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ABSTRACT of both phase information and high-frequency information;

. and hence it is a challenging problem. The authorslin[L, 12]
Phaseless super-resolution refers to the problem of super- "~ . S
. X . . considered theghaseless super-resoluti@iming at recov-
resolving a signal from only its low-frequency Fourier mag- " ; . .
X . ; ering signals with only low-frequency magnitude measure-
nitude measurements. In this paper, we consider the plsasele : . !
. ) . _ments. In the noiseless setting, the authors in [12] prapase
super-resolution problem of recovering a sum of sparsecDira : . . . -
. . : combinatorial algorithm for signal recovery using only low
delta functions which can be located anywhere in the con; . . .
. . ; ; . . frequency Fourier magnitude measurements, but this algo-
tinuous time-domain. For such signals in the continuous do-, . - T " .
ithm requires additional distinguishing conditions oa #ig-

main, we propose a novel Semidefinite Programming (SDplr)laI impulses. In the noisy setting, this combinatorial algo

based signal recovery method to achieve the phaseless supe . )
resolution. This work extends the recent work of Jaganatha(r[jtrhm suffers from error propagation. Instead of assurrineg t

. ) . istinguishing conditions on signals, the authordin [1ddis
et al. [1], which considered phaseless super-resolution for A .
. . . masks to obtain different types of magnitude measurements.
discrete signals on the grid.

The authors provably showed that under appropriate choice
Index Terms— super-resolution, microscopy, phaselessof masks, an SDP formulation can be used to recover time-
continuous domain, atomic norm domain impulse signals on the discretized grid.

In this paper, we consider super-resolving time-domain
impulse signals located off the grid from only low-frequgnc
. . . . . Fourier magnitude measurements. To tackle the continuous
In engineering and science, improving the accuracy a‘ngarameter domain, we propose a novel SDP formulation,

prems:lon of r;eaSléreMn;eelnF toc;ls, suc_h as m|c|r_(|)scopy, >§ra mploying ANM to recover signals from Fourier magnitude
crystallography an , IS of great interest. However, du easurements. For example, our approach applies to the

to the physical limitations in measurement tools, Somet'memagnitude measurements usedih[[T, 11]. In numerical ex-

we can only indirectly or partially observe a signal of in- periments, we show the successful recovery of signals in

terest, €.g., optamlng only Iow—frequer_lcy |nf0rma_t|onJ)o the continuous domain from only low-frequency magnitude
low-resolution image, or only the magnitude of a signal. Th easurements. Furthermore, we compare our algorithm to
microscope is a good example of a measurement tool hay-

: . o ) Y simple combining algorithm performing phase retrieval
ing such physical limitations ranging from Iow-frequencyfoIIOWed by ANM. Our method shows better recovery per-
measurements to phaseless measurenients [2-6]. formance than the simple combining algorithm. In the future

To overcome the limitation of low-frequency measure- . “\ve will consider the noisy magnitude measurement
ments, researchers have investigated recovering a sigmal f case

only its low-frequency Fourier measurements, and refawed
it as super-resolution The authors in[[7] and_[8] proposed Notations: In this paper, we denote the set of complex
SDP based methods for the recovery of signals in the contimumbers a€. We reserve calligraphic uppercase letters for
uous domain under certain separation conditions, by employndex sets, e.g\. We uséN/| as the cardinality of the index
ing Total Variation Norm Minimization (TVNMandAtomic  setA. We use the superscripts T', and H to denote con-
Norm Minimization (ANMYespectively. Besides, to addressjugate, transpose, and conjugate transpose respectiiéy.
the issue of phaseless measurements, people have stugliedtisserve; for the imaginary number, i.ei? = —1. We denote
phase retrievalto obtain phase information from the mag- a time-domain signal as a lowercase letter, and its frequenc
nitude measurements of a signal [9] 10]. Recently|in [11]domain signal as its uppercase letter. To denote a grouad tru
the authors proposed a trace-norm minimization to solve thsignal, we use the superscripte.g.,z°. For the index of a
phase retrieval problem with the use of masks. vector and a matrix, we start with the indéxhence, we de-
Super-resolving a signal from only magnitudes of low-note the first element of the vectar as X, and the top-left
frequency Fourier measurements is often ill-posed duecto la element of a matrix) asQo o.

1. INTRODUCTION


http://arxiv.org/abs/1609.08522v1

2. PROBLEM FORMULATION AND BACKGROUND

Letz°(t) be a sum of Dirac functions expressed as follows:

k
z°(t) = > c56(t - t3), (2.1)
j=1
whered(t) is the Dirac delta function;$ + 0 € C, andt$ e
[0,1). Its Fourier transform is given by:
k ionfeo k
X7 =>cie "N =3 cfla(t], 05) 5, feN, (2.2)
j=1 =1
where f ¢ N = {0,1,...,n - 1}, a(t2,¢9) ¢ CWlis an
atqm veoct(lr, with thef-th element given byi(t7,¢7) s
e 'CrI1i=93) - Simply, X° = V°c°, whereX° ¢ C", V°
[a(t9,0),...,a(t],0)], andc® = [|c‘f|e“¢’§),...7|cz|el¢z]T. We
also define the minimum separationsf(¢), denoted by,

as the closest distance between any two different time value

t9’s in cyclic mannerl[V. B], i.e.,

Ay =

min

o o
oo R 21
9 ,tjE[O,l), i%]

(2.3)

The goal here is to find°(¢) from the low-frequency

Fourier magnitude measurements. We state the phasele

super-resolution problem with masks as follows:
Find z(t)
subject to Z[r,1] = ’ fo ' Dy (t) i ot —t9)e M at|, (2.4)
j=1
for—-R<r<RandleN,

whereZ[r,1] is thel-th frequency magnitude obtained by us-
ing the r-th mask functionD,.(t). Depending on the mask
functionD,.(t), one can have different types of magnitude in-
formation. For example, if we chooder e=?"t for D,.(),
we havel X} + X7 |, le N.

In [1], Jaganathast al. consider the case when the signal
x°(t) is located on the grid, i.et; € {0,1,2,...n - 1}. By
n-point DFT, [2.4) is equivalent to

Find =
subjectto Z[r,1] = |( fi, Drz})|,
for—-R<r<RandleN,

(2.5)

wherexr € C™ is a complex valued-sparse vector),. ¢ C™**"

is a diagonal matrix, and is the conjugate of théth col-
umn of then point DFT matrix. The authors in[1] proposed
the following semidefinite relaxation-based program fa th
phaseless super-resolution in the discrete domain by ishgnot
Y =2z and relaxing the rank-1 constraint &h

mini}l;nize [|Y]l1 + ATr(Y)

subjectto Z[r,1]* = Te(DX f,17 D, Y), (2.6)

for—-R<r<R,leN, andY >0,

for some\ > 0.

This paper makes no assumptiontgfoeing on the grid.
In the next section, we propose an ANM based semidefinite
relaxation of[[2.14) to deal with impulse functions off thédyr

3. PHASELESS SUPER-RESOLUTION IN THE
CONTINUOUS DOMAIN

We define the atomic norm of a vect&re CV! as follows:

Z|Cj|a(t17¢j)l7 }

J

t;e0,1),

||X||A = mf{z |Cj| : Xl = (p].g[o,zﬂ-) (31)
J

We have the following new proposition for the atomic norm:

Proposition 3.1. Forany X e CV, A = {0,1,...,n -1},

X
s ] > O}, (3.2)

where T(-) is the trace operator, and Toeg)is the Toeplitz
matrix whose first column ig = [uo, u1, ..., un_1]7. More-
over, suppose after the Vandermonde decomposition [13—-15]
Toep() = VDVH, whereV = [a(t;,0),...,a(t,,0)] and D

ig A positive diagonal matrix. Then, there exists a veetor
uchthatX = Veandy; [c;| = || X]a.

n
W1

Toep()

||X||i:inf{ sTr(Toep() : [ P

S

Propositiod 311 is similar to Proposition 1.1 in| [8]; how-
ever, Propositiof 3]1 considers the traces®ep(:) instead
of the sum of trace of Toepj ands. Propositior 31 is es-
sential to derive our new SDP formulation handling phaseles
measurements. For readability, we place the proof of Propo-
sition[3.1 in Appendix.

Motivated by Propositiof 311, we propose the following
squared atomic norm minimization for the phaseless super-
resolution in the continuous domain, simplgaseless ANM

S 2
minimize | X114

subjecttoa,(X) =b,, r=1,2,...,q, (3.3)

where ¢ is the total number of magnitude measurements,
a.(X) is the magnitude mapping functiofia,, X)|, a, €
CWI andb,’s are magnitude measurement results.
From Propositioh 3]1, we can chanfe{3.3) to
Toep(u)

XH :|207

ar(X)=br, 7=1,2,...,q,

1

i sTr(Toep())

minimize
u,X,s
X

subjecttoU = [ S

(3.4)

whereu, X ¢ CV!ands ¢ C. From the positive semidefinite-
ness ofU, s > 0, and Toep¢) > 0. Besides, ifX; # 0, j € NV,
thens # 0 from the non-negativeness of all principal minors
of U [16]. However, because of the magnitude constraints,
(3:3) is a non-convex program.



By the Schur complement lemma [17}; > 0 implies  Theorem 4.3. Given the magnitude measuremens?),
sToep@) - XX > 0. SincesToep() = Toepku), by defin- | X? + X¢,,|, and | X? - iX?,,|, j ¢ N = {0,1,...,n - 1},
ing @ = XX andu’ = su, and getting rid of the rank con- (@) provides the unique solutigp = X°X°H andz°(t) is
straint on@, we have the following SDP relaxation for the uniquely obtained up to global phase if the following condi-

phaseless ANM: tions hold: X; # 0, Vj € N/, and A, > 4/|N/].
e e 1 / . H o o o o
minimize WTF(TOED(u ) Proof. Given magnitude datdX ?|*, [ X7, [*, [X? + X2, [,

subject to Toep(’)—Q >0, and|X;-’ - ?X;+1|2, we can finde,j, Qj_+1,.j+1, Qj,j+1 and
) Qj+1,5, which are the elements of the diagonal, sub-diagonal,
A (@) =br, 7=1,2,...q, (35 and super-diagonal of the matr@®, by simply solving lin-
where 4, (Q) is a mapping function, T4, Q). Here, 4, =  €ar equations ofy together. From Lemma 8.1 in Appendix
arall, 6.2, we can uniquely recovep = X°X° and X° up to
After solving [3.5), we can find the optima) and op-  global phase. According to Proposition13.1 and Theorem
timal Toep@). Our analysis of[(3]5) in the following sec- 4.1, [3.5) withX is essentially the same as the optimization
tion shows that under certain condition$,= X°X°. We  problem dealing with the standard ANM![8] or TVNMI[7].
can recoverX ° up to global phase by the eigenvalue decom-Therefore[(3)5) provides unique’(¢) up to global phase if
position of Q. More importantly, because of the structure the separation condition holds, i.&; > 4/|V/]. O
of Toep@) = V°DV°H for some diagonal matrixD, we
can apply any parameter estimation method such as Prony’s 5. NUMERICAL EXPERIMENTS
method[[18=20] or a matrix pencil methad [21] 22] to find the

time locationt?’s. We compare our phaseless ANM against the standard ANM
[8] using measurements offering both phases and magnitudes
4. PERFORMANCE ANALYSIS as well as against a simple algorithm which first performs the
phase retrieval[11] and then applies the standard ANM [8] to
We first consider the analysis 6f(B.5) given arank-1 ma@ix recover the impulse functions from the recovered signalgsi
And then, we provide the analysis 6f (B.5). Finally, we lookthe phase retrieval. We use CVIX [23] to solze [3.5).
at one scenario having magnitude measurements from a set of Fig. [1 (a) and (b) show the probability of successful re-
masks, in which[(3]5) provides the desired signal recovery. covery from the standard ANM and the phaseless ANM re-
spectively. We conducted 50 trials for each parametemnsgetti
and measured the success rate. At each trial, we chose one
time impulset{ uniformly at random in[0, 1), and another
time impulse§ by adding the separatiah; to ¢{ in the cyclic

Theorem 4.1. For a given rank-1 positive semidefinite matrix
Q = XX X ¢ CW the following optimization problem
provides the squared atomic norm.f i.e., || X||%:

1

minimize — Tr(Toep)) manner. We sampled the real part and imaginary part of time
“ V] coefficientsc?’s uniformly at random in (0,1). We consider
subject to Toep() - @ = 0. (4.1)  low frequencies, i.e.M = {0,1,....,m — 1}, wherem < n,

M c N. For a set of masks in the phaseless ANM, we use
u = u's, wheres > 0 is a scalar. Then we can re-state the con{h® Same masks as those of Theoferh 4.3 over the index set
straint asToep(u') — L X X > 0. By the Schur complement . The x-axis represents_th_e separation conditigrvaried
lemma, we have the optimization problem in Proposifion 3.1{70m 1/7 t0 11/n, and y-axis is the number of low-frequency

Therefore, from Propositidi 3.1, the optimal value[of(4sl) Fourier measurements, varied from2 tq 30. In fact, for the _
the same agX|[%. g Phaseless ANM, the number of magnitude measurements is

3m — 2. We evaluated the recovery performance for the sig-
Corollary 4.2. If (88) gives arank-1 solution tQ, then[3.5) nal dimensiom = 32. We calculated the Euclidean distance
minimizes the squared atomic normX®famong all vectors between the estimated and true time locations. If the distan

X satisfying the given constraints (X) = b, r = 1,2,...,q. is less thanl0~3, then we consider the estimation success-

Proof. From Theoremi 411, [(3.5) provides the minimumeI' Numerical experiments show that our phaseless ANM

squared atomic norm ok among all vectorsX satisfying C"f‘tr;] ft'tr]]d the exactftlme Iocauor:i n tthe dcogtzltljlc\)/lustoTam
the constraints, (X) = by, 7 = 1,2, ....q. wi e same performance as the standar . For large

k, e.g.,k = 10, our method also provides the same perfor-
Let us consider the case when we have low-frequencgance as the standard ANM. We omit the simulation results

Fourier magnitude measurements from a set of masks. The this paper due to the space limitation.

main difference between|[[7| 8] and our setting is that we have One can think of a simple method conducting the phase

only magnitude measurements, instead of measurements oétrieval first, and then doing the standard ANM. To compare

fering both phases and magnitudes. our algorithm with this simple method, we further carried ou

Proof. We can prove it by using Proposition B.1. Defining



For the proof of (2), we will show that for any, s, and
I X, ﬁsTr(Toep(u)) > || X|%. Suppose for some, s # 0, and
X, the matrixU in (3.4) is positive semidefinite. From the
positive semidefinite condition, we have Toep¢ 0 ands >
= ‘ 0. From the Vandermonde decomposition|[13-15], for any

RSN 6 o e A o B positive semidefinite Toep], we have Toep() = VDV,

®) ®) whereV = [a(t1,0) a(ts,0),...a(t,,0)], andD is a diag-
Fig. 1. The probability P of successful recovery by varying the onal n}’}atrlx Davmgdj as itsj-th glagonal eleme2nt. Since
separation conditior\; and the number of measurementswhen ¥ PV = Xj-1 dja(t;,0)a(t;,0)" andlla(t;, 0)[lz = [V,
n = 32. (a) Standard ANM. (b) Phaseless ANM we haveﬁTr(Toep(u)) = Tr(D). Also, from the Vander-
monde decomposition and > 0, X is in the range space

i A ! of V; in fact, if X is not in the range o¥/, we can always
o o8 find a vectorz such that:"Uz < 0. Therefore,X = Vw =
1 os | 0s Yj-1wja(t;,0), wherew e C". By the Schur complement
= L= k) lemmal[17],U in @.4) is expressed as follows:
2| 2|
B ‘ % vov? - Lyww v o, (6.1)
S

121824303642485&1606672788490960 *2182430364248%4606672788490960 i .
@) (b) It is noteworthy that we can always find a vectosuch that

VHq = sign(w), wheresign(w)”w = ¥_; |w;|, by choos-
Fig. 2. The probability P of successful recovery by varying the ing ¢ = V(VHV)’lsign(w). This is bécausé/H has full

number of ma.gnitude measuremeqtand sparsityc whenn = 32. row rank. By choosing such thaﬁ/Hq = sign(w), we have
(a) Phase retrieval and then standard ANM (b) Phaseless ANM

Number of observations

1 1
Tr(D) = qHVDVHq > —qHwaHVHq ==( E |'LU]‘|)27
S S -
J

numerical experiments by varying the number of magnitude i L
measuremenisand the number of sparsityin (2.1). In this where the inequality is froni (6.1). Therefore, we have
simulation, instead of using a set of masks used in Theorem 1 2 2

: ——sTr(T = sTr(D) > D2 = 11X
[4.3, we randomly chose a vector for each magnitude mea- |N|S r(Toep() = sTr(D) (; wgl)” = 1X1a

surement in[(313). Fid.12 (a) and (b) show the probability of If s =0, from the sufficient and necessary condition for
successful recovery from the simple combining algorithih an e osi;ive, semidefiniteness of a Hermitian myatrix allies
the phaseless ANM respectively. The x-axis is the number otp R : . ;

. . principal minors need to be non-negativel[16]. Thifs,= 0,
magnitude measuremengtsand y-axis is the number of spar- Vi e A, In this case, Propositigi3.1 still holds O
sity k. With randomly chosen magnitude measurements, our”’ ' ' P ' '

method outperforms the simple combining algorithm. . o )
6.2. Lemma for the positive semidefinite matrix@

6. APPENDIX Lemma 6.1. LetQ ¢ CWIVI and X° e CWVI, Suppose (1)
@20,(2)Q;; = Q7 Qjjn1 = QF j1, aNAQ;11 5 = QF,4 5,
6.1. Proof of Proposition3.1 jeN ={0,1,..,n-1}, whereQ® = X°X°# (3) X5 #0,

- H : H _ yvovyoH
We follow the proof of [8, Proposition I1.1]. vj e N. Then@Qis uniquely determined &g = X °.X ™.

Proof. From the fact that a Hermitian matrix is positive
Proof. Let us denote the optimal value of the right hand sidesemidefinite if and only if all of its principal minors are non
of (3.2) by SDP{). In order to show|X|>, = SDP(X), we  negative[[16], all ofQ’s principal minors are required to be
will show that (1) X ||, > SDP(X) and (2)[| X|>, < SDP(X).  non-negative. Let us prove our lemma by induction. When
The proof of (1) is easily shown by considering a feasiquN| = 3, the determinant of) is —|X{ Qo> — XOX0X9*?,
solution of SDPY). For X = }’; |c;la(t;, ¢;), by choosinga  whereQ, , is unknown. To be- | X¢Qo 2 — XgX?X9*|? > 0,
feasible solution, Toep) = ¥ |¢;la(t;, ¢;)a(t;,¢;)", and  X?Qo 2 - X§X{XS* = 0. SinceXy 0, Qo2 is determined

5= lcjl, we have uniquely asX§X35”*. When|A\/| = 4, we can consider the top-
left 3 x 3 submatrix ofQ) and the bottom-righit x 3 submatrix

Toepw) X| _ a(ty, ;)| [a(ts, ¢;) " of @ to determingly » andQ); 3 respectively. And then, we
[ xt s] - ;'Cﬂ[ 1 ][ 1 ] =0 can deal with3 x 3 principal submatrix ofp havingQ 4 to

determineQq 4. In the similar way, whefn\/| = n, we can
For this feasible solution,ﬁsTr(Toep(u)) = (%, lc;1)?, uniquely determine every unknown variablesgn We omit
which is|| X% Thus, SDPX) < || X|3. the detailed explanation due to the space limitation. O
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