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ABSTRACT
Target tracking is a challenging task and generally no analyt-
ical solution is available, especially for the multi-target track-
ing systems. To address this problem, probability hypothe-
sis density (PHD) filter is used by propagating the PHD in-
stead of the full multi-target posterior. Recently, the particle
flow filter based on the log homotopy provides a new way for
state estimation. In this paper, we propose a novel sequen-
tial Monte Carlo (SMC) implementation for the PHD filter
assisted by the particle flow (PF), which is called PF-SMC-
PHD filter. Experimental results show that our proposed filter
has higher accuracy than the SMC-PHD filter and is computa-
tionally cheaper than the Gaussian mixture PHD (GM-PHD)
filter.

Index Terms— tracking system, SMC-PHD, particle
flow, multi-target

1. INTRODUCTION

Multi-target tracking is a frequently occurring problem in
which the number of targets varies over time. The obser-
vations used in multi-target tracking often include random
errors, spurious returns from clutters, and detection loss [1].
Apart from that, there are other challenges, for example, 1)
the number of targets is unknown and changing; 2) targets
may be occluded. To address these problems, Mahler pro-
posed to approximate the multi-object Bayesian recursion by
propagating the probability hypothesis density (PHD) [2],
which does not involve data association due to the use of
the random finite set (RFS) [3] framework. The PHD filter
has been implemented as the sequential Monte Carlo (SMC-
PHD) filter [4], the Gaussian mixture PHD (GM-PHD) filter
[5] and the cardinalized PHD (CPHD) filter [6]. To solve
the non-Gaussian and non-linear problem, the standard SMC
implementation of the PHD filter is often used which, how-
ever, entails a large set of weighted particles [7]. The main

This work was supported by the EPSRC Programme Grant S3A:
Future Spatial Audio for an Immersive Listener Experience at Home
(EP/L000539/1), the BBC as part of the BBC Audio Research Partnership,
the China Scholarship Council (CSC) and the EPSRC grant EP/K014307/1
and the MOD University Defence Research Collaboration in Signal Process-
ing.

disadvantage of SMC-PHD filter is the weight degeneracy
problem. After some updates, only few particles have signifi-
cant weights. The prior distribution does not overlap with the
target distribution [8].

As a different algorithm for solving the non-linear and
non-Gaussian problem, Duam and Huang introduced a par-
ticle flow filter [9, 10, 11, 12]. The key idea is to migrate
particles from the unnormalized prior density to the posterior
density by a physical flow. Recently, particle flow has been
used to improve the accuracy of the particle filter [13], called
the particle flow particle filter (PFPF). The particle cloud re-
tains a higher effective sample size (ESS) [14]. However, for
multi-target tracking, a dependent filter needs to be applied to
each target, which introduces the problem of model-data asso-
ciation [15]. To solve this problem, Zhao et al. [16] proposed
a Gaussian mixture particle flow PHD filter, called GPF-PHD
filter. However, in this filter, the particles are generated for
each target, and the computational cost could be high for a
large number of targets and clutters. Due to the use of the
Gaussian Mixture model, this method is less robust than the
SMC-PHD filter for non-linear and non-Gaussian problems.

In this paper, we use particle flow to mitigate the weight
degeneracy problem and thereby to improve the accuracy of
the SMC-PHD filter. This new filter is called the PF-SMC-
PHD filter. More specifically, we use particle flow to adjust
the states and weights of the particles based on the observa-
tions. The number and positions of the targets are assumed
unknown. Therefore the number of flows created is deter-
mined based on the number of observations. The computa-
tional complexity for generating each flow is controlled by
choosing the most relevant particles from the whole particle
set, and the assignment of the ambiguous particles, i.e. those
having a similar distance to two (or more) different observa-
tions, to each flow is assisted by particle duplication.

2. SMC-PHD FILTER AND PARTICLE FLOW

We assume that the target dynamics and observations are de-
scribed as a Markov state-space signal model:

m̃k = fm̃ (m̃k−1, τk) , (1)

zk = fz (m̃k, ςk) (2)



where m̃k ∈ Rdm is the target state vector at time-step k, ˜
is used to distinguish the target state from the particle state
used later, and zk ∈ Rdz is the observation vector. In this
paper, the state m̃k = [xk, yk, ẋk, ẏk]T consists of positions
(xk, yk) and velocities (ẋk, ẏk), while the observation is a
noisy version of the position. So dm = 4 and dz = 2. τk and
ςk are system excitation and observation noise terms, respec-
tively. fm̃ is the transition density and fz is the nonlinear
observation model.

2.1. SMC-PHD filter

The PHD is the first-order moment of the RFS, which is a set
of random variables (or vectors) with the random cardinality.
Suppose that at time step k − 1, we have a set of N par-
ticles {mi

k−1}Ni=1 and weights {ωik−1}Ni=1, which represent
the posterior distribution at time k − 1.

For the SMC implementation of the prediction step
[4], the particle set is obtained by the proposal distribution
qk(mi

k|k−1|m
i
k−1,Zk), where Zk is the set of observations,

mi
k|k−1 ∼ qk(·|mi

k−1,Zk). (3)

Their weights are

ωik|k−1 =
φk|k−1(mi

k|k−1|m
i
k−1)ωi

k−1

qk(mi
k|k−1

|mi
k−1,Zk)

i = 1, ..., N (4)

where φk|k−1(mi
k|k−1|m

i
k−1) is the analogue of the state

transition probability with the previous state mi
k−1. NΓ par-

ticles are sampled from the new born importance function
pk(mi

k|k−1|Zk),

mi
k|k−1 ∼ pk(·|Zk). (5)

Their weights are

ωik|k−1 =
γk(mi

k|k−1)

NΓpk(mi
k|k−1

|Zk)
i = N + 1, ..., N +NΓ. (6)

In the update step, the weights are calculated as

ωik =

[
1− pD,k(mi

k) +
∑
z∈Zk

pD,k(mi
k)gk(z|mi

k)

κk(z) + Ck(z)

]
ωik|k−1

(7)
where

Ck(z) =

N+NΓ∑
i=1

pD,k(mi
k)gk(z|mi

k)ωik|k−1 (8)

in which κk(z) denotes the clutter intensity of the observation
z at time k. pD,k is the probability of detection at time k.
gk(.|.) is the likelihood of individual targets.

The number of targets is estimated by the sum of weights,

Ñ =

N+NΓ∑
i=1

ωik. (9)

The states and the weights of the targets {m̃j
k, ω̃

j
k}Ñj=1 can

then be calculated with e.g. the k-means clustering method
[17] or the Multi-expected a Posterior (MEAP) [18, 19].

Finally, we perform re-sampling when the ESS [14]
is smaller than half of the total number of particles. In
the re-sampling step, we can obtain {mi

k, ω
i
k}Ni=1, where

{ωik}Ni=1 = 1/N . The pseudo-code of the SMC-PHD filter is
summarized in Algorithm 1.

Algorithm 1 SMC-PHD Filter
Input: {mi

k−1, ω
i
k−1}Ni=1, NΓ, and Zk.

Output: {m̃j
k, ω̃

j
k}Ñj=1, and {mi

k, ω
i
k}Ni=1.

Run:
for each i = 1, · · · , N do

Predict existing targets by (3), (4).
end for
for each i = N + 1, · · · , NΓ do

Predict new born targets by (5), (6).
end for
Update the weights by (7).
(Optional) Update the states and the weights of the particles
by the particle flow.
Estimate Ñ by (9)
Get {m̃j

k, ω̃
j
k}Ñj=1 by the k-means or MEAP method.

Re-sample particles to obtain {mi
k, ω

i
k}Ni=1.

2.2. Particle flow

A homotopy function can be defined to model the particle
flow process [20],

log(ψk(m, λ)) = log(hk(m)) + λ log(gk(m)) (10)

where λ is a step size parameter taking values from the set
[0,4λ, 24λ, · · · , Nλ4λ] and Nλ4λ = 1. When λ = 0,
ψk represents the prior density h. With λ varying to 1, ψk is
translated into the normalized posterior density [10]. When
the prior and the likelihood are unnormalized Gaussian prob-
ability densities, the exact solution for the particle flow is:

dm

dλ
= A (λ)m+ b (λ) (11)

where

A(λ) = −1

2
PHT

(
λHPHT +R

)−1
H, (12)

b(λ) = (I + 2λA)
[
(I + λA)PHTR−1z +Am̄

]
(13)

in which m̄ is the mean of the particles. R is the covariance
matrix of the observation noise, which is given before running
the algorithm. P is the covariance matrix of the particles. H
is computed as the Jacobian matrix,

H =

[
cos (θ) −sin (θ)
sin (θ) cos (θ)

]
(14)



where θ = arctan(m(2)
m(1) ), and m(1) and m(2) are the first

and second element ofm, respectively.

3. PROPOSED PARTICLE FLOW SMC-PHD FILTER

In conventional SMC-PHD filter as presented in Algorithm 1,
particles are drawn from a proposal distribution, which may
not be well matched to the posterior density. To mitigate this
problem, we add an adjustment step between the prediction
step and update step, where the particle flow is incorporated
to adjust the states and weights of the particles by smoothly
migrating them from the prior to the posterior density.

In SMC-PHD, the prior information about the number of
targets and the association between the targets and particles is
unknown and varying. To solve this problem, we create the
particle flows based on the observations. More specifically,
we generate the same number of flows as that of the obser-
vations. Nevertheless, the computational cost associated with
the evaluation of Eqs. (11)-(14) could be high with the in-
crease in the number of particles used for creating the flow.
Therefore, we assume that each flow will only be influenced
by the particles in the neighborhood of the corresponding ob-
servation within a certain distance d to the observation. We
choose particles {mí

k|k−1, ω
í
k|k−1}í∈Λ(z), where Λ(z) is a

subset of E = [1, · · · , N +NΓ] determined based on the ob-
servation z, defined as Λ(z) = {i||z−mi

k|k−1| ≤ d, i ∈ E},
whose size is Nr(z). Then, we calculate the mean m̄(z) and
covariance P (z) of these selected particles.

d
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Fig. 1. The adjustment step in PF-SMC-PHD. The star repre-
sents an observation. The small solid circles denote particles.
(a) shows the selected particles (within the dot-dashed circle).
(b) shows the duplicated particles (in red). (c) shows the du-
plicated particles adjusted by the particle flow.

In practice, one particle may be in a similar distance to
two (or more) different observations. This makes it difficult
to assign such particle to an appropriate particle flow. To mit-
igate this issue, we duplicate the set of the selected particles,
and create the flow using only the duplicated particles. Figure
1 shows this process for adjusting these particles, where the
small solid circles represent the particles, the star shows the
position of the observation z and the dot-dashed circle with
the radius d shows the neighborhood area of z from which
the particles are selected (Figure 1(a)), with Λ(z) recording

their indices. In Figure 1(b), the particles in the dot-dashed
circle are duplicated (hence shown in red) which overlap with
the selected particles (not shown). Figure 1(c) shows the re-
sult of the adjustment step where the duplicated particles are
migrated by the particle flow. It is worth noting that, different
from just randomly adding more particles, the states of obser-
vations and the information of the targets are better exploited
by the proposed method for evaluating the mean and covari-
ance matrix of the duplicated particles. The states of particles
are updated by particle flow as Eq. (11) and their weights are
updated for each observation:

ωik|k−1 =
qk(mi

k|k−1|m
i
k−1, z)

qk(mí
k|k−1|m

i
k−1, z)

ωik|k−1 (15)

The new particle set is the union of the duplicated set and
the original particle set. The pseudo-code of the adjustment
step of PF-SMC-PHD is presented in Algorithm 2. Note that
m in Eq. (11) is represented with mi

k|k−1. As the result of
introducing the duplicated and new born particles, the total
number of particles has been increased at the end of each it-
eration. However, as observed in our experiments, the ESS
has been improved, i.e. less number of particles need to be
resampled due to the use of the duplicated particles.

Algorithm 2 Adjustment Step of PF-SMC-PHD Filter

Input: {mi
k−1, ω

i
k−1}Ni=1, {mi

k|k−1, ω
i
k|k−1}

N+NΓ
i=1 , and

Zk.
Output: {mi

k|k−1, ω
i
k|k−1}

N+NΓ+
∑

z∈Z Nr(z)

i=1 .
Run:
i = N +NΓ.
for each z ∈ Zk do

Calculate Λ(z) = {i||z−mi
k|k−1| ≤ d, i = 1, · · · , N+

NΓ}, Nr(z) = size of (Λ(z)).
Calculate m̄(z) = mean ({mi

k|k−1}i∈Λ(z)) and
P (z) = covariance ({mi

k|k−1}i∈Λ(z)).

for each í ∈ Λ(z) do
i = i+ 1,mi

k|k−1 = mí
k|k−1, ωik|k−1 = ωík|k−1.

mi
k−1 = mí

k−1 for í ∈ [1, · · · , N ].

mi
k−1 = mí

k|k−1 for í ∈ [N + 1, · · · , N +NΓ].

for λ ∈ [0,4λ, 24λ, · · · , Nλ4λ] do
CalculateH via (14).
CalculateA and b by (12) and (13).

Evaluate flow
dmi

k|k−1

dλ by (11).

mi
k|k−1 = mi

k|k−1 +4λdm
i
k|k−1

dλ .
end for
Calculate the particle weights by (15).

end for
end for



4. SIMULATION EXPERIMENTS

We designed an experiment for evaluating our novel PF-
SMC-PHD filter, as compared with the GM-PHD and the
SMC-PHD filters, on a PC with Intel i7 3.40 GHz CPU and
8G RAM. We run our algorithm in Matlab on Windows 7.

In order to simulate the movements of the targets, we de-
sign an occlusion scenario, in which three targets move in the
certain area [−1000, 1000] ∗ [−1000, 1000]. The probability
of detection pD,k = 0.98. There are 50 random clutters in
observations and their positions are set randomly. The ini-
tial states of two targets are m̃1

0 = [250, 250, 2.5,−11.5]T

and m̃2
0 = [−250,−250, 11.5,−2.5]T . The third tar-

get appears from k = 70 and its initial state is m̃3
0 =

[0,−400, 30,−27]T .

The dynamic model is fm̃ =

[
I2 I2

02 I2

]
where I2 and

02 denote the 2 × 2 identity and zero matrices. R is set as[
25I2 02

02 25I2

]
. The parameters of the GM-PHD filter are set

as in [5]. In the SMC-PHD filter, there are 500 particles for
each expected target. The parameters for the birth step of the
SMC-PHD filter are the same as those for the GM-PHD fil-
ter. For particle flow of the proposed PF-SMC-PHD filter and
P = [5, 5, 1, 1]. The distance d is set as 30. We test a set
of 4λ decreasing from 0.5 to 0.001. Both the tracking error
and the number of times required for re-sampling decrease
gradually with the decrease in4λ until it reaches 0.01. How-
ever, when4λ < 0.01, the improvement is negligible, but the
computational load becomes very high. Due to page limit, we
only show part of the results with4λ = 0.01.

Figure 2 shows the average position errors by the optimal
sub-pattern assignment (OSPA) [15] at each time step. At
k = 5, 6, 10, the distance between the two targets is large and
OPSA of the PF-SMC-PHD filter is only 20% of that of the
SMC-PHD filter. After the third target appears, at k = 78, the
PF-SMC-PHD filter also gives lower OPSA than the SMC-
PHD filter. In Table 1, it can be observed that the k-means
and MEAP give similar results. Although the computational
cost of the PF-SMC-PHD filter is approximately 8 times that
of the SMC-PHD filter, its OPSA error is reduced to more
than half of that. As the number of particles remains fixed
in this simulation, change in the number of targets would not
affect the computational cost, but may lead to an increase in
the OSPA error.

Figure 3 compares the average ESS [14] between the
SMC-PHD and PF-PHD-SMC filters. Since k-means and
MEAP give similar results as shown above, only the k-means
clustering is used here. When logN

2
(ESS) < 1, the par-

ticles are degenerated and need to be re-sampled. For the
whole process, the SMC-PHD filter re-samples the particles
12 times while PF-SMC-PHD filter re-samples them only 5
times. However, after the third target appearing at k = 70, the
re-sampling is used more frequently in both methods. This
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Fig. 2. Tracking performance of the compared filtering algo-
rithms at each time step.

algorithm time(s) average OSPA
SMC-PHD with k-means 6.7710 61.7306
SMC-PHD with MEAP 6.7680 59.8458

PF-SMC-PHD with k-means 51.5625 24.7594
PF-SMC-PHD with MEAP 51.5527 25.8386

GM-PHD 226 45.2033

Table 1. Computing time and tracking OSPA of the compared
filtering algorithms at each time step.
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Fig. 3. ESS for SMC-PHD filter and PF-SMC-PHD filter.

implies that the weight degeneracy problem is worsened as a
result of the appearance of a new target.

5. CONCLUSION

We have presented a novel particle flow SMC-PHD filter for
multi-target tracking, by adding an adjustment step using par-
ticle flow to smoothly migrate the particles from the prior dis-
tribution to the posterior density. The proposed technique has
been shown to improve the effective sample size and to miti-
gate the weight degeneracy problem, thus offering improved
tracking accuracy over the SMC-PHD filter.
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