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ABSTRACT

Cognitive Radio requires both efficient and reliable spectrum sensing
of wideband signals. In order to cope with the sampling rate bottleneck
when dealing with such signals, sub-Nyquist methods have been
proposed. However, these techniques decrease the signal to noise ratio
(SNR) due to aliasing effects. Cyclostationary detection, which exploits
the periodic property of communication signal statistics, absent in
stationary noise, is a natural candidate for this setting. In this work,
we consider cyclic spectrum recovery from sub-Nyquist samples, in
order to achieve both efficiency and robustness to noise. We show
how the cyclic spectrum can be recovered directly from the low rate
samples, even for non sparse signals, and derive a lower bound on
the sampling rate required for perfect cyclic spectrum recovery in the
presence of stationary noise. Simulations show that cyclostationary
detection outperforms energy detection in low SNRs in the sub-Nyquist
regime.

Index Terms— Cyclostationarity, sub-Nyquist sampling, cognitive
radio, compressed sensing

I. INTRODUCTION

Spectrum sensing has recently been facing new challenges due, to
a large extent, to cognitive radio (CR) applications [1]. Today, CRs
are perceived as a potential solution to the spectrum over-crowdedness
[2]. Even though most of the spectrum is already owned and new
users can hardly find free frequency bands, various studies [3]–[5] have
shown that it is typically significantly underutilized. CRs would allow
secondary users to opportunistically use the licensed spectrum when
the corresponding primary user (PU) is not active [1]. To comply with
CR’s requirements, spectrum sensing has to be efficient and performed
in real time while being reliable and able to cope with low signal to
noise ratio (SNR) regimes.

In order to efficiently sample sparse wideband signals, such as those
CRs have to deal with, several sampling methods have recently been
proposed [6]–[9] that recover a multiband signal or its power spectrum
[10]–[12] from sub-Nyquist samples. All these approaches rely on
energy detection. Unfortunately, the sensitivity of energy detection is
amplified when performed on sub-Nyquist samples due to aliasing of
the noise [13]. Therefore, this scheme fails to meet CR performance
requirements in low SNR regimes. Cyclostationary detection, which
exploits a statistical property of communication signals, is thus a natural
candidate for spectrum sensing from sub-Nyquist samples in low SNRs.

Cyclostationary processes have statistical characteristics that vary
periodically, arising from the underlying data modulation mechanisms,
such as carrier modulation, periodic keying or pulse modulation. The
cyclic spectrum, a characteristic function of such processes, exhibits
spectral peaks at certain frequency locations called cyclic frequencies,
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which are determined by the signal parameters, particularly the carrier
frequency and symbol rate [14]. Stationary noise and interference ex-
hibit no spectral correlation [14], which makes cyclostationary detectors
robust to noise.

Signal detection using cyclostationarity and its application to
spectrum sensing for CR in the Nyquist regime, has been thoroughly
investigated; see e.g., [2], [15]–[17]. Recently, cyclostationary detec-
tion from sub-Nyquist samples was treated in [18]–[21]. A general
framework is adopted, that exploits a linear relation between the sub-
Nyquist and Nyquist samples, over a finite sensing time. In particular,
a transformation between the Nyquist cyclic spectrum and the time-
varying correlations of the sub-Nyquist samples is derived to retrieve
the former from the latter. The main drawback of this digital approach
is that it does not deal with the analog sampling scheme itself, in
which we do not have access to the Nyquist samples. In addition,
finite sensing time requires the assumption that the cyclic frequencies
lie on a predefined grid. The theoretical resolution that can be achieved
is thus dictated by the sensing time, which is an inherent parameter
of the sampling and reconstruction scheme, and not only a practical
design parameter. Moreover, no theoretical guarantees on the minimal
sampling rate allowing for perfect recovery of the cyclic spectrum have
been given.

In [22], a concrete sampling scheme is considered, known as
multicoset, or non-uniform sampling. The authors derive conditions
on the system matrix to have full rank, allowing for perfect cyclic
spectrum reconstruction from the compressive measurements. While
real sampling schemes are considered here, the theoretical cyclic
spectrum resolution still depends on the sensing time. The gridding,
or discretization, is part of the theoretical derivations.

In this work, we propose to reconstruct the signal’s cyclic spectrum
from sub-Nyquist samples obtained using the modulated wideband
converter (MWC) [7]. Our theoretical approach does not involve
discretization or gridding and the cyclic spectrum can be recovered
at any frequency. In addition, the MWC analog front-end is a practical
sampling scheme that has been implemented in hardware [23]. We
perform cyclostationarity detection on the sub-Nyquist samples, thereby
obtaining both an efficient, fast and frugal detector and one that
is reliable and robust to noise. We derive a sampling rate bound
allowing for perfect recovery of the cyclic spectrum in our settings,
both for sparse and non sparse signals. We note that the cyclic
spectrum can be perfectly recovered in the presence of stationary
noise, from compressed samples, except for a limited number of cyclic
frequencies that are multiples of the basic low sampling rate. For those,
the reconstruction is performed in the presence of bounded noise.
Simulations show that cyclostationary detection outperforms energy
detection in sub-Nyquist regimes, in low SNR.

This paper is organized as follows. In Section II, we describe the
cyclostationary multiband model. Sections III and IV present the sub-
Nyquist sampling and cyclic spectrum reconstruction algorithms and
conditions, respectively. Numerical experiments are reported in Section
V.
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II. CYCLOSTATIONARY MULTIBAND MODEL

II-A. Multiband Model

Let x(t) be a real-valued continuous-time signal, supported on
F = [−1/2TNyq,+1/2TNyq] and composed of up to Nsig uncorrelated
cyclostationary transmissions corrupted by additive noise, such that

x(t) =

Nsig∑
i=1

si(t) + n(t). (1)

Here n(t) is a wide-sense stationary bandpass noise and si(t) is a
zero-mean cyclostationary bandpass process, as defined below, with
carrier frequency fi and bandwidth Bi. The number of transmissions
Nsig, their carrier frequencies fi, bandwidths Bi and modulations are
unknown. The single-sided bandwidth of each transmission is only
assumed to not exceed a known maximal bandwidth B, namely Bi ≤ B
for all 1 ≤ i ≤ Nsig.

Denote by fNyq = 1/TNyq the Nyquist rate of x(t). If the bandwidth
is fully occupied, then it holds that NsigB is of the order of fNyq. In
multiband settings, where NsigB � fNyq and x(t) is thus sparse in
frequency, we show that the sampling rate for perfect cyclic spectrum
reconstruction can be further reduced. For convenience, we denote by
K = 2Nsig the upper bound on the number of occupied bands, to
account for both the positive and negative frequency bands.

II-B. Cyclostationarity

A process s(t) is said to be cyclostationary with period T0 in
the wide sense if its mean E[s(t)] = µs(t) and autocorrelation
E[s(t)s(t+ τ)] = Rs(t, τ) are both periodic with period T0 [24]. The
autocorrelation Rs(t, τ) can then be expanded in a Fourier series whose
coefficients, referred to as cyclic autocorrelations, are given by

Rαs (τ) =
1

T0

∫ T0/2

−T0/2

Rs(t, τ)e
−j2παtdt, (2)

where α = m/T0,m ∈ Z. The cyclic spectrum is obtained by taking
the Fourier transform of (2) with respect to τ , namely

Sαs (f) =

∫ ∞
−∞

Rαs (τ)e
−j2πfτdτ, (3)

where α is the cyclic frequency and f is the angular frequency
[24]. If there is more than one fundamental frequency T0, then the
cyclic spectrum contains harmonics (integer multiples) of each one
[14]. These cyclic frequencies are related to the transmissions carrier
frequencies and symbol rates as well as modulation types.

An alternative interpretation of the cyclic spectrum expresses it as
the cross-spectral density Sαs (f) = Suv(f) of two frequency-shifted
versions of s(t), u(t) and v(t), such that

u(t) , s(t)e−jπαt, v(t) , s(t)e+jπαt. (4)

Then, from [25], it holds that

Sαs (f) = Suv(f) = E
[
S
(
f +

α

2

)
S∗
(
f −

α

2

)]
. (5)

Stationary noise exhibits no cyclic correlation [14], [25], that is
Sαn (f) = 0 for α 6= 0. This property is the motivation for cyclo-
stationary detection, in low SNR regimes in particular.

Since si(t) are assumed to be zero-mean and uncorrelated, the
cyclic spectrum of x(t) is given by

Sαx (f) =


Nsig∑
i=1

Sαsi (f) α 6= 0

Nsig∑
i=1

S0
si
(f) + S0

n(f) α = 0.

(6)

Denote by [f
(1)
i , f

(2)
i ] the right-side support of the ith transmission

si(t). Then, Bi = f
(2)
i − f (1)i and fi = (f

(1)
i + f

(2)
i )/2. The support

region in the (f, α) plane of the cyclic spectrum Sαsi (f) of such a
bandpass cyclostationary signal is composed of four diamonds. More
precisely, it holds that [14]

Sαsi (f) = 0, for
∣∣∣∣|f | − |α|2

∣∣∣∣ ≤ f (1)i or |f |+
|α|
2
≥ f (2)i . (7)

It follows from (6) that, besides the noise contribution at the cyclic
frequency α = 0, the support of Sαx (f) is composed of 4Nsig diamonds,
that is four diamonds for each transmission.

Our objective is to reconstruct Sαx (f) from sub-Nyquist samples
without any a priori knowledge on the support and modulations of
si(t), 1 ≤ i ≤ Nsig. We show that the cyclic spectrum of non sparse
signals can be recovered from samples obtained at 4/5 of the Nyquist
rate and for sparse signals, the sampling rate can be as low as 8/5 of
the Landau rate. We then estimate the number of transmissions Nsig
present in x(t), their carrier frequencies fi and bandwidths Bi from
these low rate samples.

III. SUB-NYQUIST SAMPLING

We adopt the MWC, a sub-Nyquist sampling scheme previously
proposed in [7] for sparse multiband signals in conjunction with energy
detection. The MWC is composed of M parallel channels. In each
channel, an analog mixing front-end, where x(t) is multiplied by a
mixing function pi(t), aliases the spectrum, such that each band appears
in baseband. The mixing functions pi(t) are required to be periodic with
period Tp such that fp = 1/Tp ≥ B. The function pi(t) has a Fourier
expansion

pi(t) =

∞∑
l=−∞

cile
j 2π
Tp
lt
. (8)

In each channel, the signal goes through a lowpass filter with cut-off
frequency fs/2 and is sampled at the rate fs ≥ fp, resulting in the
samples zi[n]. For the sake of simplicity, we choose fs = fp.

Repeating the calculations in [7], we derive the relation between
the known discrete time Fourier transform (DTFT) of the samples zi[n]
and the unknown X(f)

z(f̃) = Ax(f̃), f̃ ∈ [0, fs], (9)

where z(f̃) is a vector of length M with ith element zi(f̃) =

Zi(e
j2πf̃Ts ). The unknown vector x(f̃) is given by

xi(f̃) = X(f̃ + (i− dN/2e)fp), f̃ ∈ [0, fs], (10)

for 1 ≤ i ≤ N with N = dfNyq/fse. The M × N matrix A contains
the known coefficients cil such that Ail = ci,−l = c∗il. The resulting
sampling rate is then

ftot =Mfs =
M

N
fNyq. (11)

IV. CYCLIC SPECTRUM RECONSTRUCTION

We now provide a method to reconstruct the cyclic spectrum Sαx (f)
of x(t) from correlations between shifted versions of z(f̃), defined in
(9). We also investigate recovery conditions.

IV-A. Relation Between Samples and the Cyclic Spectrum

From (9), we have

Ra
z(f̃) = ARa

x(f̃)A
H , f̃ ∈ [0, fs − a] , (12)

for all a ∈ [0, fs], where (.)H is the Hermitian operation. Here,

Ra
x(f̃) = E

[
x(f̃)xH(f̃ + a)

]
, Ra

z(f̃) = E
[
z(f̃)zH(f̃ + a)

]
.
(13)
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The entries in the matrix Ra
x(f̃) are correlations between shifted

versions of the slices x(f̃), namely correlations between frequency-
shifted versions of x(t). The variable a controls the shift between the
slices, while f̃ , running in the interval [0, fs−a], determines the specific
frequency location within the slice.

We begin by investigating the link between the cyclic spectrum
Sαx (f) and the shifted correlations between the slices x(f̃), namely the
entries of Ra

x(f̃). We then show how the latter can be recovered from
Ra

z(f̃) using (12). The alternative definition of the cyclic spectrum
(5) implies that the elements in Ra

x(f̃) are equal to Sαx (f) at the
corresponding α and f . Indeed, it can easily be shown that

Ra
x(f̃)(i,j) = Sαx (f), (14)

for

α = (j − i)fs + a

f = −
fNyq

2
+ f̃ −

fs

2
+

(j + i)fs

2
+
a

2
. (15)

Here, Ra
x(f̃)(i,j) denotes the (i, j)th element of Ra

x(f̃). Our goal is
then to recover Ra

x(f̃), for a ∈ [0, fs] and f̃ ∈ [0, fs − a], since once
Ra

x(f̃) is known, Sαx (f) follows for all (α, f), using (14).

The structure of Ra
x(f̃), for a given a ∈]0, fs] and f̃ ∈ [0, fs − a]

was analyzed in [26]. It was found that the non zero entries of Ra
x(f̃)

are contained in its −1, 0 and 1-diagonals and −1, 0 and 1-anti
diagonals. Besides, Ra

x(f̃) exhibits additional structure concerning
the locations of these elements. Finally, Ra

x(f̃) contains at most
K = 2Nsig rows/columns that have non zero elements. Without any
sparsity assumption, K = N . It follows that Ra

x(f̃) is 2K-sparse with
additional structure. A detailed analysis can be found in [26].

Since the non zero elements of Ra
x(f̃) only lie on the 3 main and

anti-diagonals, (12) can be further reduced to

raz(f̃) = (Ā⊗A)vec(Ra
x(f̃)) = (Ā⊗A)Brax(f̃) , Φrax(f̃), (16)

where Ā denotes the conjugate matrix of A and

Φ = (Ā⊗A)B. (17)

Here ⊗ is the Kronecker product, raz(f̃) = vec(Ra
z(f̃)), where vec(·)

denotes the column concatenation operation, and B is a selection matrix
that selects the elements of the−1, 0 and 1-diagonals and anti-diagonals
of Ra

x(f̃) from the vector vec(Ra
x(f̃)). The resulting (6N − 4) × 1

vector composed of these selected elements, denoted by rax(f̃), is 2K-
sparse and its support presents additional structure. The case a = 0
corresponds to noisy recovery and a noise component needs to be added
to (16); see [26].

IV-B. Cyclic Spectrum Recovery Conditions

Theorem 1 below derives sufficient conditions on the minimal num-
ber of channels M for perfect recovery of Ra

x(f̃), for any a ∈]0, fs]
and f̃ ∈ [0, fs − a] in the presence of additive stationary noise. As
stated above, for a = 0, the recovery is noisy.

Theorem 1. If A is full spark and M > 8
5
K, then the system (16)

has a unique solution for a ∈]0, fs].

Without any sparsity assumption, if M > 4
5
N , then we can

perfectly recover the cyclic spectrum of x(t). The minimal sampling
rate is then

fmin0 =Mfs =
4

5
Nfs =

4

5
fNyq. (18)

This means that even without any sparsity constraints on the signal,
we can retrieve its cyclic spectrum from samples below the Nyquist
rate, by exploiting its cyclostationary properties. A similar result was
observed in [12] in the context of power spectrum reconstruction of
wide-sense stationary signals in noiseless settings. There, it was shown

that the power spectrum can be retrieved at half the Nyquist rate without
any sparsity constraints. Here, we extend this result to cyclic spectrum
reconstruction, which requires a higher rate.

If x(t) is assumed to be sparse in the frequency domain, with K =
2Nsig � N , then the minimal sampling rate for perfect reconstruction
of its cyclic spectrum is

fmin =Mfs =
16

5
NsigB =

8

5
fLandau. (19)

It was shown in [12], that the power spectrum of a stationary sparse
signal can be perfectly recovered at its Landau rate. Again, the minimal
sampling rate for cyclic spectrum recovery is slightly higher than the
rate required for power spectrum reconstruction.

For a ∈]0, fs], there is no noise component in (16), even if x(t) is
corrupted by additional stationary noise. For the corresponding cyclic
frequencies, we can therefore achieve perfect recovery. In contrast, for
a = 0, which corresponds to cyclic frequencies which are multiple of
fs, the recovery of the sparse vector is not perfect and is performed in
the presence of bounded noise. In the simulations, we observe that, for
detection purposes, this noisy recovery is satisfactory. Perfect recovery
can be achieved by using a different sampling frequency at the expense
of increased overall sampling rate by a factor of 2.

IV-C. Cyclic Spectrum Recovery

So far, we only discussed the conditions for perfect recovery of
the cyclic spectrum, namely for (16) to have a unique solution. We
now briefly present a cyclic spectrum’s recovery method from low rate
samples. For both sparse and non sparse signals, we use the support
recovery paradigm from [6] that produces a finite system of equations,
called multiple measurement vectors (MMV) from an infinite number
of linear systems. This reduction is performed by the continuous to
finite (CTF) block. From (16), for a ∈]0, fs], we have

Qa = ΦZaΦH (20)

where

Qa =

∫
f̃∈Fs

raz(f̃)r
a
z
H(f̃)df̃ , Za =

∫
f̃∈Fs

rax(f̃)r
a
x
H(f̃)df̃ .

(21)
We then construct a frame Va such that Qa = Va (Va)H by
performing an eigendecomposition of Qa and choosing Va as the
matrix of eigenvectors corresponding to the non zero eigenvalues. We
can then define the following linear system

Va = ΦUa. (22)

From [6] (Propositions 2-3), the support of the unique sparsest solution
of (22) is the same as the support of rax(f̃) in our original set of
equations (16).

For the CTF stage, we extend the orthogonal matching pursuit
(OMP) [9], [27] to account for the structure of rax(f̃) for a 6= 0. In each
iteration, we add an internal loop that, for a selected element originally
from the diagonals of Ra

x(f̃ ), checks for a corresponding non-zero
element from the anti-diagonals, and vice versa. The structured OMP
method is formally presented in [26].

Once the support S is known, perfect reconstruction of the cyclic
spectrum can be obtained as follows

(r̂ax)
S(f̃) = Φ†Sraz(f̃) (23)

r̂axi (f̃) = 0 ∀i /∈ S,

for all a ∈]0, fs]. Then, the cyclic spectrum Sαx (f) is assembled using
(14) for (f, α) defined in (15).

The carrier frequency and bandwidth estimation algorithm from
[28] is then applied to the reconstructed cyclic spectrum. This approach
is a simple parameter extraction method from the cyclic spectrum of
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multiband signals that allows the estimation of several carriers and
bandwidths simultaneously, as well as the number of transmissions Nsig.
The proposed parameter estimation algorithm performs thresholding
and clustering on the cyclic spectrum to estimate the location and width
of the cyclic peaks, corresponds to the carrier fi and bandwidth Bi,
respectively. Details can be found in [28].

V. SIMULATION RESULTS

We now illustrate our sub-Nyquist cyclic spectrum reconstruction
from sub-Nyquist samples. For comparison, we use the energy detection
method based on power spectrum recovery from [12].

We consider x(t) composed of Nsig = 3 BPSK trans-
missions, which have cyclic features at the locations (f, α) =
(0,±fc), (±fc,± 1

T
), where fc is the carrier frequency and T is the

symbol period [14]. Each transmission has bandwidth B = 18MHz
and the carrier frequencies are drawn uniformly at random in [0,

fNyq

2
],

with fNyq = 1GHz. In this experiment, the selected carriers are
f1 = 163.18MHz, f2 = 209.69MHz and f3 = 396.12MHz. The SNR
is set to −5dB. In the sampling stage, we use the MWC with M = 9
channels, each sampling at fs = 23.26MHz. The overall sampling rate
is therefore 210MHz, that is a little below twice the Landau rate and
21% of the Nyquist rate. Here, the theoretical minimal sampling rate
is fmin = 172.8MHz.

Figure 1 presents the original and reconstructed power spectrum
using P = 100 frames. We observe that the signal’s spectrum was not
perfectly recovered due to the noise. The reconstructed cyclic spectrum,
including the power spectrum, estimated over P = 100 frames as well,
is shown in Fig. 2 and the section corresponding to f = 0, before and
after clustering, can be seen in Fig. 3. The cyclic peaks at the locations
(f, α) = (0,±fi), for i = 1, 2, 3 can be observed in both figures. The
estimated carriers and bandwidths are reported in the figures’ legend.
Clearly, cyclostationary detection succeeded where energy detection
failed.

Fig. 1. Original and reconstructed power spectrum. Using energy
detection, we obtain N̂sig = 5 signals, with estimated carriers (in
MHz) f̂1 = 93.04, f̂2 = 162.82, f̂3 = 255.86, f̂4 = 383.89MHz,
f̂5 = 465.21 and estimated bandwidths (in MHz) B̂1 = B̂2 = B̂3 =
B̂5 = 23.1, B̂4 = 46.3.

Next, we investigate the performance of our carrier frequency
and bandwidth estimation algorithm from sub-Nyquist samples with
respect to SNR and compare it to energy detection. We consider x(t)
composed of Nsig = 3 BPSK transmissions with identical parameters
as in the previous section. The sampling parameters remain the same
as well. In each experiment, we draw the carrier frequencies uniformly
at random and generate the transmissions. Fig. 4 shows the probability

Fig. 2. Reconstructed cyclic spectrum.

Fig. 3. Reconstructed cyclic spectrum for f = 0, Sαx (0), as a function
of α (left), clustering (right). The estimated number of clusters is
6, yielding N̂sig = 3. The estimated carriers (in MHz) using cyclo-
stationary detection are f̂1 = 162.66, f̂2 = 209.19, f̂3 = 395.11,
and corresponding bandwidths (in MHz) B̂1 = 17.4, B̂2 = 17.4,
B̂3 = 17.0.

of detection of both cyclostationary (blue) and energy (red) detection.
A detection is reported if the distance between the true and recovered
carrier frequencies is below 10 times the frequency resolution. Clearly,
cyclostationarity outperforms the energy approach in terms of proba-
bility of detection.

Fig. 4. Probability of detection - cyclostationary vs. energy detection.
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