relation〈
ri,nj

〉
=
〈
si,mj

〉
. (6)

To solve (5) and (6), we first search for nj ,mj , ri and si that
satisfy (6). Then, given a set of normals nj and mj , we obtain one
equation (5) with 2d unknown variables pj and qj for each j. There-
fore, as we can always find a solution to the linear equations (5), we
focus on solving (6), which can be written in matrix form as

RT
0 N0 = 0. (7)

The solution exists when the columns of N0 are in the nullspace of
R0 and the rows of R0 are in the nullspace of NT

0 .
In the general case when

〈
ri,nj

〉
6=
〈
si,mj

〉
we denote the

difference
〈
pj ,nj

〉
−
〈
qj ,mj

〉
=
〈
ri,nj

〉
−
〈
si,mj

〉
= wi,j and

obtain the equations:〈
ri,nj

〉
=
〈
si,mj

〉
+ wi,j (8)〈

pj ,nj

〉
=
〈
qj ,mj

〉
+ wi,j (9)

We notice that all variables in (9) depend only on the plane index, so
we require the same for the introduced variable: wi,j = wj , ∀i. As
any real number can be written as an inner product of some vectors,
we let vj ∈ Rd be any vector such that wj = vT

j nj . Then, from (8)
we obtain

〈
ri − vj ,nj

〉
=
〈
si,mj

〉
which can be written in matrix

form as
RTN = 0, (10)

R =

[
r1 − v1 . . . r1 − vK . . . rN − v1 . . . rN − vK

−s1 . . . −s1 . . . −sN . . . −sN

]
,

N =
[
N0 N0 . . . N0

]
.

We now show that the assumption (5) does not reduce generality
and prove that (7) gives the same characterization of the uniqueness
property as the general case (10).

As mentioned, the solution of (7) exists when the rows of R0 are
in the nullspace of NT

0 ,[
ri
−si

]
∈ N (NT

0 ) = Aci, (11)



where A ∈ R2d×d is the matrix of basis vectors spanning N (NT
0 )

arranged in the columns, and ci ∈ Rd is the vector of coefficients.
Analogously, for (10) to have a non-zero solution, rows of the matrix
R must satisfy [

ri − vj

−si

]
∈ N (NT )

(a)
= Aci,j , (12)

where (a) follows from N (NT
0 ) = N (NT ). Therefore, a solution

has the form [
ri
−si

]
=

[
v
0

]
+Aci, (13)

where v is a translation vector of ri. But by Lemma 1, PPDMs are
invariant translations so assumption (5) indeed does not remove any
solutions.

In the following, we analyze which room-trajectory setups verify
the conditions of Lemma 2. That is, we study solutions of (7) by
searching for vectors ri and si that live in N (NT

0 ), at the same time
constraining

nj =

[
sin θ
cos θ

]
,mj =

[
sin θ′

cos θ′

]
, (14)

in 2D and

nj =

sin θ cosφsin θ sinφ
cos θ

 ,mj =

sin θ′ cosφ′sin θ′ sinφ′

cos θ′

 , (15)

in 3D to ensure that normals remain unit vectors. Generically, for
K ≥ 2d, the nullspace is empty. To make it nonempty, we must
explicitly assume linear dependencies among the columns or rows.

The analysis differs for 2D and 3D spaces and we conduct it
separately. Since the analysis is straightforward but cumbersome,
in consideration of limited space we prefer to present a sketch, give
intuitions and illustrate rooms and trajectories that lead to same mea-
surements, and to defer the details to a forthcoming journal version
of this paper [16].

3.2.1. 2D space

We distinguish two different cases that lead to valid rooms. First, we
assume that the affine dimension of points ri and si is lower than the
ambient dimension, so that the measurement locations are collinear.
Then, for any room we can find a set of equivalent rooms with respect
to distance measurements. An example is given as follows:

Times of arrivals of the first-order echoes recorded at marked lo-
cations coincide in all three rooms.

Second, we focus on points with affine dimension equal to the
ambient dimension and assume that K ≥ 2d. By enforcing linear
dependence among the rows of the matrix NT

0 (so that it has a non-
empty nullspace), we obtain new classes of rooms-trajectory pairs
R that give the exact same PPDM. Further analysis shows that the
rooms in this class are parallelograms. For example, the following:

give the same measurements.

3.2.2. 3D space

In 3D, we represent the plane normals nj and mj in spherical co-
ordinates and obtain three different classes of rooms with equivalent
propagation times of first-order echoes.

The first equivalence class of room-trajectory pairs with equal
PPDMs is derived analogously to 2D. Points with affine dimension
lower than the ambient dimension always result in a non-unique set of
distance measurements. In 3D, this comprises collinear and coplanar
waypoints. For example, two rooms from this class are:

The second equivalence class is obtained by considering points
with affine dimension equal to the ambient dimension and K ≥ 2d
(note that ifK < 2d, NT

0 always has a nullspace). The proof consists
in finding a non-singular linear transformation T ∈ Rd×d between
the normals, mj = Tnj , equivalently, we assume a linear depen-
dence between the columns of the matrix NT

0 . Importantly, T does
not have to be an orthogonal matrix. Moreover, it has 9 degrees of
freedom for d = 3, which results in two cases: a simple calcula-
tion shows that for K < 9, we find an infinite number of equivalent
rooms for any arbitrary room, whereas for K ≥ 9, ambiguities arise
for some particular rooms only, a set of measure zero. An instance
for K = 6 is illustrated as follows:

The third class is derived by assuming linear dependence among
the rows of the matrix NT

0 . We fixL < 2d linearly independent rows,
so that we obtain a fat matrix that always has a nonempty nullspace.
Then, we define new rows (i. e. new wall normals nj and mj , L <
j ≤ K), as a linear combination of the fixed ones. An example of
two rooms from this class is

To summarize, in this section we explicitly assumed linear de-
pendence between the columns and rows of NT

0 . It can be shown that
the above analysis exhausts all cases when the nullspace of the ma-
trix NT

0 is nonempty for wj = 0, j ≤ K which lead to valid rooms.
Together with Lemma 2, the above analysis proves

Theorem 1. In 2D, given a room-trajectory pair, we can find an-
other one generating the same PPDM if and only if the waypoints
are collinear or the lines enclose a parallelogram. In 3D, given a
room-trajectory pair with K < 9, we can always find another one
generating the same PPDM. For this to happen for K ≥ 9 the way-
points must be co-planar, or the room must belong to a particular set
of measure zero.



(a)N (0, 0.052) (b)N (0, 0.102) (c)N (0, 0.152) (d)N (0, 0.202)

Fig. 2: Reconstruction experiments with increasing measurement noise variances.

Therefore, to achieve uniqueness in 3D withK < 9, we must add
additional information. This could be the distance between several
consecutive waypoints or some prior knowledge about the room.

4. PRACTICAL ALGORITHM

We formulate the joint recovery of points and planes as an optimiza-
tion problem, as in our prior work [12]. Noisy measurements are
given as d̃i,j = di,j + εi,j where εi,j is the noise. It is natural to seek
the best estimate of the unknown vectors by solving

minimize
qj ,nj ,ri

i≤N,j≤K

N∑
i=1

K∑
j=1

(d̃i,j − qj + nT
j ri)

2

subject to ‖nj‖ = 1, j = 1, ...,K. (16)

If noise is assumed to be iid normal, then the above program leads to
the maximum likelihood estimate.

This cost function is not convex and minimizing it is a priori dif-
ficult due to many local minima. However, different search methods
have been developed that guarantee global convergence in algorithms
for nonlinear programming (NLP). In particular, the cost function
(16) is suitable for the interior-point filter line-search algorithm for
large-scale nonlinear programming (IPOPT) proposed in [17] and im-
plemented in an open-source package as part of COIN-OR Initiative
[18]. By relying on IPOPT we get a guarantee on global convergence
under appropriate (mild) assumptions. Exhaustive computer simula-
tions suggest that the method efficiently (in milliseconds) finds the
optimal solution in all test cases.

5. NUMERICAL SIMULATIONS

We performed a number of computer simulations to analyze the effect
of noise on the success of the reconstruction, both in 2D and 3D.
In consideration of space, we only present the 3D reconstructions.
To simulate uncertainties in the measurements, we add iid Gaussian
noise to the calculated distances and provide them as input to the
proposed algorithm.

Figure 2 illustrates joint reconstructions for different variances
of Gaussian noise N (0, σ2), with indicated room dimensions. The
original room is colored black, while the original measurement loca-
tions are depicted with bordered circles. To generate Figure 2, we
performed 10 experiments for σ = 0.05, σ = 0.1, σ = 0.15 and
σ = 0.2, and overlaid the estimates in lighter shades. To achieve a
unique reconstruction, we fixed two normals, i.e. we assumed that
the floor and one wall are known, which is a realistic assumption
in practice. The room is non-shoebox with wall lengths denoted in
the figure. The distance measurement error with standard deviation

σ = 0.2 [m] is much larger than what is achievable using even sim-
ple hardware in a room of such dimensions; nevertheless, the original
room-trajectory pair is accurately reconstructed.

Figure 3 shows the dependency of the estimation errors on the
standard deviation of the noise. The standard deviation is increas-
ing from 0 to 0.22 with steps 0.02 and for each value we performed
5000 experiments. The average SNR is indicated above the graph. A
room estimation error, defined as the average Euclidean distance be-
tween the original and reconstructed room vertices, is plotted in blue
(circles). An estimation error of the measurement locations, defined
as the average Euclidean distance between the original and recon-
structed measurement locations, is plotted in red (squares). We can
see that the reconstruction is stable and the error depends linearly on
the noise level.

Fig. 3: Dependence of the estimation errors on noise level.

6. CONCLUSION

We presented an algorithm for reconstructing the 2D and 3D geom-
etry of a room from first-order echoes. It requires a single device
equipped with an omnidirectional microphone and a loudspeaker. We
noticed that such a setup is an instantiation of a more general in-
verse problem—reconstruction of the original points and planes from
their noisy pairwise distances. We investigated the uniqueness of
this inverse problem and found conditions that guarantee unique-
ness. We stated our problem as a non-convex optimization problem
and proposed a fast optimization tool which simultaneously estimates
the planes and points. Through extensive numerical experiments we
showed that our method is robust to noise. Currently, we are un-
dertaking real experiments, so that the ongoing research includes the
verification of our method with real RIRs.
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