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ABSTRACT 

In this paper, we are interested in modeling the diffusion of in­
formation in a multilayer network using thermodynamic dif­
fusion approach. State of each agent is viewed as a topic mix­
ture represented by a distribution over multiple topics. We 
have observed and learned diffusion-related thermodynami­
cal patterns in the training data set, and we have used the es­
timated diffusion structure to predict the future states of the 
agents. A priori knowledge of a fraction of the state of all 
agents changes the problem to be a Kalman predictor prob­
lem that refines the predicted system state using the error in 
estimation of the agents. A real world Twitter data set is then 
used to evaluate and validate our information diffusion model. 

Index Terms- Multilayer networks, Kalman-Bucy filter, 
predictor, diffusion network 

1. INTRODUCTION 

Different topics are discussed/diffused in social networks and 
because of the distinct dynamics of these diffusions, agents 
in the social networks are affected in different extents. The 
temporal and spatial dynamics of diffusion have been stud­
ied through sequences of activation nodes and observed as 
spreading cascades in a network [1]. 

The information diffusion process models can be classi­
fied into three major groups, probabilistic models, thermo­
dynamic models, and counting models. NETINF [2], NE­
TRATE [3] and INFOPATH [4] are the probabilistic mod­
els which infer the underlying diffusion network among in­
formation sources using consecutive hit times of the nodes 
by a specific cascade. The main idea behind the thermody­
namic models [5, 6, 7, 8] is that heat will propagate from a 
warmer region to a colder region or gas will move from the 
region with higher density to the region with lower density. 
Modeling the information as heat or gas, we can write the 
rate at which information is changing in agent i as: dft' = 
D Lj A(i, j)('I/Jj - 'I/Ji )- Where '1/J; (t) is the state of the i th 

agent at time t , D is the diffusion constant which reflects the 
amount of information passing from an agent to another agent 
in a small interval of time, and A( i, j) is the i, j element of 
adjacency matrix. The counting models [9] form counting 

processes to find the number of nodes in each group of sus­
ceptible or infected nodes. SIS [ 10] and SIR [ 11] models are 
two of the well-known ones in this group. 

One central challenge in modeling information diffusion 
is to understand the structure of the cascades; the existence 
of unknown external influence factors and unclear graph con­
nections obscures this query. In this paper, we have for the 
first time modeled the simple diffusion on a general multi­
layer network and applied the model to publication networks 
and social media data. 

The multilayer network connectivity structure has been 
proposed and studied in [12, 13, 14, 15, 16], in particular, a 
two-layer network has been studied in [7] under the Lapla­
cian dynamics. However, the information flow following a 
Laplacian process on a multilayer network in its most general 
form has yet to be studied. A multilayer network (illustrated 
in Fig. I) takes into consideration additional connection possi­
bilities when the true connections for the agents are uncertain. 
For example, social media such as biogs consist of a set of 
documents generated by bloggers over time; these documents 
may share some topical similarities in spite of the different 
sources they are generated from. It is possible to structure 
the document similarities into the relational property as a net­
work of documents. Then one can further associate this layer 
of connection with the connection of bloggers ( e.g., according 
to following-follower connection). This leads to a multilayer 
network model where information diffuse both within a single 
layer and across the inter-layers. The additional paths due to 
the multilayer structure will diffuse the information at a sec­
ondary degree, specifically, an absence of a direct connection 
between two bloggers may be reestablished by counting the 
topical similarities between the documents they are associated 
with. We will refer to the resulting network from a multilayer 
construction as an interconnected network of heterogeneous 
nodes. 

In a community-like network setting with common inter­
est, such as a network of professors with their publications, 
online forum community, we have observed diffusion related 
thermodynamical patterns. It turns out that the simple diffu­
sion model on the interconnected network structure is very 
effective in predicting the future state of the agents. 



(a) Single layer network (b) Multiplex network ( c) Interconnected network 

Fig. 1: a) A single layer. Dashed edges show connections among bloggers. b) A multiplex network. The top layer is based on the hyperlink inter-connectivity 
of the bloggers, and the bottom layer is the friendship network between the bloggers. The straight inter-layer edges are showing that the bloggers are the same 
people in both layers. c) An interconnected network of heterogeneous nodes of agents and documents. The dotted edges are showing which blogger (agent) 
has produced which document. 

The paper is organized as follows: We propose our new 
approach in Section 2, and present substantiating experimen­
tal results in Section 3. We finally provide the concluding 
remarks in Section 4. 

2. THE PROPOSED METHOD 

In closed systems, all changes in the states of agents are a 
result of interaction of the agents in the network. In a single 
layer network, a diffusion process based on heat equation has 
been studied in [5 , 6, 7, 8). Independent of the nodes in a 
multilayer network being agents or documents, we generalize 
the single layer diffusion process to: 

dX - = - .C.X. 
dt 

(I) 

Where X is a N x T matrix, N being the number of nodes 
in the multilayer network, and each row of X is storing a T­
dimensional state vector for each node . .C. is a N x N supra­
Laplacian matrix defined in proposition(!). 

Proposition 1 We can generally write the supra-Laplacian 
matrix of an M layer multiplex network with N nodes in each 
layer as Eqn. (2). Where .C.L is the supra-Laplacian matrix 
of the intra-layer connectivity and .C. 1 is the supra-Laplacian 
matrix of the inter-layer connectivity. .C.L may be in turn, 
written as direct sum of the Laplacian matrices of the inde­
pendent intra-layer connectivities: 

M 

C L= EB D ("') L (a) = 
o=l 

.C. = .C.L + .C.1 , 

[ D<' IL<'I 

(2) 

DIMILIM) ] · 

(3) 

The D (i) is the intra-layer diffusion constant of nodes in layer 
i, and L (M) is the Laplacian matrix of the intra-layer connec­
tivity of layer M . The inter-layer supra-Laplacian can be 
written as .C.1 = I:~=l (JC'f - W'f ), where the K'f is the 
diagonal inter-layer degree matrix of layer o:, showing the 
inter-layer degree of the nodes in layer o: and the W'f is the 
inter-layer connectivity matrix of the nodes in layer o: with 
the nodes in the other layers. The JC'f and W'f are formally 
defined in Eqns. (4 and 5) respectively: 

M 

K'f = e co:.o:J ® ( L D (o:,f3J x (o:,f3J) , (4) 

/3=1/3,;fo: 

M 

W'f = L (e(o:,/3) ® (D (o:,/3) w (o:,/3))), (5) 

/3=1/3,;fo: 

where D (o:,/3) is the inter-layer diffusion constant of agents 
from layer o: to agents in layer /3, K (o:,/3) is the diagonal ma­
trix reflecting the degree of each node in the inter-layer con­
nectivity between layer o: and layer /3, w<o: ,/3) quantifies the 
inter-layer connectivity of the layer o: nodes to the layer /3 
nodes and e(a,/3) is an all 0, M x M, matrix with an only 1 
element in ( o:, /3). ® denotes the kronecker product. 

Proof of proposition (1) can be found in the extended ver­
sion of the paper [17]. 

Much of the existing work in information diffusion mod­
els have a limited scope (of agents, documents, parameters) 
when predicting the future state of the nodes. More specifi­
cally, agent states may be varied by external sources which are 
not captured in the network, or by some agent actions which 
may even to some extent, conflict with the model prediction. 
Considering an interconnected network with supra-Laplacian 
matrix .C. , to address this additional auxiliary input, we are 
further generalizing Eqn. (I) to an open system model as fol­
lows: 

dX(t) = - .C.X(t)dt + :EdB(t). (6) 



B(t) is a T x T matrix, whose columns are T-dimensional 
vectors with components as independent standard Brownian 
motions of variances u i and :E is N x T matrix, and each 
row shows the u i vector for agent i. Inspired by the Ornstein­
Uhlenbeck (0.U.) process [18], Eqn. (6) describes the veloc­
ity of the topical-state of the nodes as a Brownian motion in 
presence of friction. In other words, to describe the uncer­
tainty due to external effects, we proceed to view the whole 
system as a massive Brownian particle. The drift term (first 
term in right-hand side of Eqn. (6)), however, moves the ve­
locity from a martingale state of u idB( t) towards a consen­
sus (captured by the drift term). Solution of the differential 
equation in Eqn. (6), can be expressed as: given the states of 
nodes at time t0 we can predict the states at time t1 , t1 > t0 

as follows: 

Where e.C(s-t, +to) is a matrix exponential and itself is a N x 
N matrix. 

Our proposed learning procedure will evaluate the diffu­
sion constants in the supra-Laplacian matrix C as well as the 
:E matrix. To that end, we proceed to minimize the Frobenius 
norm of the difference between X and it's predict X, resulting 
from, 

(8) 

Solving this optimization problem helps us decompose the 
predicted matrix into two main components on the right-hand 
side of Eqn. (7), the first term representing the interactions 
in the network, while the second quantifying the uncertainty 
which results from auxiliary inputs into the system. 

2.1. Diffusion Network Estimation (Leaming the Supra­
Laplacian Matrix) 

The supra-Laplacian matrix C which we use in Eqn. (6) for 
state prediction, is a result of the network connectivity (refer 
to Eqn. (2)). In practice, hidden connections are pervasive, in­
troducing uncertainty in the prediction, which are causing the 
information diffusion to require more than the predefined, ex­
plicit connections from the network. To that end, consider ob­
servations ofX(t) overt E [O, t 1J, denote x(t) := vec(X(t)), 
the vectorization of X(t) to obtain a vector differential system 
in order to learn the supra-Laplacian matrix C of Eqn. (6): 

t(t) = Ax(t) + w(t) , o :S t :S ti, 

and we have A = Ir @ (- C), the Kronecker product of T­
by-T identity matrix with (-C) and w(t) is the vectorization 
ofw(t) = :Ed!~t). 

We consider the simple cost function J = !t:r E, where 

E = x - i, and hence for the estimation A we have A = 'Y (x -

i)xr (derivative of J with respect to x) , where the estimation 

i(t + 1) = cAx(t) , and~/ > 0 is chosen appropriately as the 
scaling gain. In optimization iterations, the estimated value 
of A at ith iteration is as follows: 

We use A.0 =Ir @ (-C), the graph Laplacian of the explicit 
following-follower network (as initialization). The learned A 
may, however, not be exactly structured as Ir @ (-C), due 
to dependence of topics in the state space, as well as the non­
linearity and non-homogeneity of the diffusion. The resulting 
error E shall be considered for the estimation of the noise in 
the Kalman-Bucy filter as discussed next. 

2.2. A Refined Prediction: Kalman-Bucy Filtering 

In prediction applications, the actual states of some of the 
nodes are sometimes known, and we want to predict those 
of all remaining nodes. An example of this may be seen in 
social networks, where state of the hub nodes, such as fa­
mous people or users with less restrictive privacy policies are 
known to the public, and one is interested in predicting the 
state of other less accessible users. Having partial knowledge 
of the states of a fraction of the nodes in the network, changes 
the state prediction problem to a Kalman predictor problem, 
and helps to refine the predicted states using a Kalman filter. 
We propose a Kalman-Bucy filter as the optimal linear pre­
dictor for our system, and we write the observation equation 
as y(t) = (Ir @H)x(t) +v(t), with Has a diagonal indicator 
matrix with 1 in all the observed entries, and O in all other 
entries. A having been learned (see above Section), Kalamn­
Bucy equations may be written as: 

t(t) = Ax(t) + w(t) , 

y(t) = 1lx(t) + v(t) , 

(9) 
(10) 

where 1l = Ir @ Hand the noises w(t) and v(t) are zero­
mean white (temporally) processes, i.e, E(w(t)w(sf) = 

Qtc5(t - s), E(v(t)v(sf) = Rtc5(t - s), E(w(t)v(sf) = O. 
By considering small time intervals on discretization of the 
linear continues time system ( c5t = 1 ), one can write the state 
equation as x(t + 1) = Fx(t) + w(t), where F =I+ A. 

Having Eqn. (10) and x(t + 1) = Fx(t) + w(t) as the 
state and observation equations respectively, we can predict 
and refine the predicted states of the nodes using Algorithm 
( 1 ). The "learning phase" of the Algorithm (1) is estimating 
the supra-Laplacian matrix A (see above Section). The sec­
ond phase of the algorithm, is refining the estimated state of 
the nodes. Note that Rt is the covariance of the observational 
error, and Xt 2 1t, denotes the linear prediction of x at time t2 

given observations up to and including time t 1• The state co­
variance Ilt satisfies the Riccati equation: 

• A Ar r 
Ilt = Ailt + IltA + Qt - GtRtGt . (11) 



Algorithm 1 
Leaming phase: 

1: x(t) +- vec(X(t)) 
2: A f- Ir 0 (-C) t> Initial state. 
3: repeat: 
4: i(t + 1) +- eAx(t) 

s: A +- , (x -. i)xr 
6: A +-A + A 
7: until f fx - if f 2 < r,. t> Convergence criteria. 

Kalman filter prediction on test data: 

I: Re,t f- Rt + 1lIItlt- l1lT t> Updating. 

2: xt
1
t +- xt it-1 + rrt1t-11lrR;,; [j\ -1lxt1t-1l 

3: Ilt lt f- Ilt lt - 1 - II11t- 11lTR;,;1lIIt lt- 1 
4: Ff- I+ A 

t> Predicting. 

While the Gt is the Kalman gain Gt = IIt 1lTRt 1 . For 
simplicity, we further assumed that the errors in the state pre­
diction and observation are Gaussian processes. 

The designed algorithm shows the discrete time, state up­
date of the Kalman predictor. The estimated states of the 
available nodes, 1li(t), are compared with the state of the 
available nodes, y(t) , as measurements observed over time, 
to evaluate the extent of statistical noise and other inaccura­
cies in predicting phase. 

3. EXPERIMENTS 

Fig. (2a) shows the prediction based on a network of 79 pro­
fessors. A three-layer network is formed with the first layer 
showing if the two professors have ever published in the same 
venue or not. The second layer being the research group 
membership of these professors and the third layer showing 
the similarity network between the papers published by these 
professors (extracted by LDA [19] topic modeling of the ab­
stract of the papers with dimension I 0). State of the agents 
are the I 0-dimensional topical vectors which are the mean 
of the topical representation of the documents produced by 
the agents . Over time more documents are getting added and 
the topical state of the agent are changing. The error measure 
used in all the experiments is the Frobenius norm of the differ­
ence of the estimated state of the nodes and ground truth state 
of the nodes normalized by the Frobenius norm of the ground 
truth matrix. As may be seen in Fig. (2a), the prediction 
method based on a three-layer network achieves a lower er­
ror than the prediction based on a single-layer network. Note, 
the single-layer network does not help in predicting the top­
ical states of the agents. The reason is that there are only 79 
agents in this experiment and the co-authorship network be­
tween the agents is not particularly suited to predict the future 
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Fig. 2: (a) Experiment for college professor network with 
1000 publication documents . (b) Experiment over Twitter 
network with 5000 agents and 8 Hashtags. 

state of the agents. 

Fig. (2b) is an experiment based on 5000 Twitter users. 
The first layer is a network among users and the second 
layer is a network between eight Hashtags used in June 2009. 
The Hashtags are as follows: #jobs, #spymaster, #neda, 
#l40mafia, #tcot, #musicmonday, #lranelection, #iremember 
showing how much these Hashtags are similar to each other 
by counting and normalizing the number of times they have 
appeared in the same tweet. The average prediction improve­
ment achieved by the two-layer network is about 13 percent. 
The prediction by first estimating the Laplacian matrix, has 
about 15 percent improvement over the single layer prediction 
method. 

Fig. (3) displays the results of an experiment in a small 
single layer dataset with 300 Twitter agents available. Figs. 
(3a), (3b), (3c) and (3d) are the same experiments with dif­
ferent observation sizes of 10 percent, 15 percent, 20 percent 
and 25 percent of state of all the agents in the network re­
spectively. As may be seen in the figures , the prediction error 
based on the estimated Laplacian matrix yields a lower error 
than fully trusting the connectivity structure in the network. 
This as expected, is due to static connectivity network (usu­
ally demonstrates the physical or online relation among the 
agents), falling short on affecting the actual underlying diffu­
sion structure on the network. Having a prior partial knowl­
edge of the agents enabled us to use a Kalman predictor to 
further refine our prediction. 
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Fig. 3: Experiment over Twitter network with 300 agents. 
Predicting the state of the agents using a fixed Laplacian ma­
trix, using an estimated Laplacian matrix, and Prediction us­
ing Kalman filter with IO percent, 15 percent, 20 percent, and 
25 percent of observation of state of all the agents in Figs. (a), 
(b), (c) and (d) respectively. 

4. CONCLUSIONS 

In this paper, we proposed a signal processing technique to 
model and predict states in a multilayer network. The actual 
diffusion network has been learned by looking at previous dif­
fusion data and has been applied to predicting the future states 
of agents in the network. Having partial observation of the 
state of the agents changes the state-space dynamics model to 
a Kalman filter problem. The Kalman filter allows us to fur-

ther refine our state prediction by learning over the prediction 
error of the observed subset. In future work, we will explore 
the information diffusion problem with a goal to develop nec­
essary tools to analyze diffusion in more complex network 
structures. 
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