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ABSTRACT

Phaseless super-resolution refers to the problem of super-
resolving a signal from only its low-frequency Fourier mag-
nitude measurements. In this paper, we consider the phaseless
super-resolution problem of recovering a sum of sparse Dirac
delta functions which can be located anywhere in the con-
tinuous time-domain. For such signals in the continuous do-
main, we propose a novel Semidefinite Programming (SDP)
based signal recovery method to achieve the phaseless super-
resolution. This work extends the recent work of Jaganathan
et al. [1], which considered phaseless super-resolution for
discrete signals on the grid.

Index Terms— super-resolution, microscopy, phaseless,
continuous domain, atomic norm

1. INTRODUCTION

In engineering and science, improving the accuracy and
precision of measurement tools, such as microscopy, X-ray
crystallography and MRI, is of great interest. However, due
to the physical limitations in measurement tools, sometimes
we can only indirectly or partially observe a signal of in-
terest, e.g., obtaining only low-frequency information, only
low-resolution image, or only the magnitude of a signal. The
microscope is a good example of a measurement tool hav-
ing such physical limitations ranging from low-frequency
measurements to phaseless measurements [2–6].

To overcome the limitation of low-frequency measure-
ments, researchers have investigated recovering a signal from
only its low-frequency Fourier measurements, and referredto
it as super-resolution. The authors in [7] and [8] proposed
SDP based methods for the recovery of signals in the contin-
uous domain under certain separation conditions, by employ-
ing Total Variation Norm Minimization (TVNM)andAtomic
Norm Minimization (ANM)respectively. Besides, to address
the issue of phaseless measurements, people have studied the
phase retrievalto obtain phase information from the mag-
nitude measurements of a signal [9, 10]. Recently, in [11],
the authors proposed a trace-norm minimization to solve the
phase retrieval problem with the use of masks.

Super-resolving a signal from only magnitudes of low-
frequency Fourier measurements is often ill-posed due to lack

of both phase information and high-frequency information;
and hence it is a challenging problem. The authors in [1, 12]
considered thephaseless super-resolutionaiming at recov-
ering signals with only low-frequency magnitude measure-
ments. In the noiseless setting, the authors in [12] proposed a
combinatorial algorithm for signal recovery using only low-
frequency Fourier magnitude measurements, but this algo-
rithm requires additional distinguishing conditions on the sig-
nal impulses. In the noisy setting, this combinatorial algo-
rithm suffers from error propagation. Instead of assuming the
distinguishing conditions on signals, the authors in [1] used
masks to obtain different types of magnitude measurements.
The authors provably showed that under appropriate choice
of masks, an SDP formulation can be used to recover time-
domain impulse signals on the discretized grid.

In this paper, we consider super-resolving time-domain
impulse signals located off the grid from only low-frequency
Fourier magnitude measurements. To tackle the continuous
parameter domain, we propose a novel SDP formulation,
employing ANM to recover signals from Fourier magnitude
measurements. For example, our approach applies to the
magnitude measurements used in [1, 11]. In numerical ex-
periments, we show the successful recovery of signals in
the continuous domain from only low-frequency magnitude
measurements. Furthermore, we compare our algorithm to
a simple combining algorithm performing phase retrieval
followed by ANM. Our method shows better recovery per-
formance than the simple combining algorithm. In the future
work, we will consider the noisy magnitude measurement
case.

Notations: In this paper, we denote the set of complex
numbers asC. We reserve calligraphic uppercase letters for
index sets, e.g.,N . We use∣N ∣ as the cardinality of the index
setN . We use the superscripts∗, T , andH to denote con-
jugate, transpose, and conjugate transpose respectively.We
reservei for the imaginary number, i.e.,i2 = −1. We denote
a time-domain signal as a lowercase letter, and its frequency-
domain signal as its uppercase letter. To denote a ground true
signal, we use the superscripto, e.g.,xo. For the index of a
vector and a matrix, we start with the index0; hence, we de-
note the first element of the vectorX asX0, and the top-left
element of a matrixQ asQ0,0.
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2. PROBLEM FORMULATION AND BACKGROUND

Let xo(t) be a sum of Dirac functions expressed as follows:

x
o(t) = k∑

j=1

c
o
jδ(t − toj), (2.1)

whereδ(t) is the Dirac delta function,coj ≠ 0 ∈ C, andtoj ∈
[0,1). Its Fourier transform is given by:

X
o
f = k∑

j=1

c
o
je
−i2πftoj = k∑

j=1

∣coj ∣a(toj , φo
j)f , f ∈ N , (2.2)

wheref ∈ N = {0,1, ..., n − 1}, a(toj , φ
o
j) ∈ C

∣N ∣ is an
atom vector, with thef -th element given bya(toj , φ

o
j)f =

e−i(2πft
o
j−φ

o
j). Simply,Xo = V oco, whereXo ∈ Cn, V o =

[a(to1,0), ..., a(t
o
k,0)], andco = [∣co1∣e

iφo
1 , ..., ∣cok ∣e

iφo
k]T . We

also define the minimum separation ofxo(t), denoted by△t,
as the closest distance between any two different time value
toj ’s in cyclic manner [7, 8], i.e.,

∆t = min
to
i
,to

j
∈[0,1), i≠j

∣toi − toj ∣. (2.3)

The goal here is to findxo(t) from the low-frequency
Fourier magnitude measurements. We state the phaseless
super-resolution problem with masks as follows:

Find x(t)
subject toZ[r, l] = ∣ ∫ 1

0

Dr(t) k∑
j=1

c
o
jδ(t − toj)e−i2πlt

dt∣, (2.4)

for −R ≤ r ≤ R andl ∈ N ,

whereZ[r, l] is thel-th frequency magnitude obtained by us-
ing ther-th mask functionDr(t). Depending on the mask
functionDr(t), one can have different types of magnitude in-
formation. For example, if we choose1 + e−i2πt for Dr(t),
we have∣Xo

l +X
o
l+1∣, l ∈ N .

In [1], Jaganathanet al. consider the case when the signal
xo(t) is located on the grid, i.e.,toj ∈ {0,1,2, ....n − 1}. By
n-point DFT, (2.4) is equivalent to

Find x

subject toZ[r, l] = ∣⟨fl,Drx⟩∣, (2.5)

for −R ≤ r ≤ R andl ∈ N ,

wherex ∈ Cn is a complex valuedk-sparse vector,Dr ∈ C
n×n

is a diagonal matrix, andfl is the conjugate of thel-th col-
umn of then point DFT matrix. The authors in [1] proposed
the following semidefinite relaxation-based program for the
phaseless super-resolution in the discrete domain by denoting
Y = xxH and relaxing the rank-1 constraint onY :

minimize
Y

∣∣Y ∣∣1 + λTr(Y )
subject toZ[r, l]2 = Tr(DH

r flf
H
l DrY ), (2.6)

for −R ≤ r ≤ R, l ∈ N , andY ⪰ 0,

for someλ > 0.
This paper makes no assumption oftoj being on the grid.

In the next section, we propose an ANM based semidefinite
relaxation of (2.4) to deal with impulse functions off the grid.

3. PHASELESS SUPER-RESOLUTION IN THE
CONTINUOUS DOMAIN

We define the atomic norm of a vectorX ∈ C∣N ∣ as follows:

∣∣X ∣∣A = inf{∑
j

∣cj ∣ ∶Xl =∑
j

∣cj ∣a(tj , φj)l, tj∈[0,1),

φj∈[0,2π)
}. (3.1)

We have the following new proposition for the atomic norm:

Proposition 3.1. For anyX ∈ C∣N ∣,N = {0,1, ..., n − 1},

∣∣X ∣∣2A = inf
u,s
{ 1

∣N ∣sTr(Toep(u)) ∶ [Toep(u) X

XH s
] ⪰ 0}, (3.2)

where Tr(⋅) is the trace operator, and Toep(u) is the Toeplitz
matrix whose first column isu = [u0, u1, ..., un−1]

T . More-
over, suppose after the Vandermonde decomposition [13–15],
Toep(u) = V DV H , whereV = [a(t1,0), ..., a(tr,0)] andD
is a positive diagonal matrix. Then, there exists a vectorc

such thatX = V c and∑j ∣cj ∣ = ∣∣X ∣∣A.

Proposition 3.1 is similar to Proposition II.1 in [8]; how-
ever, Proposition 3.1 considers the trace ofsToep(u) instead
of the sum of trace of Toep(u) ands. Proposition 3.1 is es-
sential to derive our new SDP formulation handling phaseless
measurements. For readability, we place the proof of Propo-
sition 3.1 in Appendix.

Motivated by Proposition 3.1, we propose the following
squared atomic norm minimization for the phaseless super-
resolution in the continuous domain, simplyphaseless ANM:

minimize
X

∣∣X ∣∣2A
subject toar(X) = br, r = 1,2, ..., q, (3.3)

where q is the total number of magnitude measurements,
ar(X) is the magnitude mapping function,∣⟨ar,X⟩∣, ar ∈
C
∣N ∣, andbr’s are magnitude measurement results.

From Proposition 3.1, we can change (3.3) to

minimize
u,X,s

1

∣N ∣ sTr(Toep(u))

subject toU ≜ [Toep(u) X

XH s
] ⪰ 0,

ar(X) = br, r = 1,2, ..., q, (3.4)

whereu,X ∈ C∣N ∣ ands ∈ C. From the positive semidefinite-
ness ofU , s ≥ 0, and Toep(u) ⪰ 0. Besides, ifXj ≠ 0, j ∈ N ,
thens ≠ 0 from the non-negativeness of all principal minors
of U [16]. However, because of the magnitude constraints,
(3.4) is a non-convex program.



By the Schur complement lemma [17],U ⪰ 0 implies
sToep(u)−XXH ⪰ 0. SincesToep(u) = Toep(su), by defin-
ing Q = XXH andu′ = su, and getting rid of the rank con-
straint onQ, we have the following SDP relaxation for the
phaseless ANM:

minimize
Q⪰0,u′

1

∣N ∣Tr(Toep(u′))

subject to Toep(u′) −Q ⪰ 0,
Ar(Q) = b2r, r = 1,2, ..., q, (3.5)

whereAr(Q) is a mapping function, Tr(ArQ). Here,Ar =
ara

H
r .
After solving (3.5), we can find the optimal̂Q and op-

timal Toep(̂u). Our analysis of (3.5) in the following sec-
tion shows that under certain conditions,Q̂ = XoXoH . We
can recoverXo up to global phase by the eigenvalue decom-
position of Q̂. More importantly, because of the structure
of Toep(̂u) = V oDV oH for some diagonal matrixD, we
can apply any parameter estimation method such as Prony’s
method [18–20] or a matrix pencil method [21, 22] to find the
time locationtoj ’s.

4. PERFORMANCE ANALYSIS

We first consider the analysis of (3.5) given a rank-1 matrixQ.
And then, we provide the analysis of (3.5). Finally, we look
at one scenario having magnitude measurements from a set of
masks, in which (3.5) provides the desired signal recovery.

Theorem 4.1.For a given rank-1 positive semidefinite matrix
Q = XXH , X ∈ C∣N ∣, the following optimization problem
provides the squared atomic norm ofX , i.e., ∣∣X ∣∣2A:

minimize
u

1

∣N ∣Tr(Toep(u))

subject to Toep(u) −Q ⪰ 0. (4.1)

Proof. We can prove it by using Proposition 3.1. Defining
u = u′s, wheres > 0 is a scalar. Then we can re-state the con-
straint asToep(u′) − 1

s
XXH ⪰ 0. By the Schur complement

lemma, we have the optimization problem in Proposition 3.1.
Therefore, from Proposition 3.1, the optimal value of (4.1)is
the same as∣∣X ∣∣2A.

Corollary 4.2. If (3.5) gives a rank-1 solution toQ, then (3.5)
minimizes the squared atomic norm ofX among all vectors
X satisfying the given constraintsar(X) = br, r = 1,2, ..., q.

Proof. From Theorem 4.1, (3.5) provides the minimum
squared atomic norm ofX among all vectorsX satisfying
the constraintsar(X) = br, r = 1,2, ..., q.

Let us consider the case when we have low-frequency
Fourier magnitude measurements from a set of masks. The
main difference between [7, 8] and our setting is that we have
only magnitude measurements, instead of measurements of-
fering both phases and magnitudes.

Theorem 4.3. Given the magnitude measurements∣Xo
j ∣,

∣Xo
j + Xo

j+1∣, and ∣Xo
j − iXo

j+1∣, j ∈ N = {0,1, ..., n − 1},

(3.5) provides the unique solutionQ =XoXoH , andxo(t) is
uniquely obtained up to global phase if the following condi-
tions hold:Xj ≠ 0, ∀j ∈ N , and∆t ≥ 4/∣N ∣.

Proof. Given magnitude data,∣Xo
j ∣

2, ∣Xo
j+1 ∣

2, ∣Xo
j +X

o
j+1∣

2,
and ∣Xo

j − iX
o
j+1∣

2, we can findQj,j, Qj+1,j+1, Qj,j+1 and
Qj+1,j , which are the elements of the diagonal, sub-diagonal,
and super-diagonal of the matrixQ, by simply solving lin-
ear equations onQ together. From Lemma 6.1 in Appendix
6.2, we can uniquely recoverQ = XoXoH andXo up to
global phase. According to Proposition 3.1 and Theorem
4.1, (3.5) withXo is essentially the same as the optimization
problem dealing with the standard ANM [8] or TVNM [7].
Therefore,(3.5) provides uniquexo(t) up to global phase if
the separation condition holds, i.e.,∆t ≥ 4/∣N ∣.

5. NUMERICAL EXPERIMENTS

We compare our phaseless ANM against the standard ANM
[8] using measurements offering both phases and magnitudes,
as well as against a simple algorithm which first performs the
phase retrieval [11] and then applies the standard ANM [8] to
recover the impulse functions from the recovered signal using
the phase retrieval. We use CVX [23] to solve (3.5).

Fig. 1 (a) and (b) show the probability of successful re-
covery from the standard ANM and the phaseless ANM re-
spectively. We conducted 50 trials for each parameter setting
and measured the success rate. At each trial, we chose one
time impulseto

1
uniformly at random in[0,1), and another

time impulseto
2

by adding the separation∆t to to
1

in the cyclic
manner. We sampled the real part and imaginary part of time
coefficientscoj ’s uniformly at random in (0,1). We consider
low frequencies, i.e.,M = {0,1, ...,m − 1}, wherem < n,
M ⊆ N . For a set of masks in the phaseless ANM, we use
the same masks as those of Theorem 4.3 over the index set
M. The x-axis represents the separation condition∆t varied
from 1/n to 11/n, and y-axis is the number of low-frequency
Fourier measurementsm, varied from2 to 30. In fact, for the
phaseless ANM, the number of magnitude measurements is
3m − 2. We evaluated the recovery performance for the sig-
nal dimensionn = 32. We calculated the Euclidean distance
between the estimated and true time locations. If the distance
is less than10−3, then we consider the estimation success-
ful. Numerical experiments show that our phaseless ANM
can find the exact time locations in the continuous domain
with the same performance as the standard ANM. For large
k, e.g.,k = 10, our method also provides the same perfor-
mance as the standard ANM. We omit the simulation results
in this paper due to the space limitation.

One can think of a simple method conducting the phase
retrieval first, and then doing the standard ANM. To compare
our algorithm with this simple method, we further carried out



Fig. 1. The probabilityP of successful recovery by varying the
separation condition∆t and the number of measurementsm when
n = 32. (a) Standard ANM. (b) Phaseless ANM

Fig. 2. The probabilityP of successful recovery by varying the
number of magnitude measurementsq and sparsityk whenn = 32.
(a) Phase retrieval and then standard ANM (b) Phaseless ANM

numerical experiments by varying the number of magnitude
measurementsq and the number of sparsityk in (2.1). In this
simulation, instead of using a set of masks used in Theorem
4.3, we randomly chose a vectorar for each magnitude mea-
surement in (3.3). Fig. 2 (a) and (b) show the probability of
successful recovery from the simple combining algorithm and
the phaseless ANM respectively. The x-axis is the number of
magnitude measurementsq, and y-axis is the number of spar-
sity k. With randomly chosen magnitude measurements, our
method outperforms the simple combining algorithm.

6. APPENDIX

6.1. Proof of Proposition 3.1

We follow the proof of [8, Proposition II.1].

Proof. Let us denote the optimal value of the right hand side
of (3.2) by SDP(X). In order to show∣∣X ∣∣2A = SDP(X), we
will show that (1)∣∣X ∣∣2A ≥ SDP(X) and (2)∣∣X ∣∣2A ≤ SDP(X).

The proof of (1) is easily shown by considering a feasible
solution of SDP(X). ForX = ∑j ∣cj ∣a(tj , φj), by choosing a
feasible solution, Toep(u) = ∑j ∣cj ∣a(tj , φj)a(tj , φj)

H , and
s = ∑j ∣cj ∣, we have

[Toep(u) X

XH s
] =∑

j

∣cj ∣ [a(tj , φj)
1

] [a(tj , φj)
1

]H ⪰ 0.

For this feasible solution, 1

∣N ∣
sTr(Toep(u)) = (∑j ∣cj ∣)

2,

which is ∣∣X ∣∣2A. Thus, SDP(X) ≤ ∣∣X ∣∣2A.

For the proof of (2), we will show that for anyu, s, and
X , 1

∣N ∣
sTr(Toep(u)) ≥ ∣∣X ∣∣2A. Suppose for someu, s ≠ 0, and

X , the matrixU in (3.4) is positive semidefinite. From the
positive semidefinite condition, we have Toep(u) ⪰ 0 ands >
0. From the Vandermonde decomposition [13–15], for any
positive semidefinite Toep(u), we have Toep(u) = V DV H ,
whereV = [a(t1,0) a(t2,0), ...a(tr,0)], andD is a diag-
onal matrix havingdj as its j-th diagonal element. Since
V DV H = ∑

r
j=1 dja(tj ,0)a(tj,0)

H and ∣∣a(tj ,0)∣∣22 = ∣N ∣,
we have 1

∣N ∣
Tr(Toep(u)) = Tr(D). Also, from the Vander-

monde decomposition andU ⪰ 0, X is in the range space
of V ; in fact, if X is not in the range ofV , we can always
find a vectorz such thatzHUz < 0. Therefore,X = V w =
∑

r
j=1 wja(tj ,0), wherew ∈ Cr. By the Schur complement

lemma [17],U in (3.4) is expressed as follows:

V DV
H − 1

s
V ww

H
V

H ⪰ 0. (6.1)

It is noteworthy that we can always find a vectorq such that
V Hq = sign(w), wheresign(w)Hw = ∑

r
j=1 ∣wj ∣, by choos-

ing q = V (V HV )−1sign(w). This is becauseV H has full
row rank. By choosingq such thatV Hq = sign(w), we have

Tr(D) = qHV DV
H
q ≥ 1

s
q
H
V ww

H
V

H
q = 1

s
(∑

j

∣wj ∣)2,
where the inequality is from (6.1). Therefore, we have

1

∣N ∣sTr(Toep(u)) = sTr(D) ≥ (∑
j

∣wj ∣)2 = ∣∣X ∣∣2A.
If s = 0, from the sufficient and necessary condition for

the positive semidefiniteness of a Hermitian matrix, all ofU ’s
principal minors need to be non-negative [16]. Thus,Xj = 0,
∀j ∈ N . In this case, Proposition 3.1 still holds.

6.2. Lemma for the positive semidefinite matrixQ

Lemma 6.1. LetQ ∈ C∣N ∣×∣N ∣, andXo ∈ C∣N ∣. Suppose (1)
Q ⪰ 0, (2)Qj,j = Q

o
j,j, Qj,j+1 = Q

o
j,j+1, andQj+1,j = Q

o
j+1,j ,

j ∈ N = {0,1, ..., n − 1}, whereQo = XoXoH , (3) Xo
j ≠ 0,

∀j ∈ N . Then,Q is uniquely determined asQ =XoXoH .

Proof. From the fact that a Hermitian matrix is positive
semidefinite if and only if all of its principal minors are non-
negative [16], all ofQ’s principal minors are required to be
non-negative. Let us prove our lemma by induction. When
∣N ∣ = 3, the determinant ofQ is −∣Xo

1Q0,2 − X
o
0X

o
1X

o
2

∗∣2,
whereQ0,2 is unknown. To be−∣Xo

1
Q0,2 −X

o
0
Xo

1
Xo

2

∗∣2 ≥ 0,
Xo

1
Q0,2 −X

o
0
Xo

1
Xo

2

∗ = 0. SinceXo
1
≠ 0, Q0,2 is determined

uniquely asXo
0X

o
2

∗. When∣N ∣ = 4, we can consider the top-
left 3×3 submatrix ofQ and the bottom-right3×3 submatrix
of Q to determineQ0,2 andQ1,3 respectively. And then, we
can deal with3 × 3 principal submatrix ofQ havingQ0,4 to
determineQ0,4. In the similar way, when∣N ∣ = n, we can
uniquely determine every unknown variables inQ. We omit
the detailed explanation due to the space limitation.
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