
ar
X

iv
:1

60
9.

09
35

8v
3

 [c
s.

IT
]

21
 D

ec
 2

01
6

COMBINING BELIEF PROPAGATION AND SUCCESSIVE CANCELLATION LIST
DECODING OF POLAR CODES ON A GPU PLATFORM

Sebastian Cammerer∗, Benedikt Leible∗, Matthias Stahl∗, Jakob Hoydis‡, Stephan ten Brink∗

∗Institute of Telecommunications, Pfaffenwaldring 47, University of Stuttgart, 70569 Stuttgart, Germany
Email: {cammerer, leible, stahl, tenbrink}@inue.uni-stuttgart.de

‡Nokia Bell Labs, Route de Villejust, 91620 Nozay, France
Email: jakob.hoydis@nokia-bell-labs.com

ABSTRACT
The decoding performance of polar codes strongly depends
on the decoding algorithm used, while also the decoder
throughput and its latency mainly depend on the decod-
ing algorithm. In this work, we implement the powerful
successive cancellation list (SCL) decoder on a GPU and
identify the bottlenecks of this algorithm with respect to
parallel computing and its difficulties. The inherent serial
decoding property of the SCL algorithm naturally limits
the achievable speed-up gains on GPUs when compared to
CPU implementations. In order to increase the decoding
throughput, we use a hybrid decoding scheme based on
the belief propagation (BP) decoder, which can be intra-
and inter-frame parallelized. The proposed scheme combines
excellent decoding performance and high throughput within
the signal-to-noise ratio (SNR) region of interest.

I. INTRODUCTION

Polar codes are proven to be capacity achieving under
successive cancellation (SC) decoding [1] for infinite block
lengths. However, for short lengths, SC decoding shows a
weak performance compared to state-of-the-art LDPC codes
[2]. A major breakthrough in polar decoding for short length
codes was achieved by Tal and Vardy with a successive
cancellation list (SCL) decoder [3]. SCL decoding renders
polar codes into a powerful coding scheme whenever short
block lengths are required [4], as for example for the internet
of things (IoT) or very low latency applications, both cor-
nerstones of the upcoming 5G standard. However, the issue
of the high SCL decoding complexity needs to be solved
before polar codes can become competitive for practical
applications. Besides their excellent decoding performance,
the code structure of polar codes is inherently given by the
concept of channel polarization [1], making them attractive
for upcoming communication standards. Additionally, the
code rate can be freely chosen by appropriately fixing a
fraction of frozen bits.

One of the biggest current trends in the telecommunica-
tions industry is virtualization with the goal of replacingspe-
cialized hardware by software running on commodity servers

[5]. However, performance critical software components,
e.g., signal processing for the physical layer, require the
use of hardware accelerators (GPUs, FPGAs) to satisfy the
strict latency and throughput requirements of next generation
communication systems. Unfortunately, not all algorithmsor
processing steps benefit from acceleration because they are
either difficult to parallelize or the performance gains are
eaten up by the overhead related to memory access. One
of the most processing-resource consuming components of
the physical layer is channel decoding [6]. Thus, an efficient
hardware-accelerated software implementation of a decoder
is of utmost importance for virtualized communication sys-
tems.

In this work we focus on graphical processing unit (GPU)
implementations using theNVIDIA Compute Unified Device
Architecture (CUDA)Framework [7]. For low-density parity-
check (LDPC) codes high throughput gains were observed
for LDPC belief propagation (BP) decoding [8], where
massive parallelization can be done straightforwardly via
parallel node updates. A similar BP algorithm can also be
used for polar code decoding [9] and a correspondingly
high throughput gain was observed in [10] on a GPU.
Nonetheless, the implementation of the SCL algorithm for
parallel computing requires more efforts, as this algorithm
uses recursive updates. According to our knowledge, no
GPU-based SCL decoder is proposed in the literature. Very
recently an implementation of thefast simplified successive
cancellation(fast SSC) decoder was shown in [11], but no
remarkable speed-up could be observed when compared to
CPU implementations1. Although, the overall performance
is impressive, one needs to keep in mind that a quantization
with 8-bit per value (32-bit floating point precision in our
implementation) and no list decoding is assumed, i.e., the

1Remark: Several optimized SC(L) algorithms exist, mostly based on
pruning/unrolling of the decoding graph. We stick to the plain SCL decoder,
as this seems to be the most flexible algorithm (i.e., in termsof the
code rate and variable frozen bit positions). The hybrid scheme works as
well for a SSC(L) implementation of the SCL decoder. In particular for
research applications, full SCL decoding is required without any further
simplifications.

http://arxiv.org/abs/1609.09358v3

decoding complexity increases (linearly) with the list size L
which, typically, is set toL = 32.

In this paper, we identify the bottlenecks of such an
implementation for parallel computing. It turns out that the
SCL algorithm itself has a limited potential for GPU imple-
mentations. Therefore, we propose an alternative approach,
where we combine the SCL decoder together with a belief
propagation (BP) decoder. This concept combines the best of
both worlds, i.e., good error correction capability and high
throughputs. The authors in [12] propose a combination of
SC and BP decoding and also show the possibility of using
the same hardware for both algorithms. This idea is also
similar to the proposed adaptive SCL decoder [13], which
increases the list size whenever decoding fails. However,
these algorithms increase the decoding latency, since two
decoding steps are required, although the average latency
improves. We examine the decoding latency for a given
signal-to-noise ratio (SNR) and for different code rates.

All simulations are performed on anIntel i7-4790K CPU
@ 4.00GHzand aNVIDIA GTX 980 Ti(with 6 GB GDDR5
Memory). We also provide our decoder online as a webdemo
[14], where variable block lengths and arbitrary frozen bit
patterns can be simulated on-the-fly (in real-time) on our
servers.

II. POLAR CODES

The concept of channel polarization [1] transformsN
independent channels into polarized channels by channel
combining and splitting, i.e., a set of more reliable and
a set of less reliable channels can be observed. Thek
most reliable channels are now used to transmit information
bits, while the otherN − k bit-channels are frozen which,
w.l.o.g., are set to zero. For a given code rateR = k/N ,
the k information bits are mapped onto thek non-frozen
positions ofuN , all other positions are frozen. The encoding
process (polar transformation) can be simply described by
a generator matrixG = F

⊗n, whereF⊗n denotes thenth

Kronecker power ofF =

[

1 0
1 1

]

. The transmitted codeword

isx = u ·G. As can be seen in Fig. 1, the resulting encoding
circuit has complexityO(N · logN).

Since the selection of the frozen positions is not the main
topic of the paper, we consider a given (arbitrary) frozen bit
vector f throughout this paper. For more details, we refer
the interested reader to [15].

II-A. SC-List Decoding on GPUs

The SCL decoder utilizes the bitwise-serial decoding
algorithm of the SC decoder [1] and adds a list, holding
up to L of the most probable paths for the estimated
codeword x̂ of length N = 2n, resulting in a overall
decoding complexity ofO(L ·N · log(N)) [3]. Every entry
ℓ ∈ {1, 2, . . . , 2L} of the list is updated for every bit decision
ûℓ,i, with i being the bit position of the estimated message
bit andûℓ being the estimated message vector for list entry

u6

u7

u4

u5

u x

u2

u3

u0

u1

x4

x0

x5

x1

x6

x2

x7

x3

Fig. 1. Polar encoder graph forN = 8; red color indicates
the frozen bit positions.

ℓ. List updates include sorting the branching options for
each path by a metricmℓ,i giving the probability that the
corresponding path is representing the correct estimate of
the transmitted codeword. Hence, paths can get discarded
and replaced by more promising candidates, which results
in the need to duplicate data for newly listed branches
frequently. The SCL decoding algorithm can be split up into
two parts for each decision̂uℓ,i that is made concerning
an unfrozen bit. Log-likelihood ratios (LLR) are given by
LLR (yj) = ln

(

P (yj |xj=0)
P (yj |xj=1)

)

, whereP (yj |xj) denotes the
conditional probability that the channel outputyj is received
while the codeword elementxj was transmitted. First an

LLR (ûi,ℓ) = ln

(

P (y,ûi−1

0,ℓ
|ui=0)

P (y,ûi−1

0,ℓ
|ui=1)

)

is calculated from the

received codewordsy and the previously decided bitŝui−1
0,ℓ

of the respective list entryℓ. Subsequently, the calculated
values are used to decide which of the maximal2L branching
options are kept in the list for the next decoding phase.
Additionally, a cyclic redundancy check (CRC) can be
added, aiding the selection of the estimated codeword after
the last decision step [3]. This further improves the decoding
capabilities of the SCL decoder and results in a negligibly
smaller code rateRcrc = k−c

N
, with c being the number of

CRC parity bits.
For the implementation, the CUDA framework by

NVIDIA is used, which enables the use of commodity graph-
ics hardware for single instruction multiple data (SIMD)
parallel programming [7]. Due to high data dependencies
between the bitwise estimation steps, the algorithm of the
SCL decoder is mostly serial by design. There seems to
be no straightforward approach for a massively parallel
implementation of this particular decoder, which results in
impractical throughputs for a parallel implementation of the
standard SCL decoder. Even though the bitwise decoding
steps cannot be parallelized due to data dependencies, many
of the calculations per step can be parallelized. Also, mul-
tiple list places can be processed in parallel but have to be
synchronized for every decision on an unfrozen bit.

For sorting the2L candidate paths by their probabilities, a
parallel bitonic sort [16] was implemented. Additionally,we

propose a “pruned pseudo sort” to determine theL smallest
path metrics in parallel. This pseudo sort algorithm calcu-

latesdℓ,i =
2L
∑

j=1

H(mℓ,i − mj,i) for all ℓ ∈ {1, 2, . . . , 2L},

with H(x) =

{

0, x < 0

1, x ≥ 0
being the Heaviside function, and

discards all candidates withdℓ,i > L.
Further, the decision aiding mechanism, described in

[17], was implemented to reduce the cases in which the
decoder has to execute the sort and duplicate methods, which
represent the dominant bottleneck reducing the achievable
throughput. Instead, the more reliable (information) bit posi-
tions are estimated without branching the list (according to
their Bhattacharya parameter [1]). For a carefully selected
amount of bits, the decoding performance does not degrade,
while the throughput strongly increases [17].

II-B. Belief Propagation Decoding of Polar Codes

BP decoding of polar codes is a message passing al-
gorithm based on the encoding scheme shown in Fig.
1 with decoding complexityO(n · logn). The transmitted
codeword x̂ and the messagêu can be both estimated
simultaneously. There aren + 1 stages withN nodes per
stage. Each stage consists ofN/2 processing elements (PEs)
which are iteratively passing messages to adjacent nodes.
Each PE connects4 nodes in2 consecutive stages as shown
in Fig. 2, the input/output relation of the PEs is the same as
in Fig. 1. All messages are calculated in the LLR domain.
One decoding iteration consists of two steps, where the soft
messages are updated at each PE (until reaching a maximum
number of iterations) as follows:

1) Update left-to-right messages, calledR-messages, for
stages2, ..., n+ 1

Rout,1 = g(Rin,1, Lin,2 +Rin,2)

Rout,2 = g(Rin,1, Lin,1) +Rin,2

2) Update right-to-left messages, calledL-messages, for
stagesn, ..., 1

Lout,1 = g(Lin,1, Lin,2 +Rin,2)

Lout,2 = g(Rin,1, Lin,1) + Lin,2

whereg (a, b) = ln
(

1+ea+b

ea+eb

)

. For theg (·)-function, a min-

approximationg(a, b) = sign(a) · sign(b) ·min(|a| , |b|) can
be used which is more suitable for hardware implementation
[18]. An advantage of GPU computing is the availability of
many floating-point units (FPU). Thus, we apply the exact
node update-equations with clipping the absolute values of
the LLR values toLLRmax = 20 to ensure numerical
stability.
We initializeLi,n+1 = LLR(yi) andRi,1 = LLRmax · fi.

The final output of the decoder is

LLR (ûi) = Li,1 +Ri,1

LLR (x̂i) = Li,n+1 +Ri,n+1.

PE
Rin,1

Lout,1

Rout,1

Lin,1

Rout,2

Lin,2

Rin,2

Lout,2

Fig. 2. Single processing element (PE) of the BP decoder.

A hard-decision gives the estimated bit-vectors, while for
other applications such as a combined channel-detection,
soft-values may be required and can be easily forwarded.
Additionally, stopping conditions [19] exist, and thus, the
decoding can be done within a few iterations for most of the
frames (in the high SNR region) as soon asx̂ = û ·G. For
this specific setup, a simple CRC on̂u can replace the more
complex re-encoding step, i.e., decoding is stopped whenever
the CRC of û is fulfilled (or a maximum of iterations is
performed).
We apply intra- and inter-frame parallelism, i.e., several
codewords are decoded in parallel, where each single thread
implements one PE. Nevertheless, synchronization after each
stage is required.

III. COMBINING BP AND SCL DECODING

The bit-error-rate (BER) performance of polar codes under
SCL decoding is better than that under BP decoding [4].
However, in terms of suitability of parallelization, the BP
decoder shows a higher potential because all bits can be
calculated in parallel while the latency can be decreased.
This is shown in Fig. 3 and Fig. 5, respectively.

Whenever the CRC after the maximum number of BP
iterations imax does not hold, the codeword is forwarded
to an additional SCL decoding step. It turns out that only
imax = 50 BP iterations are sufficient, otherwise each
decoding failure blocks GPU ressources for a long time.2

SCL decoding could be performed on the CPU as well,
however, the required data transfer produces additional la-
tency overhead and is thus not advisable.

IV. DECODING PERFORMANCE

For a given BP frame-error-rate (FER)γBP,FER and a
(information bit) throughputTBP andTSCL for the BP and
SCL decoder, respectively, the overall throughput can be
approximated (without kernel-call overhead) as

Thyb,theo =
TBP · TSCL

TSCL + γBP,FER · TBP

. (1)

The measured throughput is depicted in Fig. 4, the gap be-
tween theoretical and measured throughput can be explained

2Remark: The overall BER performance does not (significantly) depend
on imax, since we assume that SCL decoding can decode (practically)all
noisy codewords anyway, which could be decoded under BP decoding.

Start

enough
buffer
space?

start BP
decoder
start BP
decoder
start BP
decoder

BP
finished
CWs?

BP
finished
CWs?

BP
finished
CWs?

BP
finished
CWs?

copy failed
CWs to
buffer

copy failed
CWs to
buffer

copy failed
CWs to
buffer

buffer not
empty &

SCLs idle?

start idle
SCL

decoders

start idle
SCL

decoders

start idle
SCL

decoders

SCL
decoder
finished?

all CWs
decoded?

Stop

free buffers
yes

yes

no
no

yes

yes

yes

no

no
no

Fig. 3. Scheduling mechanism of the hybrid decoder (grey
nodes: CPU, green nodes: GPU).

0 1 2 3 4 5

10−5

10−3

10−1

Eb/N0 [dB]

B
it

er
ro

r
ra

te
(B

E
R

)

102

103

104

T
h

ro
u

g
h

p
u

t
[k

B
it/

s]

BP only
SC-List (L = 32)
hybrid (L = 32)

Thyb,theo

Thyb,real

Fig. 4. Hybrid decoder throughputThyb,real measurement,
approximated throughputThyb,theo and BER performance of
the BP, the SCL and the hybrid decoder withN = 4096 and
R = 0.5.

by the kernel-call overhead, which is not considered in (1).A
maximum decoding throughput of34 Mbit/s can be achieved
for N = 4096, L = 32 andR = 0.5. Additionally, it can be
seen that the BER does not differ from the SCL curve.

We need to emphasize that the operation point of channel
codes is typically not in the high BER region (as no reliable
communication is possible) and thus high speed-up gains are
observed in practice. At least for low (and intermediate) BER
applications, e.g., error-floor analysis which requires a lot of
simulation time, this proposal shows a huge improvement by
a factor of 100 and more, when compared to the non-hybrid
implementation of the SCL decoder.

0 1 2 3 4 5

10−2

100

Eb/N0 [dB]

av
g

.
la

te
n

cy
[s

]

LBP

LSCL

Lhyb

(a) average decoding latency

0 1 2 3 4 5

10−2

100

Eb/N0 [dB]

m
ax

.
la

te
n

cy
[s

]

LBP

LSCL

Lhyb

(b) worst-case decoding latency

Fig. 5. Decoding latency of the BP decoderLBP , the
SCL decoderLSCL and the hybrid decoderLhyb. Code
parameters areN = 4096, L = 32, R = 0.5 andimax = 50.

IV-A. Latency

Whenever BP decoding fails, SCL decoding must be
performed; then, the total latencyLhyb increases as shown
in Fig. 5. As the BP frame-error-rate isγBP,FER ≪ 1, the
average latency mainly depends onLBP . The BP decoding
latency is strongly related to the SNR due to the implemented
early stopping mechanism. In the low SNR region it is even
above the SCL latency, which stems from the fact that multi-
ple BP codewords are decoded in parallel, i.e., computation
resources need to be shared. However, when compared to
SCL decoding, the average latency only increases slightly
sinceLBP ≪ LSCL for high SNR, i.e., only a few applied
BP iterations. When compared to other adaptive decoding
concepts such as e.g., an adaptive list size [13], our approach
shows better latency performance in the target SNR region.

V. CONCLUSIONS

In this work, we present a first SCLCUDA imple-
mentation for GPU computing and evaluate the achievable
decoding throughputs. As this algorithm turns out to be very
challenging to speed-up, a combination with BP decoding is
considered. It is shown, that the BP algorithm can be easily
adapted for GPU computing. The decoding throughput of
the novel hybrid approach can be drastically increased, while
the average decoding latency decreases when compared to
SCL decoding. Further, in contrast to LDPC codes, almost
no publications regarding GPU-based polar decoding exist
and we hope that this work inspires other research groups
to further investigate this challenging problem.

VI. REFERENCES

[1] E. Arıkan, “Channel polarization: A method for
constructing capacity-achieving codes for symmetric
binary-input memoryless channels,”IEEE Trans. Inf.
Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] E. Arıkan, N. ul Hassan, M. Lentmaier, G. Montorsi,
and J. Sayir, “Challenges and some new directions in
channel coding,”J. Commun. Netw., vol. 17, no. 4, pp.
328–338, Aug. 2015.

[3] I. Tal and A. Vardy, “List decoding of polar codes,”
IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226,
May 2015.

[4] K. Niu, K. Chen, J. Lin, and Q. T. Zhang, “Polar codes:
Primary concepts and practical decoding algorithms,”
IEEE Commun. Mag., vol. 52, no. 7, pp. 192–203, Jul.
2014.

[5] P. Rost, I. Berberana, A. Maeder, H. Paul,
V. Suryaprakash, M. Valenti, D. Wübben, A. Dekorsy,
and G. Fettweis, “Benefits and challenges of
virtualization in 5G radio access networks,”IEEE
Commun. Mag., vol. 53, no. 12, pp. 75–82, 2015.

[6] N. Nikaein, “Processing radio access network functions
in the cloud: Critical issues and modeling,” inPro-
ceedings of the 6th International Workshop on Mobile
Cloud Computing and Services. ACM, 2015, pp. 36–
43.

[7] NVIDIA, “Performance guidelines,”CUDA C Pro-
gramming Guide, Aug. 2014.

[8] G. Falcao, L. Sousa, and V. Silva, “Massively LDPC
decoding on multicore architectures,”IEEE Trans. Par-
allel Distrib. Syst., vol. 22, no. 2, pp. 309–322, Feb.
2011.

[9] E. Arıkan, “A performance comparison of polar codes
and reed-muller codes,”IEEE Comm. Letters, vol. 12,
no. 6, Jun. 2008.

[10] B. K. Reddy L. and N. Chandrachoodan, “A GPU
implementation of belief propagation decoder for polar
codes,” inProc. Asilomar Conf. on Signals, Systems,
and Computers, Nov. 2012, pp. 1272–1276.

[11] P. Giard, G. Sarkis, C. Leroux, C. Thibeault, and
W. J. Gross, “Low-latency software polar decoders,”
CoRR, vol. abs/1504.00353, 2015. [Online]. Available:
http://arxiv.org/abs/1504.00353

[12] B. Yuan and K. K. Parhi, “Algorithm and architecture
for hybrid decoding of polar codes,” inProc. Asilomar
Conf. on Signals, Systems, and Computers, Nov. 2014,
pp. 2050–2053.

[13] B. Li, H. Shen, and D. Tse, “An adaptive successive
cancellation list decoder for polar codes with cyclic re-
dundancy check,”IEEE Comm. Letters, vol. 16, no. 12,
pp. 2044–2047, Dec. 2012.

[14] B. Leible, M. Stahl, and S. Cammerer, “On-the-fly
Polar Code Bit-Error-Rate Simulations,” Institute of

Telecommunications, University of Stuttgart, Germany,
Oct. 2016, http://webdemo.inue.uni-stuttgart.de.

[15] I. Tal and A. Vardy, “How to construct polar codes,”
IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6562–
6582, Oct. 2013.

[16] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger,
“Fast in-place, comparison-based sorting with CUDA:
A study with bitonic sort,”Concurrency and Computa-
tion: Practice and Experience, vol. 23, no. 7, pp. 681–
693, 2011.

[17] B. Li, H. Shen, and K. Chen, “A decision-
aided parallel SC-list decoder for polar codes,”
CoRR, vol. abs/1506.02955, 2015. [Online]. Available:
http://arxiv.org/abs/1506.02955

[18] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68Gb/s
belief propagation polar decoder with bit-splitting reg-
ister file,” in Proc. IEEE Int. Symp. on VLSI, Jun. 2014,
pp. 1–2.

[19] B. Yuan and K. K. Parhi, “Early stopping criteria for
energy-efficient low-latency belief-propagation polar
code decoders,”IEEE Trans. Signal Process., vol. 62,
no. 24, pp. 6496–6506, Dec. 2014.

http://arxiv.org/abs/1504.00353
http://arxiv.org/abs/1506.02955

	I Introduction
	II Polar Codes
	II-A SC-List Decoding on GPUs
	II-B Belief Propagation Decoding of Polar Codes

	III Combining BP and SCL Decoding
	IV Decoding Performance
	IV-A Latency

	V Conclusions
	VI References

