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ABSTRACT
Multi-pitch estimation concerns the problem of estimating the
fundamental frequencies (pitches) and amplitudes/phases of
multiple superimposed harmonic signals with application in
music, speech, vibration analysis, and other fields. In this
paper we formulate a complex-valued multi-pitch estimator
via a semidefinite programming method for continuous sparse
optimization over an infinite dictionary of vectors of com-
plex exponentials and extend this to real-valued data via a real
semidefinite program with the same dimensions (i.e. half the
size). We further impose a continuous frequency constraint
naturally occurring from assuming a Nyquist sampled signal
by adding an additional semidefinite constraint. In our numer-
ical experiments, the proposed estimator shows superior per-
formance compared to state-of-the-art methods for separating
two closely spaced fundamentals and approximately achieves
the asymptotic Cramér-Rao lower bound.

Index Terms— Spectral estimation, multi-pitch estima-
tion, continuous sparse optimization, semidefinite program-
ming

1. INTRODUCTION

Multi-pitch estimation concerns the problem of estimating the
fundamental frequencies (pitches) and amplitudes/phases of
multiple superimposed harmonic sources for general signal
operations such as source separation, enhancement, modifi-
cation and classification [1]. Multi-pitch estimation is in gen-
eral complicated by the spectral smearing caused by closely
spaced harmonics [2].

The multi-pitch estimation problem is for obvious reasons
closely linked to line spectral estimation. A well-founded es-
timator for both the multi-pitch and line spectral model is the
non-linear least-squares (NLS) estimator but the NLS objec-
tive function is multi-modal in both cases which limits the
practical usage of the NLS estimator, see e.g. [3, 4]. To this
end many approximate methods have been proposed. Several
multi-pitch estimators can be seen as extensions to classical
statistical signal processing methods for line spectral estima-
tion such as the subspace method MUSIC, Capon filtering [4]
and the EM algorithm [2] for multi-pitch estimation.

The work of T.L. Jensen was supported by the Danish council for Inde-
pendent Research | Technology and Production grant no. 4005-00122.

Often, a complex-valued model is considered due to the
simplicity of the model, and often computationally simpler
algorithms, even though a real-valued model in many applica-
tions would be more appropriate [4]. Though the multi-pitch
estimation problem presents itself as a continuous problem,
a possible convex optimization approach is based on a dis-
cretized frequency grid with well chosen penalty functions to
ensure the harmonic structure [5].

A recent framework has been studied in superresolution,
gridless compressed sensing, and atomic norm optimization
where it is possible to work with a continuous dictionary of
complex exponentials via semidefinite programming (SDP),
see e.g. [6–9]. It is interesting to note that such a superresolu-
tion formulation for line spectral estimation can also be inter-
preted as an approximation of the NLS estimator [3]. Various
extensions of these formulations were presented in [10, 11].
Applications include line spectral estimation [9], direction-
of-arrival estimation [12] and compressed sensing [8].

In this paper we will formulate a real-valued multi-pitch
estimator with a frequency constraint by exploiting the model
flexibility in the superresolution framework. Interestingly, the
real-valued model is in this case actually as simple as the
complex-valued model. Monte Carlo simulations show that
the proposed estimator outperforms state-of-the-art estima-
tors for closely spaced fundamental frequencies and approxi-
mately achieves the Cramér-Rao lower bound (CRLB).

Notation: the set of complex numbers is C and real num-
bers R. Hn ⊆ Cn×n is the set of Hermitian matrices, S ⊆
Rn×n is the set of real symmetric matrices and Tn ⊆ Hn is
the set of Hermitian Toeplitz matrices. For x ∈ Cn, <(x) de-
notes the real part and [x]k denotes the kth element. trX de-
notes the trace of X ∈ Cn×n and x = vec(X) ∈ Cmn×1 de-
notes the column-wise vector stacked version of X ∈ Cm×n.
The identity matrix is In ∈ Rn×n.

2. SPARSE OPTIMIZATION

Consider an optimization problem on the form

minimize
r,ak,ck

f(
r∑

k=1

akc
H
k ) +

r∑
k=1

‖ck‖2
subject to ak ∈ An, k = 1, . . . , r

(1)

where f is a convex function possibly parameterized with
known data and An ⊆ Cn×1 is a given set (or dictionary).



The unknowns in the problem are the coefficients ck ∈
Cm×1, k = 1, . . . , r, the elements/atoms ak, k = 1, . . . , r
selected from An and the number of selected atoms r. When
An is a finite set and m = 1, problem (1) includes the special
case of `1-minimization (for example, LASSO or basis pur-
suit). Examples involving infinite sets includes nuclear norm
minimization and many other applications; see [6]. In this
paper we will work with a infinite/continuous dictionary An
containing vectors of complex exponentials

An =
{ 1√

n
zn(ω)

∣∣∣ |ω − α| ≤ β} (2)

zn(ω) =
[
1, exp(jω), . . . , exp(j(n− 1)ω)

]T
. (3)

With α = 0, β = π, the problem (1) is equivalent to the SDP

minimize
X11,X12,X22

f(X12) + 1
2 (trX11 + trX22)

subject to
[
X11 X12

XH
12 X22

]
� 0

X11 ∈ Tn, X12 ∈ Cn×m, X22 ∈ Hm .

(4)

This relation was shown for m = 1 and various f in [7–9],
and for the multiple measurement vector case m > 1
in [13]. From a solution (X?

11, X
?
12, X

?
22) of (4), we have

r = rank(X?
11) and the frequencies of the atoms ak =

(1/
√
n)zn(ωk) may be extracted by various methods, see

e.g. [9, 11, 14].

3. THE MULTI-PITCH MODEL AND ESTIMATION

The multi-pitch model can be formulated as

x =

L∑
l=1

ZK(lω)c̄l, y = x+ w (5)

with

y =
[
y1 · · · yN

]T
, c̄l =

[
c̄l,1 · · · c̄l,K

]T
(6)

ω =
[
ω1 · · · ωK

]T
(7)

ZK(ω) =
[
zN (ω1) · · · zN (ωK)

]
(8)

w =
[
w0 · · · wN−1

]T ∼ CN (0, σ2I) (9)

where c̄l ∈ CK are the complex amplitudes for the lth har-
monic for all K sources and ωk is the kth fundamental fre-
quency (sometime denoted the pitch). Some elements of c̄l
may be zero to include varying number of harmonics for the
different pitches and L should then be interpreted as the max-
imum harmonic model order, L = max{L1, . . . , LK}.

A multi-pitch estimator may be based on the model (5) to
take the data y and estimate the frequencies ω̂1, . . . , ω̂K (the
complex amplitudes c̄l can be estimated from ω̂1, . . . , ω̂K as
point estimates using linear least squares). In the following,

we will show how to formulate a multi-pitch estimator via a
continuous sparse optimization formulation (1) with the dic-
tionary (2) and the equivalent SDP (4).

Let Pl ∈ RN×NL be a selection matrix such that Plv ∈
RN is every lth element of v, Plv =

[
v1, v1+l, . . . , v1+(N−1)l

]
.

Then
zN (lωk) = PlzNL(ωk) . (10)

We also form the selection and add matrix

P =
[
P1 P2 · · · PL

]
∈ RN×NL2

. (11)

Further, let ck =
√
n
[
[c̄1]k · · · [c̄L]k

]H ∈ CL×1. With
these definitions we can describe the multi-pitch signal x in
(5) as

L∑
l=1

ZK(lω)c̄l =

L∑
l=1

K∑
k=1

zN (lωk)[c̄l]k (12)

=

K∑
k=1

L∑
l=1

PlzNL(ωk)[c̄l]k (13)

= P vec

(
K∑
k=1

(1/
√
n) zNL(ωk)cHk

)
(14)

= P vec

(
r∑

k=1

akc
H
k

)
(15)

for the atoms ak = (1/
√
n) zNL(ωk) ∈ ANL pertaining to

the continuous dictionary (2) and r = K. A complex-valued
multi-pitch estimator can then be formulated via the continu-
ous sparse optimization problem

minimize
K,ωk,ck

K∑
k=1

‖ck‖2

subject to ‖y − x‖2 ≤ δ, x =
L∑
l=1

K∑
k=1

zN (lωk)[ck]l

|ωk| ≤ π, k = 1, . . . ,K
(16)

with the equivalent SDP

minimize
X11,X12,X22

1
2 (tr(X11) + tr(X22))

subject to ‖y − x‖2 ≤ δ, x = P vec(X12)[
X11 X12

XH
12 X22

]
� 0

X11∈TNL, X12∈CNL×L, X22∈HL.

(17)

A model order estimate K̂ may be extracted from the solu-
tion as K̂ = rank(X?

11). However, in this formulation L is
included and it is necessary to know (or estimate) an appro-
priate regularization parameter δ.

4. THE REAL-VALUED MULTI-PITCH ESTIMATOR

The real-valued model is

x = <
(

L∑
l=1

ZK(lω)c̄l

)
, y = x+ w (18)



with w ∼ N (0, σ2I). A real-valued y ∈ RN multi-pitch
SDP estimator can be obtained from the complex-valued SDP
estimator (17) as

minimize
X11,X12,X22

1
2 (tr(X11) + tr(X22))

subject to ‖y − P vec(<(X12))‖2 ≤ δ[
X11 X12

XH
12 X22

]
� 0

X11∈TNL, X12∈CNL×L, X22∈HL

(19)

with a solution (X?
11, X

?
22, X

?
12). The problem (19) can

be formulated as a real SDP via the following observa-
tions: the optimal objective is 1

2 (tr(X?
11) + tr(X?

22)) =
1
2 (tr(<(X?

11)) + tr(<(X?
22)) and[

X?
11 X?

12

(X?
12)H X?

22

]
� 0⇒ <

([
X?

11 X?
12

(X?
12)H X?

22

])
� 0 .

(20)
Further, if X?

11 is Toeplitz, then <(X?
11) is also Toeplitz. So

(<(X?
11),<(X?

22),<(X?
12)) is also a solution to (19). Then

we may instead of the complex SDP (19) formulate the equiv-
alent real SDP

minimize
X11,X12,X22

1
2 (tr(X11) + tr(X22))

subject to ‖y − P vec(X12)‖2 ≤ δ[
X11 X12

XT
12 X22

]
� 0

X11∈SNL∩TNL, X12∈RNL×L, X22∈SL

(21)

with a solution that is also a solution of (19). Notice that
the real SDP is of the same dimension but half the num-
ber of (real) variables. We will denote an estimator based
on (21) a SDP multi-pitch (SDPMP) estimator. Based on
the Carathéodory parameterization (see e.g. [15]), the matrix
X11 ∈ TNL ∩ SNL will contain pairs of symmetric frequen-
cies ωk = −ωk+1 and possible a single ωk = 0.

5. FREQUENCY CONSTRAINT

If the signal y is Nyquist sampled then the fundamentals
obeys −π ≤ Lωk ≤ π. The frequencies in the dictionary An
can be constrained using the parameters α, β by adding the
following semidefinite cone constraint [10] to e.g. (21):

− ejαFX11G
T − e−jαGX11F

T + 2 cos(β)GX11G
T � 0

(22)
where F =

[
0 INL−1

]
, G =

[
INL−1 0

]
. Then with the

selection α = 0, (22) is a real semidefinite cone constraint

FX11G
T +GX11F

T − 2 cos(β)GX11G
T � 0 . (23)

A symmetric Toeplitz matrix can be formed using the function

T (z) =


z0 z1 · · · zn
z1 z0 · · · zn−1

...
...

. . .
...

zn zn−1 · · · z0

 . (24)

If X11 ∈ SNL ∩ TNL then let x11 be the first column of X11

such that T (x11) = X11, and the left-hand side of (23) can be
written as

T (


2t1

t0 + t2
...

tNL−3 + tNL−1

)−2 cos(β)T (


t0
t1
...

tNL−2

) = T (Cβx11)

(25)
with t = x11 and an implicit definition of the matrix Cβ . That
is, the left-hand side of (23) is also Toeplitz. The frequency
constrained SDPMP (CSDPMP) estimator with β = π/L is

minimize
K,ωk,ck

K∑
k=1

‖ck‖2
subject to ‖y − x‖2 ≤ δ

x = <
(

L∑
l=1

K∑
k=1

zN (lωk)[ck]l

)
|ωk| ≤ π

L , k = 1, . . . ,K

(26)

which can be formulated as the SDP

minimize
X11,X12,X22

1
2 (tr(T (x11)) + tr(X22))

subject to ‖y − P vec(X12)‖2 ≤ δ[
T (x11) X12

XT
12 X22

]
� 0

T (Cπ/Lx11) � 0
x11∈RNL, X22∈SL, X12∈RNL×L .

(27)

The matrix X11 = T (x11) ∈ SNL will again contain
pairs of symmetric frequencies ωk = −ωk+1 but with
|ωk| = |ωk+1| ≤ β = π/L and possibly a single ωk = 0.

6. SIMULATIONS

We will in the following simulations investigate resilience
to spectral smearing caused by closely spaced harmonics
and noise with known model order K. We perform Monte
Carlo simulations using R = 500 repetitions of the real-
valued AWGN channel (18). The proposed SDPMP and CS-
DPMP estimators are implemented with a custom solver for
CVXOPT [16] to exploit the Toeplitz structure as presented
in [17]1. We use the “noiseless” ESPRIT algorithm outlined
in [11] to extract the frequencies fromX?

11 (compare with [15,
pp. 174–175]). The final estimates are obtained in two steps:
1) solve the SDP with the regularization parameter δ selected
by averaging the smallest 1

3 of the coefficients of the peri-
odogram 2) extract the frequencies ω?, re-select the regular-
ization parameter as δ = minc̄l ‖y−<

(∑L
l=1 ZK(lω?)c̄l

)
‖2

using linear least-squares and re-solve the SDP. We will com-
pare with methods and implementations from [1]: i) an ap-
proximate NLS method (ANLS) based on the harmonic sum-
mation method ii) a subspace method (ORTH) based on MU-
SIC iii) an optimal filtering method (OPTFILT) based on the

1Estimators and simulation code available at kom.aau.dk/~tlj

kom.aau.dk/~tlj


Capon approach. These require complex-valued data and we
form these using the Hilbert transform and obtain ȳ ∈ CN/2.
This mapping does not introduce a significant error if the
frequencies are not too close to 0 and π [1]. In our case with
N = 160, the lowest frequency is 0.1580 ≈ 2π(4/N) and
the highest is 0.6364 ≈ 2π(16/N). We will not compare
with the method in [5] since a key element of this method
is incorporation of model order selection and does not lend
itself easily to the case of known model orders.

If two pitches are well separated and not too low such that
there is no significant overlap of the harmonics (see e.g. the
discussion in [1]), then the accuracy of estimating the pitches
should at-least for unbiased estimators be governed by the
asymptotic CRLB for estimating a single pitch ω̂k:

var(ω̂k) ≥ 24σ2

(N(N2 − 1))
∑L
l=1A

2
k,ll

2
(28)

where Ak,l = |[c̄l]k| is the amplitude. Notice that this bound
depends on the “enhanced SNR” [18] (for a single pitch) or
pseudo SNR (PSNR) for the kth pitch [4]

PSNRk = 10 log10

∑L
l=1A

2
k,ll

2

σ2
. (29)

In the following two experiments we will assess the accuracy
of the methods based on the root-mean-squared-error

RMSE =

√√√√ 1

RK

R∑
r=1

K∑
k=1

|ωk,r − ω̂k,r|2 (30)

where ωk,r denotes the kth fundamental for the rth realization
and ω̂k,r denotes an estimate. In the first experiment we will
consider the difference between the fundamental frequencies
of K = 2 sources

ω2 − ω1 = ∆ . (31)

We select the first fundamental from a uniform distribution
ω1 ∼ 2π U(7/N, 14/N) and for each realization ω2 = ω1 +
∆. We let N = 160, L = 3 and A2

k,l = 1 with i.i.d. uni-
form phase U(0, 2π) as in [4]. The result is shown in Fig. 1.
We observe that as ∆ increases the SDPMP, CSDPMP, ORTH
and OPTFILT approaches the CRLB as expected and for the
latter two as reported in [4]. Further, we observe that CS-
DPMP gives state-of-the-art performance for separating two
closely spaced pitches. This indicates that CSDPMP may of-
fer a higher time-frequency resolution [2].

In the second experiment we will investigate the accu-
racy as a function of the PSNR with two pitches fixed at
ω1 = 0.1580 and ω2 = 0.6364 as in [4] selected due to the
near integer relationship. We observe in Fig. 2 that using the
frequency constrained CSDPMP gives about the same RMSE
accuracy as the SDPMP and that both methods almost achieve
the CRLB. The other methods show a slightly larger gap to
the CRLB and/or approaches the bound at a larger PSNR.

10−1 100

N∆/2π [cycles per segment]

10−5

10−4

10−3

10−2

10−1

100

R
M

SE

ANLS
OPTFILT
ORTH

SDPMP
CSDPMP
CRLB

Fig. 1. RMSE as a function of the fundamental frequency
difference ω2−ω1 = ∆,K = 2,N = 160, L = 3, PSNR1 =
PSNR2 = 40 [dB].
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SDPMP
CSDPMP
CRLB

Fig. 2. RMSE as a function of the PSNR = PSNR1 =
PSNR2, K = 2, N = 160, L = 3, and ω1 = 0.1580, ω2 =
0.6364.

7. CONCLUSION

In this paper we have formulated a real-valued multi-pitch
estimator based on continuous sparse optimization. This type
of framework has been studied in superresolution, gridless
compressed sensing, and atomic norm optimization where
complex-valued data models have been investigated. Many
applications will naturally have real-valued data and we show
how the standard complex-valued data formulation can be
converted to real-valued data using a real semidefinite pro-
gram with the same dimensions. Further, if the signal is
Nyquist sampled, then we should impose a frequency con-
straint on the fundamentals in order to achieve state-of-the-art
estimation accuracy.
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