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ABSTRACT
Usually, in radar imaging, the scatterers are supposed to respond
the same way regardless of the angle from which they are viewed
and have the same properties within the emitted spectral bandwidth.
Nevertheless, new capacities in SAR imaging (large bandwidth,
large angular extent) make this assumption obsolete. An original
application of the Linear Time-Frequency Distributions (LTFD) in
SAR imaging allows to highlight the spectral and angular diver-
sities of these reflectors. This methodology allows to transform
a monovariate SAR image onto multivariate SAR image. Robust
detection schemes in Gaussian or non Gaussian background (Adap-
tive Matched Filter (AMF), Adaptive Normalized Matched Filter
(ANMF), Anomaly Kelly Detector) associated with classical or
robust Covariance Matrix Estimates (Sample Covariance Matrix
(SCM), M-estimators) can then be applied exploiting these diver-
sities. The combined two-methodologies show their very good
performance for target detection.

Index Terms— Time-Frequency Distributions, Adaptive Nor-
malized Match Filter, M -estimators, Tyler’s estimator, Complex El-
liptically Symmetric distributions, Non-Gaussian detection, Robust
estimation theory.

1. INTRODUCTION

The Synthetic Aperture Radar (SAR) imaging process [1, 2] consists
in acquiring and analyzing the backscattering coefficient H(k) col-
lected by a moving radar (see figure 1) and forming the 2D-spatial
repartition I(r) of the scatterers located in r = (x, y)T which reflect
a part of the emitted radar signal. The square modulus of H(k) is
called the Radar Cross Section of the scatterer for the wave vector
k. The wave vector k is related to the emitted frequency f and to
the direction θ of radar illumination by the relations |k| = 2 f/c,
θ = arg(k) where c is the speed of light.
Conventional radar imaging models consider a target as a bright
point. Indeed, they consider scatterers as isotropic for all the di-
rections of presentation and decorrelated in the frequency band [3].
Whatever the pre-processing algorithm used (e.g.: the Range Mi-
gration Algorithm of [3]), the basic principle aims at deriving, from
the acquired data, a focused bi-dimensional backscattering coeffi-
cient H(k) for each illuminated point r on the ground and then,
performing Fourier based spectral estimation in order to build the
conventional complex single look (monovariate) SAR image I(r):

I(r) =

∫
H(k) exp

(
2 i π kT r

)
dk , (1)

where the integration is performed on the whole spectral and angular
domains.
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Fig. 1. A reflector, viewed at two different azimuthal angles of illu-
mination in SAR-stripmap mode.

Target detection schemes in monovariate SAR image usually
consist in analyzing statistics of the background surrounding the tar-
get to be detected and in performing an appropriate adaptive scalar
thresholding operation (see for example the recent paper [4]). Am-
plitude pixel values which lie above the threshold are considered
high and therefore likely to correspond to a dominant scatterer. This
operation uses only the amplitude of the complex image: it does not
exploit the additional diversities that are intrinsic to SAR imaging
principle.

In this paper, we propose a detection framework that exploits
spectral and angular diversities from a monovariate SAR image. In
[5], these diversities have been considered for developing a matched
subspace detector. However, the emitted electromagnetic wave is re-
quired in the processing, which results in a high computational time
and can suffer from mismodeling. Diversities can also be created by
using geometric image transforms such as steerable pyramids [6, 7]
or curvelets [8], but the geometry under consideration in this trans-
form is the natural one, not the one involved by SAR acquisition
geometry. The contribution proposed by the paper is taking spectral
and angular diversities into account from LTFD and SAR geome-
try. This methodology, presented in Section 2, allows to transform
a single look complex SAR image onto multi-looks complex SAR
images. Each pixel of the SAR image is then characterized by a vec-
tor of information related to its behavior in angular and frequency
domains. Section 3 proposes to exploit these diversities by building
robust adaptive detectors (AMF, ANMF) or Kelly-based anomaly
detectors (Mahalanobis distance) associated with classical or robust
covariance matrix estimates. These detectors are considered either



for Gaussian or non-Gaussian background (textured SAR image).
Section 4 provides experimental results performed on SAR images
and Section 5 concludes the work.

2. EXTENDED SAR IMAGE

When an object is illuminated using a broad-band signal and/or for
and a large angular extent, it is realistic to consider that the amplitude
of the reflectors involves a dependence on frequency f and aspect an-
gle θ. When considering Time-Frequency analysis, subspace image
representations are called hyperimages and their characterisations of
the angular, spectral and/or polarimetric behavior of the spatial dis-
tribution of scatterers in hyperimages can be found in [9, 10, 11, 12].
These characterisations show that some scatterer hyperimage fea-
tures were neither isotropic nor decorrelated.
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Analyse polarimétrique d’images SAR par ondelettes - 9/27

elevation 30°                                            elevation 50°       

Scatterers have different behavior with regards to the frequency and direction of 
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Fig. 2. An ONERA RGB color-coded SAR image acquired for three
consecutive spectral sub-bands.

Figure 2 shows a ONERA SAR image of industrial area in X-
band. The responses relative to three consecutive sub-bands have
been highlighted in RGB color-coding. Red points are responding
only on the first sub-band, green ones on the second sub-band and
the blue ones on the third sub-band. They are called colored scatter-
ers. Gray points are called white scatterers as they are responding
equivalently in the three sub-bands. Angular diversity will show the
same behavior (angular sub-looks SAR images). This spectral and
angular non-stationary behavior of scatterers can be due to their ma-
terial (dispersive), geometry (anisotropic and dispersive) or orienta-
tion (anisotropic). Such amplitude variation of scatterers has to be
highlighted in order to see if this variation is potentially interpretable
in terms of target characteristics. In this respect, this spectral and an-
gular diversity should be exploited in any detector.

LTFD analysis and the physical group theory (Heisenberg or
affine group) allow to construct hyperimages [13, 10, 11] through:

Ĩ(r0,k0) =

∫
Dk

H(k) Ψ∗r0,k0
(k) dk , (2)

where Ψr0,k0(k) is a family of wavelet bases (Gabor, standard
wavelet) generated from a mother wavelet φ(k, argk) through the
chosen physical group of transformation (translations in frequency,
rotation, similarity group, etc.) and whereDk is the spectral/angular
support of the wavelet Ψ.

The hyperimage can be interpreted as follows: for each emitted
wave vector |k0| (or equivalently for each frequency f0) and each
angle of illumination θ0 = argk0, a spatial repartition Ĩ(r0,k0)
of reflectors which respond at this frequency and this angle can be
defined. Conversely, for each reflector location r0, it is possible
to analyse its behavior in spectral and angular spaces. Thereby,
this extended SAR imaging with LTFD (linear meaning that the in-
phase and quadrature signal components have to be kept, in contrast
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Fig. 3. Top: Example of theoretical model of isotropic and white
scatterers. Bottom: Example of theoretical model of anisotropic and
colored scatterers.

with energetic Bilinear TFD [14]) allows to construct hyperimages
in four dimensions (x, y, f, θ) which depend on two free parameters
(σf , σθ) which:

• control the spread of the mother wavelet φ(k, argk) in spec-
tral and angular domains and

• play an important role on interrelated resolutions in range,
cross-range, frequency and angle.

Figure 3 shows the difference between the model of bright points
(left) and those of colored and isotropic scatterers (right). This
methodology allows to transform univariate SAR image onto multi-
variate SAR image and then brings angular and spectral diversities
to each pixel of the SAR image [15]. Any SAR pixel can be char-
acterized by a complex N -vector c containing angular and spectral
information. In the following, we denote respectively by Nθ and
Nf , the number of sub-looks and sub-bands characterizing the suc-



Fig. 4. Top: Example of Nf frequency sub-bands decomposition
of the backscattering coefficient (Nθ = 1). Bottom: Corresponding
sub-band SAR images: each pixel (x, y) of the SAR image charac-
terizes a complex vector c of information related to dispersion and
anisotropy with dimension N = Nf Nθ .

cessive positions of the mother wavelet, we have thus N = Nθ Nf
(see Figure 4). This approach is very relevant because this diver-
sity can be exploited to discriminate useful target from noise or
background. This discrimination can be performed by modeling the
background using multivariate statistics (Gaussian, Complex Ellip-
tically Symmetric (CES) distributions) and by evaluating standard
binary hypotheses tests. If the information (e.g. steering vector p)
related to the target is available, we can build adaptive detectors
like AMF, ANMF. If no a priori information is available, Anomaly
detectors based on the Mahalanobis distance and generally used for
target detection in hyperspectral images [16, 17] can be exploited.

3. DETECTION ON EXTENDED SAR IMAGE

3.1. Data Model

In the following, each pixel of the SAR image will be represented
by a set of LTFD features encapsulated in a random complex vec-
tor c ∈ CN where N = Nf × Nθ . For high resolution SAR im-
ages, it is well-known that the data cannot be correctly described by
using only standard Gaussian statistics. Generalizing the Gaussian
model assumption, we assume here that c follows a CES distribu-
tion CE(0, g,R) where the scatter matrix R is unknown and where
g stands for any characteristic function generator. This matrix R
characterizes the angular and spectral behavior of each scatterer. To
estimate this matrix, K secondary data surrounding the pixel un-
der test {ck}k∈[1,K] (supposed homogeneous in terms of angular
and spectral behavior and generally obtained using a boxcar window
centered around the target) can be used. Finally, as the Sample Co-
variance Matrix (SCM) is not adapted for a good estimation for any
CES data, the Tyler’s Estimator (TE) represents an alternative thanks

to its good robustness property [18, 19]:

R̂TE =
N

K

K∑
k=1

ck c
H
k

cHk R̂−1
TE ck

. (3)

The number K has to be important with respect to N for a good
estimation. Otherwise, regularized versions of the TE exist in the
literature [20, 21, 22].

3.2. Detection schemes

In this section, we assume that a target with a known steering vector
p ∈ CN could be present in some pixels in the SAR image. In this
case, we have for each pixel to solve the standard binary hypothesis
test: {

H0 : c = n, ck = nk ∀k ∈ [1,K]
H1 : c = ap + n, ck = nk ∀k ∈ [1,K]

, (4)

where n is the noise component in the cell under test c, with
{ck}k∈[1,K] being the K secondary data and a represents the un-
known amplitude of the possible target.

3.2.1. Adaptive Detectors

From this detection problem, we decide to test different adaptive de-
tectors like the well-known AMF (two-step GLRT in homogeneous
Gaussian noise [23]):

Λ̂AMF =

∣∣∣pH R̂−1 c
∣∣∣2

pH R̂−1 p

H1

≷
H0

λ , (5)

where R̂ generally stands for the SCM (Maximum Likelihood Esti-
mate in Gaussian noise) and λ is the detection threshold. For par-
tially homogeneous Gaussian noise or for other CES noises, the
AMF is known to provide a poor Constant False Alarm (FA) Rate
and the ANMF is therefore more suitable [24, 25]:

Λ̂ANMF =

∣∣∣pH R̂−1 c
∣∣∣2

(pH R̂−1 p)(cH R̂−1 c)

H1

≷
H0

λ . (6)

3.2.2. Anomaly Detection

When no information are available on the steering vector p, consid-
ered as an unknown deterministic parameter, the Kelly-based GLRT
approach proposed in [17] leads to the well-known Mahalanobis dis-
tance: dm = cH R̂−1 c, where R̂−1 is estimated fromK-secondary
data (SCM or TE). When R̂−1 is estimated on the basis of the K-
secondary data, together with the cell under test, the GLRT prob-
lem leads to the well-known Reed-Xiaoli-Detector (so called RXD)
[16]. This non-standard distance dm can be compared with a classi-
cal SPAN power measure cH c.

4. RESULTS

Figure 5 shows a 400 × 400 SAR image available from Sandia
National Laboratories (http://www.sandia.gov/radar/
complex_data/). In the analysis, we used Nθ = 5 sub-looks,
Nf = 5 sub-bands (N = 25) and K = 88 secondary data coming
from a 13 × 13 spatial mask with a 4 × 4 cell guards submask.
We embedded in this image a colored and non-isotropic target with

http://www.sandia.gov/radar/complex_data/
http://www.sandia.gov/radar/complex_data/


Fig. 5. Left: Original SAR Image without target. Right: SAR image
with specific embedded target.
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Fig. 6. Left: SAR Image of the target. Right: Reshaped target steer-
ing vector p in angular and spectral spaces.

spectral and angular behavior given in Figure 6 (the steering vector
p of the target is chosen here as a fixed complex random vector). As
it can be observed, these angular and spectral diversities defocuse
the ideal point-like target in the pure SAR image. The SNR of the
target is fixed to -50 dB. First, FA regulation has been analyzed.
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Fig. 7. Left: False AlarmFA Regulation with ANMF-Tyler. Right:
FA Regulation with AMF-SCM. Nθ = 5, Nf = 5, K = 88.

The detection mask has been moved at each tested pixel under hy-
pothesis H0 (target not present). Figure 7 shows regulation of FA
for the previous adaptive detectors (AMF-SCM and ANMF-TE).
As expected, AMF-SCM has a poor behavior and does not reach
the theoretical PFA-threshold relationship. The ANMF-TE shows a
quite perfectly FA regulation. Figures 8 and 9 show the detection
results for Pfa = 1 (full dynamic of the test) and Pfa = 2.6 10−3.
The AMF-SCM mainly focused on the power. Whatever the steering
vector of the target to be detected, AMF-SCM detects another high
targets while AMF-TE regulates better the FA and stays mainly fo-
cused on the target characterized by the steering vector p presented
in figure 6. In Figure 10, the SPAN test does not allow to detect this
quite weak target. Concerning the Figure 11, even if the PFA is set to
low for detecting this target, the Mahalanobis distance test performs
better than the SPAN and better regulates the clutter returns.

Fig. 8. Left: Full AMF -SCM detection test, Pfa = 1. Right:
Thresholded AMF -SCM detection dest, Pfa = 2.6 10−3.

5. CONCLUSION AND FUTURES

This paper focused on the Adaptive detection schemes with mul-
tivariate statistics (CES, M-estimates) in complex mono-look SAR
image using LTFD. These tools allow to characterize angular and
spectral diversities regarding the target and the background behav-
iors. Combined with recent Adaptive Detection Schemes (ANMF
built with Tyler Estimate), the proposed approach allows to reach
better performance than the classical thresholding detection schemes
and classical AMF based on SCM. This diversity appears an im-
portant feature to improve target detection in textured images. This
work will be extended to apply for polarimetric and interferometric
SAR in future works.

Fig. 9. Left: ANMF -TE detection test, Pfa = 1. Right: Thresh-
olded ANMF -TE detection test, Pfa = 2.6 10−3.

Fig. 10. Left: SPAN detection dest, Pfa = 1. Right: Thresholded
SPAN detection test, Pfa = 2.6 10−3.

Fig. 11. Left: Mahalanobis-TE detection dest, Pfa = 1. Right:
Thresholded Mahalanobis detection test, Pfa = 2.6 10−3.
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