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Abstract—Although the benefits of precoding and combining
data signals are widely recognized, the potential of these tech-
niques for pilot transmission is not fully understood. This is
particularly relevant for multiuser multiple-input multi ple-output
(MU-MIMO) cellular systems using millimeter-wave (mmWave)
communications, where multiple antennas have to be used both at
the transmitter and the receiver to overcome the severe pathloss.
In this paper, we characterize the gains of pilot precoding and
combining in terms of channel estimation quality and achievable
data rate. Specifically, we consider three uplink pilot transmission
scenarios in a mmWave MU-MIMO cellular system: 1) non-
precoded and uncombined, 2) precoded but uncombined, and
3) precoded and combined. We show that a simple precoder that
utilizes only the second-order statistics of the channel reduces
the variance of the channel estimation error by a factor that is
proportional to the number of user equipment (UE) antennas.
We also show that using a linear combiner designed based on
the second-order statistics of the channel significantly reduces
multiuser interference and provides the possibility of reusing
some pilots. Specifically, in the large antenna regime, pilot
precoding and combining help to accommodate a large number of
UEs in one cell, significantly improve channel estimation quality,
boost the signal-to-noise ratio of the UEs located close to the cell
edges, alleviate pilot contamination, and address the imbalanced
coverage of pilot and data signals.

Index Terms—multiuser MIMO, multiple antenna UEs, chan-
nel estimation, millimeter-wave, transceiver design.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) systems that em-
ploy a large number of antenna ports at wireless access
points are a rapidly maturing technology. The 3rd Generation
Partnership Project (3GPP) is currently studying the details of
technology enablers and performance benefits of deploying
large scale antenna systems that support up to 64 antenna
ports at cellular base stations (BSs) [1]. Moreover, higher
frequency bands, such as millimeter-wave (mmWave), will nat-
urally employ large-scale antenna systems [2]. With mmWave
antennas, the physical array size can be greatly reduced due
to the decrease in wavelength. Therefore, it is expected that
wireless systems employing even greater number of antenna
ports will be deployed in mmWave bands, making massive
MIMO systems a practical reality.

In addition to the usage of many antenna ports at the
BS, also user equipments (UEs) compliant with existing and
emerging wireless standards are also employing a growing
number of receive and transmit antennas. For example, current
UEs of the 3GPP Long Term Evolution systems can employ
up to four antennas for transmit and receive diversity as well
as for spatial multiplexing [3]. Clients of the IEEE 802.11ac

standard can employ up to eight antenna elements [4]. For
5G systems, we expect high-end UEs supporting high order
of modulation and coding schemes and a greater number of
receive and transmit antennas [5]. Moreover, due to the high
path loss at the mmWave frequencies, exploiting multiple
antennas in addition to the spatial precoding and combining
is considered to have an essential role for establishing and
maintaining a robust communication link [6]. Nonetheless,
most of the significant investigations in massive multiuser
MIMO (MU-MIMO) assume that the BSs or access points
serve a lower number ofsingle-antennaUEs. In those studies,
such an assumption is considered non-restrictive because the
spatial precoding of the user data streams boosts the achieved
signal-to-noise-and-interference ratio (SINR) [7], [8].While
transmit precoding for the downlink transmission is the key
to achieve high spectral efficiency, precoding in the uplink
direction has not been considered in these works. This is
true not only for uplink data transmission, but also for the
transmission of uplink pilot signals that are used to acquire
both channel state information at the transmitter (CSIT) and
channel state information at the receiver (CSIR) at the BS. A
direct consequence of the lack of precoding of pilot signals
is that the majority of the existing schemes consider one
orthogonal pilot sequence per transmit antenna, which gives
several systematic problems – illustrated in the sequel – and
may limit the efficiency and future use cases of MU-MIMO
systems, especially in mmWave networks.

Acquiring accurate channel state information (CSI), either
at the transmitter or at the receiver, is among the main
bottlenecks of massive MIMO systems and faces three main
challenges:i) scalability of the number of pilots,ii) per-
formance at low signal-to-noise ratio (SNR), andiii) pilot
contamination [9], [10]. The length of training sequences for
channel estimation, in the traditional “one orthogonal pilot
sequence per transmit antenna” scheme scales up (at least)
linearly with the number of transmit antennas [11]. Assuming
that the number of BS antennas is larger than the combined
number of UE antennas, channel estimation in uplink imposes
shorter training sequences. However, this scheme requiresthe
principle of channel reciprocity to hold, which is valid only for
time division duplexing (TDD) mode and when the duplexing
time is much shorter than the coherence time of the channel.
Thus, realizing massive MIMO systems in frequency division
duplexing (FDD) mode is a well-known challenge [9]. Even in
TDD mode, this scheme may not be feasible when a massive
number of multiple-antenna UEs are present, which is an
important use case of mmWave networks. In such a case, the
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entire coherence budget may be used only for the channel
estimation procedure, depriving the data transmission phase
from valuable coherent time and frequency resources. Thus,a
pilot transmission scheme that is scalable with the number of
transmit antennas is especially desirable in mmWave systems.
Moreover, due to the central role of the uplink pilot signalsin
the CSI acquisition, the constrained UE power and the lack of
uplink precoding gains may limit the performance of mmWave
systems with large antenna arrays. This leads to animbalanced
coverage of pilot and data signals(a.k.a imbalance between
uplink and downlink coverage [12], [13]), where the range at
which reasonable data rates can be maintained differs from
the one at which pilot signals can be detected. This problem
is particularly important in mmWave networks due to severe
channel attenuations [14]. Therefore, a good pilot transmission
scheme should address the imbalance in pilot-data coverage.

The above-mentioned technical challenges, which limit the
achievable data rate of massive MIMO systems, are exacer-
bated by pilot contamination, defined as the interference inthe
pilot signals [7], [8], [15]. Several methods to alleviate pilot
contamination have been proposed and demonstrated [9], [16]–
[18]. In the context of multi-cell networks, the results of [18]
suggest that channel covariance-aware pilot assignment toUEs
can completely remove the pilot contamination effects in the
limit of large number of BS antennas. The intuition is that
if a selected UE exhibits multipath angles of arrival (AoA)
at its serving BS, which do not overlap with the AoAs of
UEs in the neighboring cells, these UEs can reuse the same
pilot sequence as the selected UE, without any contamination
among the pilots of different cells. In [17], the UEs within
each cell employ the same pilot sequence while the UEs in
the different cells are assigned orthogonal pilot sequences. The
impact of intra-cell pilot contamination is mitigated later in
the downlink data transmission phase. However, in this case
extra precoding matrices should be designed at the BSs, which
add to the complexity of data transmission, specially when the
number of antennas grows large. The other studies have not
investigated the pilot reuse within one cell, despite that such
a reuse, together with employing multiple antenna elementsat
the UE, has the potential to substantially improve the spectral
efficiency.

In this paper, we argue that all the aforementioned problems
– scalability, poor performance at low SNR, and pilot contam-
ination – can be substantially alleviated by employing multiple
antennas at the UEs, together with pilot precoding and com-
bining. We show the benefits of pilot precoding and combining
for general massive MU-MIMO systems and for mmWave
systems in particular, where these benefits are substantial. Our
investigation is motivated not only by the ongoing standards
development and the need to boost the uplink SNR, but also
by the expectation that pilot precoding may achieve better
spatial separation of UEs served in the same and surrounding
cells. Specifically, we focus on the uplink of a MU-MIMO
system and consider three pilot transmission scenarios: 1)non-
precoded and uncombined (nPuC), which serves as a baseline
scenario, 2) precoded but uncombined (PuC), and 3) precoded
and combined (PC). We use these three scenarios to study the
gains of pilot precoding and combining in terms of channel

estimation quality and the achievable data rate. Our extensive
mathematical and numerical analysis results in the following
key findings:

• Pilot precoding in PuC substantially improves the channel
estimation quality that can be achieved by the baseline
nPuC scenario. In particular, we show that the channel
estimation error variance can be reduced by a factor of
δ = N/L for large values ofN , whereN is the number of
UE antenna elements, andL is the rank of the channel
between each UE and the BS. Hence, pilot precoding
leads to a large improvement in the channel estimation
performance of systems with a large number of antennas
and low rank channels (which is the case in mmWave
networks) whereδ is large.

• A simple combiner of the pilot sequence, in the PC
scenario that uses only the second-order statistics of the
channel substantially reduces intra-cell multiuser inter-
ference. In the systems with a large number of antennas
at the BS, such as in mmWave networks, this interfer-
ence can be canceled completely. Consequently in PC,
pilots can be reused within one cell, as opposed to
orthogonal pilot sequences used in the nPuC and PuC
scenarios. This potential translates into the possibility
of channel estimation using shorter training sequences
(or equivalently serving more UEs without extra training
sequences), which in turn enhances the network spectral
efficiency.

• Unlike the baseline scenario, nPuC, the number of pilot
symbols needed in PuC and PC, is not dependent on
the number of antenna elements at the transmitters. This
benefit enables the realization of massive MIMO systems
in both FDD and TDD deployments.

• In PC, when the number of antennas at the BS and UEs
goes to infinity, which may resemble a wireless back-
hauling scenario, we conclude the following asymptotic
results:

1) the effects of pilot contamination vanish;
2) a multi-cell network can be modeled by multiple unco-

ordinated single-cell systems with no performance loss
(that is, without a performance penalty due to the lack
of coordination); and

3) channel estimation in the entire network can be done
with only one pilot symbol. We also characterize the
above gains in the finite antenna regime.

Our investigations can contribute to answering the following
fundamental questions related to large scale antenna systems
in general and mmWave networks in particular [19]: How
can we improve the quality of channel estimation for a fixed
(finite) number of BS antennas? Can we mitigate the effects of
pilot contamination and can we reduce the need for multicell
coordination? Can we utilize massive antenna arrays in FDD
systems? How many orthogonal pilot sequences do we need
for a given number of – possibly multiple antenna – UEs?

The rest of this paper is organized as follows. Section II
describes the system model, including the channel and the
signal model. Section III analyzes three distinct channel es-
timation techniques that differ in terms of complexity and
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TABLE I: Summary of main notations.

Symbol Definition

Hk ∈ CM×N Uplink channel matrix between UEk and the BS

Uk ∈ CN×L Antenna response of UEk toward its AoDs

Bk ∈ CM×L Antenna response of the BS toward its AoAs

Gk ∈ CL×L Complex path gains between UEk and the BS

X̂, X̃ An estimation ofX, and corresponding estimation error

κ(X) Condition number ofX

N,M Number of antennas at UEs and at the BS

L Number of paths between every UE and the BS

K Number of UEs in the cell

Tc Coherence time of fast fading

Ts Coherence time of slow fading

Tτ Number of symbols transmitted during channel estimation

Td Number of symbols transmitted during data transmission

ρτ , ρd Total energy used for pilot/data transmission

1/σ2

k
Path-loss between UEk and the BS

σ2
z Variance of a Gaussian noise

achievable channel estimation quality. Section IV studiesthe
data transmission phase that makes use of the acquired CSI
using the schemes discussed in Section III. Section V presents
additional engineering insights, and Section VI concludes
the paper. Useful definitions and lemmas, which are used
throughout the paper, are given in Appendix A.

Notations: Capital bold letters denote matrices and lower
bold letters denote vectors. The superscript[X]∗, [X]T, [X]H

and [X]† stand for the conjugate, transpose, transpose conju-
gate and Moore-Penrose pseudoinverse ofX, respectively. The
subscript[X]i,j denotes entry ofX at row i and columnj.
[X]:,i represents columni of X. I is the identity matrix
with the appropriate size,Ix is the identity matrix with size
x, vec(X) is the vectorization of matrixX, and diag(x)
is a diagonal matrix with entriesx. The Hadamard product
(element-wise product), Kronecker product and Khatri-Rao
product of matricesX andY are denoted byX ◦Y, X⊗Y,
andX⊙Y respectively. Table I lists the main symbols used
throughout this paper.

II. SYSTEM MODEL

We consider the uplink of a single-cell multiuser MIMO
network where a BS withM antennas is servingK UEs each
equiped withN antennas. We comment on the extension of
our framework to a multi-cell network in Section V. Note that
our system model is valid for both access and backhaul layers.
In the backhaul scenario, the BS label could refer to a common
gateway and the UE label could refer to small or macro cell
BSs. Without loss of generality, in the following, we use the
terminology of the access layer.

A. Channel Model

We assume a narrow-band block-fading channel between the
BS and each UE, where the channels are relatively constant
for one fading block, with durationTc channel uses, and
they change to statistically independent values in the next

block. However, we assume that the second-order statistics
of the channel remains unchanged forTs channel uses, where
Ts ≫ Tc. Moreover, we consider a cluster channel model [20]
with L paths between the BS and each UE. This model can
be easily transformed into the well-known virtual channel
model [21]. Letgik be the complex gain of pathi between
the BS and UEk, which includes both path-loss and small
scale fading. In particular,{gik} for all i ∈ {1, . . . , L}
are independent and identically distributed random variables
drawn from distributionCN (0, σ2

k) where1/σ2
k is the path-

loss between the BS and UEk [22]. It consists of a constant
attenuation, a distance dependent attenuation, and a largescale
log-normal fading. The uplink channel matrix between the BS
and UEk is

Hk =

√
MN

L

L∑

i=1

gik b
(
θik
)
uH
(
φi
k

)
= BkGkU

H
k ∈ C

M×N ,

(1)
whereθik andφi

k are the AoA an AoD of pathi between the BS
and UEk, respectively. Parametersb ∈ CM andu ∈ CN rep-
resent the normalized array response vectors of the BS’s and
UEs’ antenna arrays, respectively,Bk = [b(θ1k), . . . ,b(θ

L
k )],

Uk = [u(φ1
k), . . . ,u(φ

L
k )], and Gk ∈ CL×L is a diagonal

matrix whosei-th diagonal entry isgik
√
MN/L. The channel

can be written in the vectorized format as [23]

vec (Hk) = (U∗
k ⊗Bk) vec (Gk) = (U∗

k ⊙Bk) gk , (2)

wheregk is the principle diagonal ofGk andA1⊙A2 repre-
sents the Khatri-Rao product ofA1, andA2 (see Definition 1
in Appendix A). For the sake of tractability in the asymptotic
performance analysis, we assume an antenna configuration at
the BS and UEs which satisfies

lim
M→∞

b(θ)Hb(φ) = lim
N→∞

u(θ)Hu(φ) =

{
1 θ = φ ,

0 otherwise,
(3)

for any θ, φ ∈ R. These conditions hold for uniform linear
array antennas as well as randomly positioned antenna ele-
ments in the arrays. Although our general framework does not
necessarily require (3) to hold, our asymptotic performance
analysis remains tractable if (3) holds.

When the AoA’s and AoD’s are given, channelHk is zero-
mean circularly symmetric Gaussian with covariance matrix
Rk, which is defined based on the column stacking of the
channel matrix. Therefore, givenθik ’s and φi

k ’s, vec (Hk) ∼
CN (0,Rk). Using (2), the covariance matrix of channelHk

can be found as

Rk = (U∗
k ⊙Bk)E

[
gkg

H
k

]
(U∗

k ⊙Bk)
H

= δMσ2
k (U

∗
k ⊙Bk) (U

∗
k ⊙Bk)

H
, (4)

whereδ = N/L. It can be seen from (4) that the rank ofRk

is the same as the rank ofU∗
k ⊙Bk, which is equal toL.

B. Signal Model

Within one fading block, the baseband received signal
vector at the BS is

y(t) =
K∑

k=1

Hkxk(t) + z(t) , (5)
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Fig. 1: Superframe structure. “P” and “D” show pilot and datatransmission
phases.Tc is the channel coherence time.Ts is the superframe duration over
which AoA and AoD remain unchanged, but the fast fading component of
the channel changes per channel coherence timeTτ .

wherexk(t) ∈ CN and z(t) ∼ CN (0, σ2
zIM ) represent the

signal vector transmitted from UEk and the receiver noise at
the BS, respectively, at channel uset.

As shown in Fig. 1, the signal transmission within each
fading block consists of two phases:pilot transmission phase
with durationTτ and data transmission phasewith duration
Td = Tc − Tτ . In the following, we will elaborate on these
phases.

1) Pilot Transmission: To estimate the uplink channel,
UE k transmits pilot matrixPk over Tτ channel uses. Let
ρτ be the total energy devoted to the pilot transmission by
each UE within each fading block, namely

tr
(
PkP

H
k

)
= ρτ , k = 1, 2, . . . ,K . (6)

UE k precodes its uplink pilots using spatial filterVk. The
received signal at the BS is then combined using spatial
filter Wk in order to estimate the corresponding channel.
Collectively, the filtered received signal at the BS during the
pilot transmission phase is

Yτ,k = WH
k

K∑

j=1

HjVjPj +WH
kZτ , (7)

whereZτ ∈ CM×Tτ is the BS noise matrix with independent
and identically distributed entries modeled asvec(Zτ ) ∼
CN (0, σ2

zIMTτ
). Note thatPk and Yτ,k haveTτ columns,

while the number of rows depends on the dimensions of the
spatial filtersVk andWk, respectively. In the next section,
we will discuss pilot precoding and combining scenarios with
different dimensions for the spatial filters.

2) Data Transmission Phase:In this phase of the signal
transmission, all the UEs transmit their precoded data symbols
to the BS simultaneously. The data precoding filters are
designed at the BS using the estimated channels and are fed
back to the UEs through the feedback links. Each UE transmits
its data symbols inL streams overTd channel uses with
constant average powerρd/Td, where ρd denotes the total
energy devoted for data transmission by each UE within each
fading block. We assume that the data symbols are independent
and identically distributed as zero-mean circularly symmetric
complex Gaussian random variables. Letsk ∈ CL represent
the data vector of UEk; thensk ∼ CN (0, ρd/TdIL).

The data vectorsk is precoded before transmission using
the linear spatial filterFk ∈ CN×L. The received signal at the
BS during the data transmission phase is

yd =
K∑

k=1

HkFksk + zd, (8)

wherezd ∼ CN (0, σ2
zIM ) is the thermal noise at the BS.

III. C HANNEL ESTIMATION

In this section, we study the channel estimation quality for
three different pilot transmission scenarios:

• non-precoded and uncombined pilot transmission(nPuC);
• precoded and uncombined pilot transmission(PuC); and
• precoded and combined pilot transmission(PC).

In the nPuC baseline scenario, every antenna element of every
UE sends a unique pilot sequence (typically orthogonal to
other pilot sequences). PuC allows precoding of the pilot
signals at the transmitters (UEs in our case), but the receiver
(BS) will not jointly process the signals received by itsM
antenna elements. Finally, PC permits both precoders and
combiners in the pilot transmission phase. Using (7) and
Lemma 1 in Appendix A, the vectorized received signal in
pilot transmission scenariox ∈ {nPuC,PuC,PC} is

vec
(
Y

(x)
τ,k

)
=

K∑

j=1

(
P̆

(x)
kj

)H
vec (Hj) + W̆kvec (Zτ ) , (9)

where
(
P̆

(x)
kj

)H
=
(
VjP

(x)
j

)T ⊗WH
k andW̆k = ITτ

⊗WH
k .

In all the three scenarios, we use minimum mean squared
error (MMSE) estimates of the channel, assuming that the
spatial filters are known at the BS. Using [24, Equation (6)]
and noting that the mean values of our channel matrices are
zero, the MMSE estimate of channelHk for scenariox, can
be expressed as

vec
(
Ĥ

(x)
k

)
=RkP̆

(x)
k




K∑

j=1

(
P̆

(x)
kj

)H
RjP̆

(x)
kj +σ2

zW̆k



−1

vec
(
Y

(x)
τ,k

)
,

(10)
whereP̆(x)

k = P̆
(x)
kk .

In the rest of this section, we drive the channel estimate in
each pilot transmission scenario. Based on these derivations,
we will then analyze and compare the channel estimation
performance in the studied scenarios.

A. Non-precoded and Uncombined Pilot Transmission (nPuC)

In the first pilot transmission scenario, used as a benchmark,
orthogonal training sequences are transmitted from the differ-
ent UEs’ antenna elements [8]. Moreover, in this scenario,
neither pilot precoding at the UEs nor pilot combining at the
BS is performed. On the positive side, this scenario requires
no prior information about the channel. On the negative
side, this traditional scheme requires at leastT

(nPuC)
τ = KN

resource elements for the pilot transmission phase, which
can grow large as the number of antenna elements per UE
increases, e.g., in mmWave networks [25]. Moreover, the lack
of transmit/receive antenna gains reduces SNR of individ-
ual pilots, decreasing the channel estimation quality, which
negatively affects the data precoding performance of the BS
and UEs. Therefore, nPuC does not meet any of the pilot
transmission criteria that we mentioned earlier, i.e., scalability
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and balanced data-pilot coverage. Considering the pilot energy
constraint (6), we have

P
(nPuC)
k

(
P

(nPuC)
j

)H
=

{
ρτ

N
IN k = j ,

0 otherwise,
(11)

whereP(nPuC)
k ∈ CN×KN is the pilot matrix transmitted from

UE k in scenario nPuC. Substituting the pilot symbols of (11)
and replacing the spatial filters by identity matrices in (10),
the MMSE estimate of the vectorized channel is

vec
(
Ĥ

(nPuC)
k

)
=RkP̆

(nPuC)
k

((
P̆

(nPuC)
k

)H
RkP̆

(nPuC)
k +σ2

zI

)−1

· vec
(
Y(nPuC)

τ

)
,

(12)

where P̆
(nPuC)
k =

(
P

(nPuC)
k

)∗ ⊗ IM . Note that{P̆(nPuC)
k }Kk=1

inherit the orthogonality property of{P(nPuC)
k }Kk=1, and there-

fore the signals received from UEj 6= k can be canceled out
in the process of channel estimation for UEk.

Define the estimation error matrix of scenario nPuC by
H̃

(nPuC)
k = Hk − Ĥ

(nPuC)
k . Then, in the following proposition,

we find its covariance under the traditional non-precoded
uncombined pilot transmission scenario:

Proposition 1. Consider the system model of scenario nPuC.
Suppose that the channel is estimated with orthogonal pilots
given by (11) and an MMSE estimator given by(12). The
covariance matrix of the channel estimation error is

R̃
(nPuC)
k = E

[
vec
(
H̃

(nPuC)
k

)
vec
(
H̃

(nPuC)
k

)H
]

= δMσ2
k (U

∗
k ⊙Bk)

·
(
IL+Mζk

(
RT

Uk
◦RBk

))−1
(U∗

k⊙Bk)
H ,

(13)

whereRUk
= UH

kUk, RBk
= BH

kBk,

ζk =
ρτσ

2
k

Lσ2
z

, (14)

and the expectation is taken over the distribution of the random
channel and the received noise.

Proof: A proof is given in Appendix B.
The following proposition characterizes the normalized

mean square error (MSE) in scenario nPuC as an indicator
of the channel estimation quality.

Proposition 2. Consider the covariance of the MMSE channel
estimation error in Proposition 1. The corresponding normal-
ized MSE,e(nPuC)

k = tr(R̃
(nPuC)
k )/tr(Rk), is bounded as

1

1 +Mζk

[
1− ǫ

(nPuC)
k

Mζk

]+
≤ e

(nPuC)
k ≤ 1

1 +Mζk
, (15)

where

ǫ
(nPuC)
k =

(
1− κ

(
IL +Mζk RT

Uk
◦RBk

))2

4κ
(
IL +Mζk RT

Uk
◦RBk

) ≥ 0 ,

and [a]
+
= max(a, 0) for a ∈ R.
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Fig. 2: The channel estimation performance in non-precodedand uncombined
pilot transmission scenario (nPuC) as a function of the number of UEs
antennasN . M = 8 andM = 1024 represent cellular networks with small
and large number of BS antennas, respectively. The dashed lines represent
the bounds of Proposition 2 for the corresponding average normalized MSE
curves; however, some of the bounds are tight and can not be seen in the
figure.

Corollary 1. As N → ∞ (so RUk
→ IL), both upper and

lower bounds in(15) become tight in the sense that

e
(nPuC)
k → (1 +Mζk)

−1. (16)

To numerically illustrate Proposition 2, we simulate a net-
work with various number of UE antenna elementsN , pathsL,
and BS antenna elementsM . The channel model follows (1).
Our simulation parameters cover wide range of use cases,
including

• Access layer of traditional cellular or ad hoc networks
(smallN , smallM , largeL);

• Access layer of sub-6 GHz massive MIMO networks
(smallN , largeM , largeL); and

• Access layer of mmWave networks (smallN , largeM ,
smallL); and

• Backhaul layer (largeN and M values, small or large
L).

We draw the AoAs and AoDs independently from uniform
distributions in [−π/3, π/3] and [−π/6, π/6], respectively.
The normalized MSE is averaged over 50 realizations of AoAs
and AoDs and 90,000 realizations of noise and small-scale
fading. We considerρτ = 0 dB and apply the normalization
σ2
k/σ

2
z = 1 to ensure that the average received SNR at the

BS can be described by the pilot energy and the number of
antenna elements, e.g., SNR= ρτ/N in nPuC.

Fig. 2 illustrates the average normalized MSE,e
(nPuC)
k as

defined in Proposition 2, against the number of antenna
elements at UEk for M = 8, 1024 (as small and large
numbers) and three different number of paths between the UE
and the BS, namelyL = 2, 4, 8. These numbers of multipath
components cover both sparse scattering environments likein
mmWave networks and rich scattering environments like in
sub-6 GHz networks. Fig. 2 shows that increasingN does
not improve the channel estimation performance of nPuC.
The reason for this becomes clear by noting that the MMSE
channel estimation error is proportional to the dimension of
the received signal vector, i.e.,vec

(
Y

(nPuC)
τ

)
∈ CKNM , as

well as the received SNR. On one hand, increasingN linearly
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increases the dimension of the received signal. These extra
observations, while having a constant number of unknown
parameters, generally improve the channel estimation perfor-
mance. On the other hand, increasingN reduces the received
SNR, formulated in the previous paragraph. These two effects
cancel each other, making the average normalized MSE almost
independent of the number of UE antennasN . On the contrary,
comparing Fig. 2(a) and Fig. 2(b) shows that adding more
antenna elements to the BS enhances the channel estimation
performance. This can also be related to the increase in the
dimension of the received signal by increasing the number
of BS antennas,M . Another observation from Fig. 2 is that
the channel estimation performance improves for networks
with sparser scattering environments (smallerL), where this
improvement is almost linear in the large antenna regimes; see
Corollary 1.

B. Precoded and Uncombined Pilot Transmission (PuC)

In the second pilot transmission scenario, the pilots are
precoded using spatial filters at the UEs. However, no pilot
combining is performed at the BS. The channel estimation
quality in this scenario depends on the statistical information
of the channel available prior to pilot transmission. Assuming
that Uk is available at UEk, either perfectly or with some
unbiased errors [26], the spatial filters can be designed to
help focusing the pilot energy along the strongest multipath
components between the UEs and the BS. Hence, precoding
the pilots boosts the SNR in the pilot transmission phase,
which is specially beneficial for the UEs at the cell edges.

Considering that there areL ≤ N paths between each
UE and the BS,T (PuC)

τ = KL ≤ T
(nPuC)
τ pilot symbols

suffices for transmitting orthogonal training sequences through
all the paths.1 In other words, unlike scenario nPuC, where
orthogonal pilots are assigned to the UE antennas, the number
of required orthogonal pilot sequences in scenario PuC is
equal to the number of multipath components. Clearly, this
pilot transmission scheme leaves longer time for the data
transmission phase, compared to the baseline scenario nPuC.
This brings a significant gain for the data transmission time,
especially in wireless networks with small coherence time such
as mmWave networks [14].

Let P(PuC)
k ∈ CL×T (PuC)

τ be the pilot symbols transmitted by
UE k in scenario PuC, then orthogonality of training sequences
and the energy constraint (6) imply that

P
(PuC)
k

(
P

(PuC)
j

)H
=

{
ρτ

L
IL k = j ,

0 otherwise.
(17)

Note that although in this paper we are investigating the
uplink channel estimation, pilot transmission scenario PuC
entails the same complexity for downlink channel estimation.
In contrast, the complexity of the downlink channel estimation
in scenario nPuC is substantially higher than that of uplink
channel estimation ifM ≫ KN . As a result, in massive
MIMO systems, the nPuC scheme is suitable only for the

1It is shown in [24] that in the case of correlated channels between UEk and
the BS, the actual length of training sequence needed for channel estimation
can be less than the number of transmitting antennas.

TDD mode (in which the channel reciprocity principle holds),
whereas PuC can be used in both TDD and FDD modes.
Note that the number of unique pilots required by PuC does
still scale by the number of UEs. Moreover, due to the lack
of receiver antenna gain, it may not completely solve the
imbalanced pilot-data coverage problem, though substantially
alleviate it compared to the nPuC scheme.

For mathematical tractability, we assume the availabilityof
of perfect second-order statistics information which allows us
to gain insights about the impact of different parameters on
the network performance (e.g., channel estimation qualityand
network throughput). In this section, we choose the precoding
matrix Vk = Uk for each UE k, which simplifies the
mathematical analysis and, at the same time, is asymptotically
optimal in terms of maximizing the SNR [27]. No combining
filter is considered at the BS in this scenario, that isWk = IM .
Substituting the training matrix and spatial filters of scenario
PuC into (10), the MMSE estimate of the channel becomes

vec
(
Ĥ

(PuC)
k

)
=RkP̆

(PuC)
k

((
P̆

(PuC)
k

)H
RkP̆

(PuC)
k + σ2

zI

)−1

· vec
(
Y(PuC)

τ

)
, (18)

whereP̆(PuC)
k =

(
UkP

(PuC)
k

)∗ ⊗ IM . {P̆(PuC)
k }Kk=1 inherit the

orthogonality property of{P(PuC)
k }Kk=1, similar to nPuC, and

therefore the received signals from UEj 6= k are canceled out
at the receiver in the estimation process ofHk.

Define the estimation error matrix as̃H(PuC)
k = Hk−Ĥ

(PuC)
k .

The following propositions characterize the accuracy of the
channel estimation under precoded but uncombined pilot trans-
mission:

Proposition 3. Consider the system model of scenario PuC.
The covariance of the channel estimation error matrix using
orthogonal pilot transmissions given by(17) and an MMSE
estimator given by(18) is

R̃
(PuC)
k = E

[
vec
(
H̃

(PuC)
k

)
vec
(
H̃

(PuC)
k

)H
]

= δMσ2
k (U

∗
k ⊙Bk)

·
(
IL+δMζk

(
R2

Uk

)T◦RBk

)−1

(U∗
k⊙Bk)

H
.

(19)

Proof: A proof is given in Appendix B.

Proposition 4. Consider the covariance of the channel esti-
mation error for UEk given by Proposition 3. The normalized
MSE, defined ase(PuC)

k = tr(R̃
(PuC)
k )/tr(Rk), is bounded as

λ−1
max

1+δMζk

[
1− ǫ

(PuC)
k

δMζk

]+
≤e

(PuC)
k ≤ λ−1

min

1+δMζk
, (20)

whereλmin and λmax represent the minimum and maximum
eigenvalues ofRUk

, respectively and

ǫ
(PuC)
k =

(
1− κ

(
IL + δMζk

(
R2

Uk

)T ◦RBk

))2

4κ
(
IL + δMζk

(
R2

Uk

)T ◦RBk

) ≥ 0.

(21)
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Fig. 3: The channel estimation performance in the precoded uncombined pilot
transmission scenario (PuC) as a function of the number of UEs antenna
elements.M = 8 and M = 1024 represent cellular networks with small
and large number of BS antennas, respectively. The dashed lines represent
the bounds of Proposition 4 for the corresponding average normalized MSE
curves.

Corollary 2. As N → ∞ (so RUk
→ IL), both

upper and lower bounds in(20) become tighter, and
e
(PuC)
k → (1 + δMζk)

−1.

Corollaries 1 and 2 characterize the estimation error in
scenarios nPuC and PuC, respectively. In particular, when
N → ∞, pilot precoding can improve the channel estimation
error by a factor of

lim
N→∞

e
(PuC)
k

e
(nPuC)
k

=
1 +Mζk
1 + δMζk

≥ 1

δ
, (22)

where the equality holds ifMζk is sufficiently large. The
proof of (22) is a straightforward application of Lemma 5
in Appendix A.

To numerically evaluate the performance of channel esti-
mation using PuC, we use the same simulation setting as
the one used in Fig. 2. The average normalized MSE and
the corresponding bounds, as computed in (20), against the
number of antenna elements at the UEs are illustrated in Fig.3
for three different values ofL, namelyL = 2, 4, 8. As the
figure shows, unlike nPuC, increasingN significantly boosts
the channel estimation performance. Moving fromN = 8 to
N = 1024 reduces the estimation error by around 20 dB.
The reason is that in PuC, asN grows large, the energy
transmitted through the paths between the UEs and the BS
increases. Therefore, unlike nPuC, the received SNR at the

BS in PuC increases withN . Again, similarly to nPuC, by
comparing Fig. 3(a) and Fig. 3(b), we can see that whenM
increases from 8 to 1024, a gain of10 log10(1024/8) ≈ 21 dB
can be achieved.

The gain of pilot precoding in PuC can be understood by
comparing Fig. 2 and Fig. 3. Specifically, when the number
of antenna elements at both the UE and BS sides is large, say
M = N = 1024, Fig. 3(b) shows 21, 24 and 27 dB lower
MSE compared with Fig. 2(b) for the curves corresponding
to L = 2, 4 and 8, respectively. This fact is in accordance
with (22).

C. Precoded and Combined Pilot Transmission (PC)

In the third scenario, in addition to precoding the pilots
at UEs, the received signals at the BS are also combined,
using the available information about the AoAs at the BS.
In this case, in addition to the gains discussed earlier for
PuC, exploiting the spatial filters at the BS, given the large
number of BS antennas, can lead to a sufficiently good spatial
separation of the UEs. Therefore, a combiner at the BS may
enable us to use non-orthogonal pilots for different UEs, if
their orthogonality can be maintained in the spatial domain.
Therefore, in this scenario, non-orthogonal sequences with
T

(PC)
τ < KL symbols are transmitted from each antenna

elements. Without loss of generality, we consider the extreme
scenario ofT PC

τ = 1 in our mathematical analysis, that is only
one pilot will be used to estimate the entire uplink channel
matrix. Due to the pilot reuse, there is a contamination of the
pilots at the BS side. This situation is similar to a multi-cell
network where pilot reuse in neighboring cells causes the pilot
contamination problem. Notice that scenario PC addresses the
pilot contamination problem, though we have a single cell
network setting. We then show with numerical analysis that
using T PC

τ > 1 orthogonal pilots brings improvement in the
channel estimation performance at the expense of having less
time for the data transmission phase. Notice that, similarly to
PuC, pilot transmission scenario PC enables the realization of
massive MIMO using both TDD and FDD schemes, as the
channel estimation complexity grows only with the number
of paths, rather than with the number of antennas, which is
a useful property for both UL and DL pilots. Altogether, PC
with 1 ≤ T PC

τ < KL pilots is a promising option that not
only scales well with the number of UEs but also eliminates
the imbalanced pilot-data coverage problem.

We assume thatUk is available at UEk and all theUk ’s
andBk ’s are available at the BS either perfectly or with some
unbiased error. In the rest of this section for the sake of
mathematical tractability, we assume that the knowledge about
the AoAs and AoDs at the BS and UEs is perfect. Later, using
numerical simulations, we investigate the effect of imperfect
knowledge about AoAs and AoDs on the performance of
the network. Exploiting the available information about the
channel, similarly to PuC, the pilot precoding filter at UEk
is designed asVk = Uk. Moreover, recalling that the main
objective of this paper is to characterize the gains of pilot
precoding/combining rather than finding the optimal precoders
and combiners, we design the combining filter for UEk as
Wk = Bk.
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Substituting for the spatial filters in (9), the received signal
in scenario PC is

vec
(
Y

(PC)
τ,k

)
=
(
P̆

(PC)
k

)H
vec (Hk)+

(
I⊗BH

k

)
vec (Zτ )

+

K∑

j=1,j 6=k

(
P̆

(PC)
kj

)H
vec (Hj)

︸ ︷︷ ︸
Inter-UE Interference

, (23)

where
(
P̆

(PC)
kj

)H
=
(
UjP

(PC)
j

)T⊗BH
k with P

(PC)
j ∈ CL×T (PC)

τ

being the pilot matrix transmitted from UEj.
Unlike the two previous scenarios, in PC,pilot contamina-

tion is inevitable due to non-orthogonal pilot transmissions. In
fact, pilot contamination may contain two parts: the interfer-
ence from pilots transmitted from the antenna elements of the
same UE, calledintra-UE interference, and the interference
from the pilots transmitted from other UEs, calledinter-UE
interference. Note that, in the case of multicell networks,
the interference from the UEs in other cells, calledinter-
cell interference, can also contaminate the received pilots.
The pilot precoding used in this scenario is beneficial for
boosting the link budget and reducing the inter-UE interference
while the pilot combining mitigates both inter-UE and inter-
cell interferences.

Define the covariance matrix of the inter-UE interference
term and the covariance of the received signal without inter-
UE interference respectively by

Qk =

K∑

j=1,j 6=k

(
P̆

(PC)
kj

)H
RjP̆

(PC)
kj , (24)

Qk =
(
P̆

(PC)
k

)H
RkP̆

(PC)
k + σ2

z (I⊗RBk
) . (25)

It is now straightforward to show that the MMSE estimate of
the vectorized channel in this scenario is

vec
(
Ĥ

(PC)
k

)
= RkP̆

(PC)
k

(
Qk +Qk

)−1
vec
(
Y

(PC)
τ,k

)
. (26)

Let H̃(PC)
k = Hk−Ĥ

(PC)
k be the error due to estimating channel

Hk in the PC scenario. Then,

R̃
(PC)
k = E

[
vec
(
H̃

(PC)
k

)
vec
(
H̃

(PC)
k

)H
]

= Rk −RkP̆
(PC)
k

(
Qk +Qk

)−1
(
P̆

(PC)
k

)H
Rk .

(27)

From (27), we have the following useful corollary:

Corollary 3. In PC, the pilot contamination caused by inter-
UE and intra-UE interference tend to zero, when the number
antenna elements at the BS and UEs grow large, respectively.

Proof: A proof is given in Appendix B.
Corollary 3 implies that the combiner substantially reduces

the pilot contamination term, and asymptotically makes it zero.
It is straightforward to show that Corollary 3 holds also for
multicell networks, and only one pilot in the asymptotic regime
is enough for channel estimation in the entire network.

In the non-asymptotic case, using more orthogonal pilots per
UE allows to reduce the number of antennas contributing to
the pilot contamination term and to maintain the UE’s transmit
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Fig. 4: Channel estimation performance in the precoded and combined pilot
transmission scenario (PC) as a function of the number of UEsantenna
elements withTτ = L andTτ = 1 training lengths.M = 8 andM = 1024
represent cellular networks with small and large number of BS antennas,
respectively.

power under a desirable threshold. Finding the minimum
number of orthogonal pilots for a given maximum power of
the pilot contamination is an interesting topic for future works.

We use the same simulation setting as that of Fig. 2 to
analyze the performance of PC. However, in this scenario,
all the UEs are transmitting the same pilot symbols, which
leads to inter-UE interference at the BS. WhenTτ ≥ N , the
orthogonal pilots are assigned to difference antenna elements
of one UE to avoid intra-UE interference. WhenTτ < N , the
intra-UE interference is inevitable and, in the extreme case
when Tτ = 1, all the antenna elements of UEs transmit the
same pilot symbols, and therefore interfere at the BS. For the
sake of simplicity, we also assume that all the UEs are located
at the same distance from the BS and therefore experience the
same path loss.

Fig. 4 illustrates the average normalized MSE against the
number of antenna elements at the UEs for a network with
K = 2 UEs. This figure manifests similar behaviors as
of Fig. 3, such as better channel estimate with higherN ,
higher M , and lower L. Moreover, comparing Fig. 4(a)
to Fig. 4(b) reveals that more antenna elements at the BS
increases separability of different UEs in the spatial domain,
so makes it possible to use smaller number of unique pilots for
a given power for the pilot contamination term. In particular,
with M = 8, the inter-UE interference term of the pilot
contamination is so strong that additional interference and the
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Fig. 5: Channel estimation performance in the precoded and combined pilot
transmission scenario (PC) as a function of number of UEs in the cell.

corresponding SINR loss due to pilot reuse within one UE
(namelyTτ < L) may not be tolerable and leads to substantial
loss in the performance of channel estimation. However, when
M = 1024, the inter-UE interference term is almost negligible,
making intra-UE interference tolerable for a given minimum
SINR threshold for the received pilot signal.

The pilot contamination effect on the channel estimation
performance is investigated in Fig. 5. This figure illustrates
the average normalized MSE against the number of UEs in
the cell for a network withM = 128, N = 32 andL = 4.
For the sake of simplicity, all the UEs are located at the
same distance from the BS and therefore experience the same
path loss. The AoDs and AoAs are drawn independently from
uniform random distributions in[−π/6, π/6] and[−π/3, π/3],
respectively. The results are averaged over 50 different re-
alizations of AoAs and AoDs. Two pilot sequence length,
namelyTτ = 4, 1, are considered in this figure. In the case
of Tτ = 4, no intra-UE interference exists, and only the inter-
UE interference degrades the channel estimation performance
when K increases. However, whenTτ = 1 both intra-UE
and inter-UE interference contaminate the pilot symbols which
leads to at least 5 dB poorer performance compared to the case
whenTτ = 4.

Fig. 6 shows the average normalized MSE against the total
pilot transmission power using the same setup as in Fig. 5
when there areK = 2 UEs in the network. According to
this figure, pilot precoding withN = 32 can achieve the
same estimation error as nPuC with almost 5 dB less power.
Alternatively, for a given total pilot transmission power,pilot
precoding can improve the estimation error by 6 dB compared
with the conventional nPuC. Moreover, the performance of
PC with only 4 orthogonal pilots is almost identical to that
of PuC with 64 orthogonal pilots. In other words, these
16 x shorter training length allows channel estimation of
substantially higher number of UEs within the same coherence
budget, while also leaving more time for the data transmission.
Therefore, in PC we expect a boost in the achievable rate with
4 orthogonal pilots compared to that of PuC.

So far, we have analyzed the channel estimation quality
of three pilot transmission scenarios. In the next section,we
investigate their effects on the achievable data rate.
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Fig. 6: The impact of pilot energy and number of transmitted pilot symbols on
the channel estimation performance in the three pilot transmission scenarios.

IV. DATA TRANSMISSION

In this section, we study the sum-rate of the multiple access
channel between the UEs and the BS in the uplink data
transmission phase. Denoting the transmitted signal vector of
UE k by xk = Fksk, (8) can be equivalently written as

yd =

K∑

k=1

Hkxk + zd =

K∑

k=1

Ĥkxk +

K∑

k=1

H̃kxk + zd

︸ ︷︷ ︸
zeff

,
(28)

wherezeff is the effective noise at the BS which combines the
receiver noise and the residual channel estimation errors.

In the following, we first present the performance metric
used for the performance evaluation of the network. Subse-
quently, we study the precoding methods that are used in the
data transmission phase.

A. Performance Metric

Although the optimal distribution of{xk}Kk=1 is not known,
using (28), the following lower bound for the sum-rate of the
network can be found as [28]:

r =
Td

Tc

E

[
log det

(
IM +R−1

zeff

K∑

k=1

ĤkRxk
ĤH

k

)]
, (29)

whereRxk
andRzeff are the covariance matrices ofxk and

zeff, respectively, and are defined as

Rxk
= E

[
xkx

H
k

]
= FkE

[
sks

H
k

]
FH

k =
ρd
Td

FkF
H
k , (30)

Rzeff = E
[
zeffz

H
eff

]
=

K∑

k=1

E

[
H̃kRxk

H̃H
k

]
+ σ2

z IM . (31)

B. Data Precoding

For a single link MIMO network, when only imperfect CSI
is available at the transmitter, it is shown that the eigenvectors
of the channel estimate covariance matrix represent the optimal
transmit directions [29, Theorem 1]. More specifically, the
precoder of UEk is designed in a way that its signal is
transmitted in the direction of the right singular vectors of
the estimated channel matrix̂Hk. For the sake of simplicity,
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S
pe

ct
ra

l
ef

fic
ie

nc
y

(b
its

/u
se

)

nPuC
PuC
PC,Tτ = 1

(b) Total energyρτ + ρd = 0.5.

Fig. 7: Spectral efficiency as a function of normalized pilotenergy ρ̄τ =
ρτ/(ρτ + ρd), M = 128 and N = 32. The maximum of the curves are
marked by circles.

we choose to allocate equal powers to different eigendirections
for all three pilot precoding scenarios. Note that considering
optimal power allocation does not change the insights that
we gain from the comparative performance analysis of this
paper, but complicates the mathematical analysis; see [29]
for the optimal power allocation algorithm. Formally, denote
the eigen-value decomposition ofRxk

by Rxk
= F̄kΛkF̄

H
k

and that ofĤH
kĤk by ĤH

kĤk = EkΣkE
H
k . Here, we set

F̄k = Ek andΛk = ρd/(TdL)TL whereTL is a diagonal
matrix whose firstL diagonal elements are one and the rest
are zero. Comparing the designed covariance matrix of the
data signal with the one in (30), the data precoding matrix
corresponding to UEk is found as

Fk =

√
1

L
F̄kTL =

√
1

L
EkTL . (32)

Figs. 7 and 8 show the spectral efficiency of a network
employing the aforementioned data precoding method. In
these simulations, we assume that the channel estimation is
performed according to the scenarios presented in Section III.
We consider a cell withK = 2 UEs located at the same
distance from the BS, where the AoAs and AoDs are set
similarly to the ones in Fig. 2. We also assume that each
coherence block has lengthTc = 128 channel uses and the
number of paths between each UE and the BS isL = 4.

As we increase the pilot transmission energyρτ , the channel
estimation performance improves in all pilot transmission
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Fig. 8: Impact of number of antenna elements on the optimal pilot energy and
maximum spectral efficiency whenρτ + ρd = 4.

scenarios; see Fig. 6. Acquiring more accurate CSI, better
precoders can be designed for the data transmission phase.
However, since the total energy is fixed, increasing the pilot
energy leaves less energy for the data transmission, leading
to a well-known trade-off between the amount of energy
allocated to pilot and data transmission [11]. This trade-off is
illustrated in Fig. 7 for three pilot transmission scenarios. From
both Figs. 7(a) and 7(b), PC and PuC always lead to higher
spectral efficiencies than the conventional nPuC. Moreover, the
maximum spectral efficiency that PC can reach is higher than
PuC, though PuC has a better channel estimation performance;
see Fig. 6. Another observation from Fig. 7 is that the optimal
pilot energy of PC and PuC are substantially smaller than that
of nPuC. Indeed, by pilot precoding and combining, a minimal
amount of pilot power that is allocated to a few (possibly
one) pilot symbolsTτ = 1 may lead to a very high spectral
efficiency. Moreover, increasing the total energy shifts these
optimal points to the left, implying that a smaller fractionof
the total energy needs to be allocated to the pilot transmission
phase.

Fig. 8 shows the optimal pilot energy and the corresponding
maximum spectral efficiency against the number of antenna
elements. From Fig. 8(a), the optimal pilot energy decreases
with M in all three scenarios. On the contrary, the UEs with
larger number of antennas need more pilot transmission energy
to reach the optimal performance (this can be observed by
comparing solid lines to the dashed ones). This increment
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is much higher in nPuC than other schemes. In general, the
optimal pilot energy in PuC and PC is less sensitive to the
changes ofM or of N . Fig. 8(b) presents the maximum
spectral efficiency againstM whenN = 32. From this figure,
employing either PuC or PC for pilot transmission significantly
improves the maximum spectral efficiency compared to the
conventional nPuC. In particular, the improvement is around
80% with only 128 BS antennas.

The following proposition gives a lower bound for the
achievable sum-rate using the aforementioned data precoding
method and different pilot transmission scenarios of Sec-
tion III.

Proposition 5. Consider the pilot transmission scenariox ∈
{nPuC,PuC,PC} and uplink data transmission using the data
precoding filter of(32) for UE k. Assume that{Uk}Kk=1 and
{Bk}Kk=1 are perfectly known. IfM,N → ∞, then

r ≥ LTd

Tc

log

(
1 +

ρd

Td

∑K

k=1 σ
2
k

Lσ2
z

)
. (33)

Proof: A proof is given in Appendix B.

Corollary 4. For given budgets of coherence timeTc and total
energyρτ + ρd, the lower bound in(33) is maximized when
ρτ → 0 andTd/Tc → 1 (or equivalentlyTτ = 1).

Corollary 4 implies that in the large antenna regime, among
the three pilot transmission scenarios, only PC can reach the
maximum spectral efficiency.

V. FURTHER DISCUSSIONS

Equation (3) implies that the vectorsb(θ) or u(θ) with
different θ create an asymptotically orthonormal basis, which
can be used as orthogonal spatial signatures. More interest-
ingly, asymptotically, there are infinitely many such spatial
signatures (realized by changingθ). This leads to an interesting
and practically relevant consequence of pilot precoding and
combining: maintaining orthogonality of pilots in the spatial
domain instead of code domain becomes possible. To appre-
ciate this aspect, we recall that in MU-MIMO systems with
single antenna UEs, the orthogonality of pilot signals must
be maintained in the code domain to avoid intra-cell pilot
contamination effects. Therefore, there is an inherent trade-
off between the number of symbols spent on constructing the
pilot sequences and the number of symbols available for data
transmission, as illustrated by Fig. 7. Due to the proposed pilot
precoding schemes, this trade-off can be relaxed by creating
pilot signal separability in the spatial domain. We have the
following conceptually important result:

Corollary 5. Consider the channel model in(1). Suppose
that there are a limited number of paths between each UE
and its serving BS and that the second-order statistics are
perfectly known. Let either the number of BS antennasM or
the number of UE antennasN tends to infinity, then 1) the pilot
contamination problem disappears, 2) a multi-cell networkcan
be modeled by multiple uncoordinated single-cell networks
with no performance loss2, and 3) channel estimation in the

2Note that inter-cell coordination may still bring gain to the resource
allocation performance [30].

TABLE II: Minimum number of unique pilots needed in the pilottransmission
phase. “UL” and “DL” stand for uplink and downlink, respectively.

nPuC PuC PC

UL pilots

N,M < ∞ KN KL KL

N → ∞,M < ∞ KN K K

N < ∞,M → ∞ KN KL L

N → ∞,M → ∞ KN K 1

DL pilots

N,M < ∞ M KL KL

N → ∞,M < ∞ M KL L

N < ∞,M → ∞ M K K

N → ∞,M → ∞ M K 1

entire network can be done with a single pilot symbol.

Corollary 5 suggests that although we have considered a
single-cell scenario throughout this paper, our insights are
valid in a multicell scenario, especially in the large antenna
regime. In fact, all the interference components in the pilot
transmission can be rejected either at the transmitter or at
the receiver. In particular, from (23), the transmitter cancels
intra-UE interference, and the receiver cancels out inter-UE
interference (which can be readily extended to the inter-cell
interference). Notably, PC allows using fixed-length pilotse-
quences (almost) independently of the number of MU-MIMO
users. As an extreme case, a single pilot symbol can be used
by multiple UEs. In real life deployments, even though spatial
separability based on channel covariance matrix knowledge
is possible in PC, multiple antenna UEs benefit from code
domain separability among pilot signals used to estimate the
channel of the different UE antennas. However, when the
number of antennas at the BS grows large, full reuse of the
same pilot sequence among the UE antennas is possible. This,
in turn, maximizes the number of symbols available for data
transmission.

To generalize Corollary 5, Table II shows the number of
unique pilots that the three pilot transmission scenarios need
in different network settings. This table also includes thecase
of downlink pilot transmission. From this table, it is clear
that the training sequence lengths required in PC and PuC
are substantially smaller than that in nPuC. The minimum
number of unique pilots in both nPuC and PuC scales up with
the number of UEs; whereas there are situations in which
PC may need a constant number of pilots independently of
the number of transmit antenna elements or the number of
UEs. Specifically, when the number of receive antennas (M
in uplink andN in downlink) goes to infinity, a maximum of
L pilot sequences is enough to handle the channel estimation
of the entire network, irrespective of the number of UEs or
BSs. Also, note that large values ofN can model wireless
backhauling use cases. Moreover, this table illustrates that, for
example, asN → ∞ andM < ∞), PuC may benefit from
uplink pilots whereas PC may benefit from downlink pilots.
This disagreement indicates that employing pilot precoding
and combining may relax the usual system design constraint
of always relying on the uplink pilots for CSI acquisition.
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VI. CONCLUDING REMARKS AND OUTLOOK

The performance of MU-MIMO systems heavily dependents
on the quality of the acquired CSI. The UEs can facilitate
the acquisition of high-quality CSI if they, contrarily to what
commonly assumed, exploit the multi-antenna capabilities. In
this paper, we showed that UEs can precode pilot signals
to drastically improve the quality of the CSI at the BS,
which in turn improves the spectral efficiency during data
transmission. Moreover, the CSI further improves if pilot
precoding is carried along with pilot combining at the BS. The
aforementioned gains are more prominent when the channels
are sparse and the BS and UEs are equipped with a large
number of antennas, both hold in mmWave networks.

The insights of this work suggest a further development of
the following major research questions

• The MMSE channel estimation used to obtain the esti-
mated channel in (12) (which is then used throughout
in Section III) inherently depends on exploiting side in-
formation lying in the second-order statistics (covariance
matrices) of the channel vectors. As noted in [18], the role
of covariance matrices is to capture structural information
related to the distribution of the multi-path AoA at
the serving BS. Therefore, imperfect knowledge of the
channel covariance matrices entails channel estimation
errors that result in precoding errors.

• Since pilot precoding increases the spatial separation of
UEs, it potentially mitigates the affects of pilot con-
tamination by employing low rate multicell coordination
techniques proposed in, for example, [18]. This is because
the method proposed in [18] achieves better results if the
paths of different UEs do not overlap. In the asymptotic
regime, if either the number of BS antennasNBS or
the number of UE antennasNUE tends to infinity, pilot
contamination disappears since the UEs become perfectly
orthogonal in the AoA domain. Thereby, a multi-cell net-
work can be modeled by multiple uncoordinated single-
cell networks with no performance loss.

• Although in this paper we considered the case of UL
pilot and data transmissions, the concept of precoded
pilots in PC and PuC can be employed for DL pilot
and data transmissions as well. As noted earlier, DL pilot
precoding can be useful in FDD systems.

APPENDIX A: PRELIMINARIES

In this subsection, we give preliminary linear algebra to
prove the results in Appendix B.

Definition 1 (Products [31]). The Hadamard product of any
two arbitrary matricesA andB, of the same size, is defined
as

[A ◦B]i,j = [A]i,j [B]i,j . (34)

The Kronecker product ofA of sizeM × N and B of any
arbitrary size is defined as

A⊗B =



[A]1,1 B . . . [A]1,N B

...
. . .

...
[A]M,1B . . . [A]M,N B


 . (35)

The Khatri-Rao product ofA of sizeM × L and B of size
N × L is defined as

A⊙B =
[
[A]:,1 ⊗ [B]:,1 . . . [A]:,L ⊗ [B]:,L

]
. (36)

Lemma 1 (Vectorization lemma [31]). For any three matrices
A, B, andC with appropriate dimensions, we have

vec(ABC) =
(
CT ⊗A

)
vec (B) . (37)

Lemma 2 ([31]). Consider matricesA ∈ CN×M , B ∈ CR×S ,
C ∈ CM×L andD ∈ CS×L. The following equalities always
hold:

(A⊗B) (C⊙D) = (AC⊙BD) ,

(C⊙D)
H
(A⊗B) = (AC⊙BD)

H
,

(C⊙D)
H
(C⊙D) =

(
CHC

)
◦
(
DHD

)
.

Lemma 3. For any positive definite matrixA ∈ CN×N

N∑

i=1

1

aii
≤ tr

(
A−1

)
≤
(
1 + κ (A)

)2

4κ (A)

N∑

i=1

1

aii
,

whereaii andκ(A) are diagonal elementi and the condition
number of matrixA, respectively.

Lemma 4 ([32]). For any two positive semi-definite (PSD)
matricesA ∈ C

N×L andB ∈ C
L×M ,

λmin (A) tr (B) ≤ tr (AB) ≤ λmax (A) tr (B) ,

whereλmin (A) and λmax (A) are the smallest and largest
eigenvalues ofA, respectively.

Lemma 5. For any two real values0 < a ≤ b, we have

1 + a

1 + b
≥ a

b
. (38)

APPENDIX B: PROOFS

A. Proof of Lemma 3

The upper bound is given in [33], and the lower bound can
be obtained by the Cauchy-Schwarz inequality. In particular,
let ei ∈ CN be the standard basis vector (with 1 in itsi-th
entry and 0 otherwise). Then,

1 =
(
e∗i

√
A
√
A−1ei

)2 (a)

≤ (e∗iAei)
(
e∗iA

−1ei
)

1

[A]ii
≤
[
A−1

]
ii

,

where (a) is due to the Cauchy-Schwarz inequality. The lower
bound will be proved by summing both sides of the second
inequality overi.

B. Proof of Proposition 1

From (11), it is straightforward to show that

P̆
(nPuC)
k

(
P̆

(nPuC)
k

)H
=

ρτ
N

I . (39)
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Now, the covariance matrix of̃H(nPuC)
k can be expressed as

R̃
(nPuC)
k =E

[
vec
(
H̃

(nPuC)
k

)
vec
(
H̃

(nPuC)
k

)H
]

=Rk −RkP̆
(nPuC)
k

·
((
P̆

(nPuC)
k

)H
RkP̆

(nPuC)
k +σ2

zI

)−1(
P̆

(nPuC)
k

)H
Rk

(a)
=Rk −Rk

(
Rk +

Nσ2
z

ρτ
I

)−1

Rk

(b)
= (U∗

k ⊙Bk)

(
ρτ
Nσ2

z

(U∗
k ⊙Bk)

H (U∗
k ⊙Bk)

+
1

δMσ2
k

I

)−1

(U∗
k ⊙Bk)

H ,

where (a) is valid due to (39) and (b) holds by substituting
for Rk from (4) and applying matrix inversion lemma. The
proof will be completed using Lemma 2 and after some
straightforward algebraic manipulations.

C. Proof of Proposition 2

First, we note that

tr (Rk) = tr
(
δLσ2

k (U
∗
k ⊙Bk) (U

∗
k ⊙Bk)

H
)

(a)
= δMσ2

k tr
(
RT

Uk
◦RBk

)

(b)
= δMσ2

kL ,

(40)

where (a) follows from the commutative property of trace
and after applying Lemma 2 and (b) holds since[RUk

]ii =
[RBk

]ii = 1 for i = 1, . . . , L.

Now, we are ready to prove Proposition 2. Using Proposi-
tion 1, the normalized channel estimation error is calculated
as

e
(nPuC)
k = tr

(
R̃

(nPuC)
k

)
/tr (Rk)

(c)
=

1

L
tr
((
IL+MζkR

T
Uk

◦RBk

)−1(
RT

Uk
◦RBk

))
(41)

=
1

Mζk

(
1− 1

L
tr
((
IL+MζkR

T
Uk

◦RBk

)−1
))

,

where (c) follows after substituting fortr (Rk) and R̃
(nPuC)
k

from (40) and (13), respectively and applying Lemma 2.
Considering that fori = 1, . . . , L

[
IL +MζkR

T
Uk

◦RBk

]
ii
= 1 +Mζk ,

and applying Lemma 3 on the trace at the right hand side
of (41) along with the fact thate(nPuC)

k ≥ 0, the bounds in (15)
follows after some straightforward algebraic manipulations.

D. Proof of Proposition 3

Similar to proof of Proposition 1, we form the covariance
matrix of H̃(PuC)

k as

R̃
(PuC)
k =E

[
vec
(
H̃

(PuC)
k

)
vec
(
H̃

(PuC)
k

)H
]

=Rk −RkP̆
(PuC)
k

·
((
P̆

(PuC)
k

)H
RkP̆

(PuC)
k +σ2

zI

)−1(
P̆

(PuC)
k

)H
Rk

(a)
= δMσ2

k (U
∗
k ⊙Bk)

(
σ2
z

δMσ2
k

(U∗
k ⊙Bk)

H
P̆

(PuC)
k

·
(
P̆

(PuC)
k

)H
(U∗

k ⊙Bk) + I

)−1

(U∗
k ⊙Bk)

H
,

where (a) follows by replacing forRk from (4) and applying
the matrix inversion lemma. The proof completes by noting
that

P̆
(PuC)
k

(
P̆

(PuC)
k

)H
=

ρτ
L

(U∗
k ⊗ I) (U∗

k ⊗ I)
H
,

and applying Lemma 2.

E. Proof of Proposition 4

First, consider that almost surly,Uk has linearly indepen-
dent columns, therefore it is straightforward to show that
(U∗

k ⊗ I)
†
(U∗

k ⊗ I) = I. Hence we can write

tr
(
R̃

(PuC)
k

)
= tr

(
(U∗

k ⊗ I)†Qk

(
(U∗

k ⊗ I)H
)†)

(a)
= tr

(
Qk

(
RT

Uk
⊗ I
)−1
)

,

whereQk = (U∗
k ⊗ I) R̃

(PuC)
k (U∗

k ⊗ I)
H and (a) holds due to

commutative property of trace.
Now, since bothQk and

(
RT

Uk
⊗ I
)−1

are PSD matrices,
we can use Lemma 4 and write

tr (Qk)

tr (Hk)
λ−1
max ≤ σ2

H̃
s2
k

≤ tr (Qk)

tr (Hk)
λ−1
min, (42)

where

λ−1
max , λmin

((
RT

Uk
⊗ I
)−1
)
= (λmax (RUk

))−1 ,

λ−1
min , λmax

((
RT

Uk
⊗ I
)−1
)
= (λmin (RUk

))
−1

.

Moreover, by taking the same steps as in proof of Proposi-
tion 2, it can be shown that

1

1+δMζk

[
1− ǫ

(PuC)
k

δMζk

]+
≤ tr (Qk)

tr (Rk)
≤ 1

1+δMζk
. (43)

By combining the results from (43) and (42), the proof is
completed.
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F. Proof of Corollary 3

First note that whenM → ∞, BH
kBj = 0 for j 6= k. Now,

by substituting forRj and P̆
(PC)
kj into (24) from (4) and the

line after (23), respectively and then using Lemma 2, it is
straightforward to show thatlimM→∞ Qk → 0. This implies
that the inter-UE interference tends to zero when the number
of BS antennas grows large.

In PC, the non-orthogonality of the pilot sequences trans-
mitted from different antennas of a UE leads to intra-UE
interference at the BS. However,RUk

→ IL whenN → ∞,
implying that the precoded pilots are transmitted through the
L paths without interfering with each others. Therefore the
intra-UE interference tends to zero when the number of UE
antennas grows large.

G. Proof of Proposition 5

Note that asM,N → ∞, H̃(x)
k → 0 for x = nPuC,PuC and

PC according to Proposition 2, 4 and Corollary 3, respectively.
Therefore, independent from the pilot transmission scenario,
in the large antenna regimeRzeff = σ2

zIM . Substituting for
Rzeff = σ2

zIM and moreoverRxk
andFk from (30) and (32),

respectively, in (29) yeilds

r =
Td

Tc

E

[
log det

(
IM +

ρd
TdLσ2

z

K∑

k=1

Σk

)]

(a)

≥ Td

Tc

log det

(
IM +

ρd
TdLσ2

z

K∑

k=1

E [Σk]

)

=
LTd

Tc

log

(
1 +

ρd
∑K

k=1 σ
2
k

TdLσ2
z

)
,

(44)

where (a) is due to Jensen’s inequality.
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