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Estimating Sparse Signals Using Integrated
Wideband Dictionaries

Maksim Butsenko*, Johan Swird', and Andreas Jakobsson'

Abstract—In this paper, we introduce a wideband
dictionary framework for estimating sparse signals. By
formulating integrated dictionary elements spanning bands
of the considered parameter space, one may efficiently find
and discard large parts of the parameter space not active in
the signal. After each iteration, the zero-valued parts of the
dictionary may be discarded to allow a refined dictionary
to be formed around the active elements, resulting in a
zoomed dictionary to be used in the following iterations.
Implementing this scheme allows for more accurate esti-
mates, at a much lower computational cost, as compared
to directly forming a larger dictionary spanning the whole
parameter space or performing a zooming procedure using
standard dictionary elements. Different from traditional
dictionaries, the wideband dictionary allows for the use
of dictionaries with fewer elements than the number of
available samples without loss of resolution. The technique
may be used on both one- and multi-dimensional signals,
and may be exploited to refine several traditional sparse
estimators, here illustrated with the LASSO and the SPICE
estimators. Numerical examples illustrate the improved
performance.

I. INTRODUCTION

A wide range of common applications yield sig-
nals that may be well approximated using a sparse
reconstruction framework, and the area has as a re-
sult attracted notable interest in the recent literature
(see, e.g., [1]-[3] and the references therein). Much
of this work has focused on formulating convex
algorithms that exploit different sparsity inducing
penalties, thereby encouraging solutions that are
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well represented using only a few elements from
some (typically known) dictionary matrix, D. If the
dictionary is appropriately chosen, even very limited
measurements can be shown to allow for an accurate
signal reconstruction [4], [S]]. Recently, increasing
attention has been given to signals that are best
represented using a continuous parameter space.
In such cases, the discretization of the parameter
space that is typically used to approximate the true
parameters will not represent the noise-free signal
exactly, resulting in solutions that are less sparse
than desired. This problem has been examined in,
e.g., [6]-[8]], wherein discretization recommenda-
tions and new bounds of the reconstruction guar-
antees were presented, taking possible grid mis-
matches into consideration. Typically, this results
in the use of large and over-complete dictionaries,
which, although quite efficient, often violate the
assumptions required to allow for a perfect recovery
guarantee.

As an alternative, one may formulate the recon-
struction problem using a continuous dictionary,
such as in, e.g., [9]—[11]]. This kind of formulations
typically use an atomic norm penalty, as introduced
in [12], which allows for a way to determine the
most suitable convex penalty to recover the signal,
even over a continuous parameter space. These so-
lutions often offer an accurate signal reconstruction,
but also require the solving of large and computa-
tionally rather cumbersome optimization problems,
thereby limiting the size of the considered problems.

In this work, we examine an alternative way
of approaching the problem, proposing the use of
wideband dictionary elements, such that the dictio-
nary is formed over B subsets of the continuous
parameter space. In the estimation procedure, the
activated subsets are retained and refined, whereas
non-activated sets are discarded from the further op-
timization. This screening procedure may be broken
down into two steps. The first step is to remove
the parts of the parameter space not active in the



signal, whereafter, in the second step, a smaller
dictionary is formed covering only the parts of
the parameter space that were active in the first
step. This smaller dictionary may then again be
expanded with candidates close to the activated
elements, thereby yielding a zoomed dictionary in
these regions. The process may then be repeated
to further refine the estimates as desired. With-
out loss of generality, the proposed principle is
here illustrated on the problem of estimating the
frequencies of K complex-valued M-dimensional
sinusoid corrupted by white circularly symmetric
Gaussian noise. The one-dimensional case of this is
a classical estimation problem, originally expressed
using a sparse reconstruction framework in [[13]], and
having since attracting notable attention (see, e.g.,
[14]-[17]). Here, using the classical formulation,
the resulting sinusoidal dictionary will allow for
a K-sparse representation of frequencies on the
grid, whereas the grid mismatch of any off-grid
components will typically yield solutions with more
than K components. Extending the dictionary to
use a finely spaced dictionary, as suggested in,
e.g., [8], will yield the desired solution, although
at the cost of an increased complexity. In this work,
we instead proceed to divide the spectrum into B
(continuous) frequency bands, each band possibly
containing multiple spectral lines. This allows for
an initial coarse estimation of the signal frequencies,
without the risk of missing any off-grid components.
Due to the iterative refining of the dictionary, closely
spaced components are successfully separated as the
dictionary is refined; as the wideband elements span
the full band, no power is off-grid, avoiding the
problem of a non-sparse solution due to dictionary
mismatch.

Other screening methods that decrease the dic-
tionary size have been proposed. For instance, in
[18]-[23], methods for finding the elements in the
dictionary that corresponds to zero-valued elements
in the sparse vector were proposed. Based on the
inner product between the large dictionary and the
signal, a rule was formed for deeming whether or
not a dictionary element was present in the signal
or not. Although these methods show a substantial
decrease in computational complexity, one still has
to form the inner product between the likely large
dictionary and the signal. To alleviate this, one may
instead use the here proposed wideband dictionary
elements, thereby discarding large parts of the pa-

rameter space. Since the wideband dictionary is
magnitudes smaller than the full dictionary required
to achieve the reconstruction, the computational
complexity is significantly reduced.

The proposed principle is not limited to methods
that use discretization of the parameter space; it may
also be used when solving the reconstruction prob-
lem using gridless methods, such as the methods in
[9]—[L1]]. It has been shown that if the reconstruction
problem allows for any prior knowledge about the
location of the frequencies, e.g., the frequencies are
located within a certain region of the spectrum, one
may use this information to improve the estimates
[24]]. The proposed method may also be used to
attain such prior information, and thus improving
the overall estimates as a result.

To illustrate the performance of the proposed
dictionary, we make use of two different sinusoidal
estimators, namely the LASSO [25] and the SPICE
estimators [26], [27]; the first finding the estimate
by solving a penalized regression problem, whereas
the latter instead solves a covariance fitting problem.

The remainder of this paper is organized as fol-
lows: in the next section, the problem of estimating
an M-dimensional sinusoidal signal is introduced,
followed, in Section III, by the introduction of
the proposed wideband dictionary. In Section 1V,
a discussion about the computational complexity
reduction allowed by the proposed wideband dic-
tionary is given, and, in Section V, the performance
of the proposed wideband dictionary is illustrated
by numerical examples. Finally, in Section VI, we
conclude on our work.

II. PROBLEM STATEMENT

To illustrate the wideband dictionary framework
consider the problem of estimating the K frequen-
cies f,im), fork=1,...,Kand m=1,... M, of

an M-dimensional signal y,,, . ,,,, with

K
- p(1) (1) (M) (M)
_ 247 ty, +-+2im ty
Yni,onpr = E Bke Tt T M+ €ny,...ma
k=1

o))

for n,, = 1,..., N, and where K denotes the
(unknown) number of sinusoids in the signal. Fur-
thermore, let 3, and f,im) denote the complex am-
plitude and frequency of the kth frequency and mth
dimension, respectively, tm) the n,,th sample time

in the mth dimension, and €, ,,, an additive noise
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Fig. 1: Fine-grid dictionary for two-dimensional
signal estimation with N; = 30, Ny = 30, and
P = 60 elements per dimension.

observed at time t,,,...,%,,,. The signal model
in (I) may be equivalently described by an M-
dimensional (M -D) tensor

K
~(1)  ~(2) ~ (M)
Y=) Bidgody ody +& @
k=1
where o denotes the outer product, and
~m m m . m m T
dEk)) — [ 2 [ 2 f ] 3)

To determine the parameters of the model in ()
or (@), as well as the model order, we proceed by
creating a dictionary containing a set of signal can-
didates, each representing a sinusoid with a unique
frequency. By measuring the distance between the
signal candidates and the measured signal, and by
promoting a sparse solution, one may find a small
set of candidates that best approximates the signal.
To this end, we form a dictionary on the form

D = [ . dy ] @)

T
dg)”)') — |: 62i7rf1(1m)t§m) 62iﬂf}§m)tm :| (5)
for m = 1,...,M and p = 1,...,P,,, where

P,, > K denotes the number of candidates in
dimension m. Here, the dictionary is assumed to
be fine enough so that the unknown sinusoidal
component will (reasonably well) coincide with K
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Fig. 2: The inner-product of a dictionary containing
P = 50 (narrowband) candidate frequency elements
and the noise-free signal, with N = 100.

dictionary elementsﬂ Often, it is more convenient
to work with a vectorized version of the tensor. Let
y = vec(Y), where vec(-) stacks the tensor into a
vector. One may then re-write (2)) as

y = (D(M) QDM g...x D(l)) B (6

where ® denotes the Kronecker product, suggesting
that one may find both the unknown parameters and
the model order by forming the LASSO problem

(see, e.g., [13]], [25])
min ||y ~ DA + All8ll

where D = (DM @DMDg...@DW) and
||l|l; denotes the g-norm. A visual representation
of such dictionary is shown in Figure [I] for the
2-D case. The penalty on the 1-norm of B will
ensure that the found solution will be sparse, with
A denoting a user parameter governing the desired
sparsity level of the solution. The frequencies, as
well as their order, are then found as the non-zero
elements in 3.

As shown in []E[], the number of dictionary el-
ements, P, typically has to be large to allow for
an accurate determination of the correct parameters.
This means that for multi-dimensional signals, the

(7

' As noted in , , the dictionary generally needs to be
selected sufficiently fine to allow for a reconstruction of the signal,
whereas increasing the size of the dictionary will also increase the
computational complexity of the estimate. As shown in the following,
the discussed method relaxes this requirement by instead defining a
dictionary covering bands of potential candidates, rather than a set
of individual dictionary candidates.
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Fig. 3: Wideband dictionary with integrated sinu-
soids elements formed with N; = 30, Ny, = 30, and
B = 6 bands per dimension.

dictionary quickly becomes inhibitory large. Thus, it
is often not feasible in practice to directly compute
the solution of (7) using a dictionary constructed
from such finely space candidates. As an alternative,
one may use a zooming procedure, where one
first employs an initial coarse dictionary, Dy, to
determine the parameter regions of interest, and
then employ a fine dictionary, D5, centered around
the initially found candidates (see, e.g., [28], [29]
for similar approaches). This allows for a com-
putationally efficient solution of the optimization
problem in (7)), but suffers from the problem of
possibly missing off-grid components far from the
initial coarse frequency grid. This is illustrated in
Figure 2] for a 1-D signal, where the inner-product
between the dictionary and the signal is depicted
together with the location of the true peaks. In this
noise-free example, we used N = 100 samples
and P = 50 dictionary elements, with one of the
frequencies being situated in between two adjacent
grid points in the dictionary. As seen in the figure,
the coarse initial estimate fails to detect the presence
of the second signal component, which is thereby
discarded as a possibility in the following refined es-
timate. Increasing the number of candidate frequen-
cies will result in the side-lobes of the dictionary
elements decreasing the gap between the frequency
grid points, making the inner-product between the
dictionary and the signal larger for components that
lie in between two candidate frequencies. However,
doing so will increase the computational complexity
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Fig. 4: The inner-product of a dictionary containing
B = 50 (wideband) candidate frequency elements
and the noise-free signal, with N = 100.

correspondingly, begging the question if one may
retain a low number of candidate frequencies, while
still reducing the likelihood of missing any off-grid
components. This is the problem we shall examine
in the following.

III. INTEGRATED WIDEBAND DICTIONARIES

We note that the above problem results from
the dictionary being formed over a set of single-
component candidates, thereby increasing the risk
of neglecting the off-grid components. In order to
avoid this, we here propose a wideband dictionary
framework, such that each of the dictionary ele-
ments is instead formed over a range of such single-
component candidates. This is done by letting the
dictionary elements be formed over an integrated
range of the parameter(s) of interest, in this case
being the frequencies of the candidate sinusoids.
For a multi-dimensional sinusoidal dictionary, the
resulting B integrated wideband elements should
thus be formed as

ay,pon (W, M) =

/fb(1)+1 /fb(M)+1
! Ty

(1)
€2m(f<1>t<1>+~~-+f(M>t<M>)df(1) 3 'df(M) (8)
for ™ =1,... N, for all m = 1,..., M, where
fyomy and fyam) ., are the two frequencies bounding
the frequency band, for b = 1,..., B, for the mth
dimension. The resulting elements are then gathered
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into the dictionary, B, where each column contains
a specific wideband of the M-D parameter space
for all time samples, where each element is formed
as the solution from (8), such that, in this case,

ayy . yon (tD, . 1)) =

M eQiTrfb(m)+1t(m) . €2i7rfb(m)t(m)

2imt(m)

€))

m=1

Note that (9) corresponds to the M-D inverse
Fourier transform of 1, i.e., it is the M-D inverse
Fourier transform of an M-D section in the fre-
quency domain with unit amplitude. For the 1-D
case, this simplifies to

62@'7bet _ €2i77f,1t

2t

5['71
\

$,mrﬁ§f§ﬁ
0

(10)

Algorithm |1 summarizes the usage of the wideband
dictionary in a sparse reconstruction framework. In
Figure [3) we show a visual representation of the re-
sulting wideband dictionary for M = 2 dimensions.
The inner-product between the proposed dictionary,
B, and the earlier 1-D signal is shown in Figure
using the same number of dictionary elements as
in Figure [I} clearly indicating that the proposed
dictionary is able to locate the off-grid frequency.
This is due the wideband nature of the proposed
dictionary, which thus has less power concentrated
at the grid points, but covers a wider range of
frequencies, not reducing to zero, or close to zero,

anywhere within the band (as is the case for the
narrowband dictionary elements). As a result, using
the wideband dictionary elements, it is possible to
use a smaller dictionary, thereby reducing the com-
putational complexity, without increasing the risk of
missing components in the signal. To further show
this, 1000 Monte-Carlo simulations were conducted
for each considered signal to noise ratio (SNR), here
defined as

SNR = 1010g10<%> (11)
where P, is the power of signal, and o the vari-
ance of the noise. In each simulation, we con-
sidered a signal containing two sinusoids, where
the frequencies were randomly selected on (0, 1]
with a spacing of at least 2/N, with N = 100
denoting the signal length. The sinusoids had the
magnitudes 4 and 5, with a randomly selected phase
between (0, 27]. Two dictionaries were given, one
containing ordinary sinusoids and one containing
the proposed wideband components, both contain-
ing P = B = 50 elements. For each dictionary,
the inner-products with the signal where computed,
where the amplitudes were normalized so that the
largest estimated peak had unit magnitude. Figure 5]
shows the variance of the smallest peak for different
SNR-levels. As is clear from the figure, the variance
of the peaks are much lower for the banded case.
The reason why the sinusoidal dictionary results in
a larger variance is due to the fact that the main
lobe is much thinner in this case than in the banded
counterpart. This means that when the sinusoids
happen to have frequencies that do not overlap
with the main lobe of the dictionary, the power in
the inner-product will be small. This will not only
make such components harder to detect, but will
also make it more difficult to determine a suitable
regularizing hyperparameter, \.

When P decreases below N, the gaps between the
frequency candidates in the single-component dic-
tionary become so large that if one of the sinusoids
in the signal has its frequency values between two
adjacent grid points, the likelihood that this sinusoid
lie in the null-space of the dictionary increases. This
problem is avoided with the wideband dictionary as
it is more likely to eliminate any gaps.

This property is depicted in Figure [6] where the
success rate of finding the true support is displayed
as a function of the number of samples, N, and the
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Fig. 6: The success rate of finding the true support as a function of the number of samples (y-axis) and
the ratio between the number of bands in the dictionary and the number of samples (x-axis), for different

values of K. Top left corner, K = 3, top right corner, K =

Algorithm 1 Sparse reconstruction with LASSO
using the wideband dictionary for the 1-D case

choose the number of zooming steps, I..om
choose the number of bands, Bl
set the frequency bin A; =

{fk fk—kA1,fOI'k5—1 ,Bl}
form the dictionary B; according to ©)
solve min [y — Bua/§ + 1Bl

1—{2 51()>Of0rz—1 Bl}
8: gractwe_{fk 63:1 . kegl}
9: for z =2 to I,pm do {zooming procedure}

A A S

~

10:  choose the number of bands, B,

11:  select the frequency bin A, b

12: Z—{fk.fk—[fk—i-AZ,fk-i-QAZ,...,fk-i-
Az]Ta fk € gz'actwe}

13:  form the dictionary B, according to (9)

4 solve min [ly — B3,/ + A8l

15 J,={i:5,(4) >0,fori=1,....][; B;}

16: H’thwe {freF.:kel.}

17: end for

number of bands in the dictionary, B, for different
number of sinusoids in the signal, K. The estimation
was done for a noise-free signal by solving (7),

7, and bottom, K = 11.

using wideband dictionaries and letting

A = 0.3 max |d]y| (12)
i=1,...,.B

where d; denotes the ith column of D and the
coefficient 0.3 is selected given the observations
in Figure 0] For a more complete discussion on
how one should select A\, we refer the reader to the
original presentation of the LASSO [25]]. In the top
left figure, the signal contains three sinusoids, and
it 1s clearly the case that the banded dictionary is
able to retrieve the true support for all setting of
N and B/N, except for the case when N = 30
and B/N < 7. In the top right and bottom figures,
where K 7 and K 11, respectively, it is
shown that when the number of sinusoids in the
signal increases, a larger number of samples is
needed to allow for a successful reconstruction,
which is reasonable, as one needs more information
to be able to correctly estimate more parameters.
However, the banded dictionary is able to retrieve
the true support as long as the number of samples
is big enough and the ratio B/N is not too small.
It is further clear from the figures, that the banded
dictionary actually retrieves the true support even
though B < N.



The proposed approach is not the only way
to form a wideband dictionary. For example, one
could populate the dictionary using discrete prolate
spheroid sequences (DPSS) [30]. For an integer
@ and with real-valued 0 < W < 1, the DPSS
are a set of () discrete-time sequences for which
the amplitude spectrum is band-limited. The most
interesting property of the DPSS for our discus-
sion is the fact that the energy spectrum of the
dictionary elements are highly concentrated in the
range [—WW, W], suggesting that the DPSS could be
a suitable basis for the candidates in a wideband
dictionary, where the candidates are formed such
that each covers a 1/B-th part of the spectrum. In
the numerical section below, we examine how the
use of DPSS candidates compare to the integrated
wideband candidates in (9).

It is worth stressing that the wideband dictionary
framework introduced here is not limited to the
LASSO-style minimizations such as the one exam-
ined in (7). There are many other popular methods
that could be implemented using this approach.
As an example of how the wideband dictionary
can be applied for other typical sparse estimation
algorithms, consider the SPICE algorithm [[14], [27],
formed as the solution to

minimize y*R™'y + [[pl[i + [lo][i  (13)
p>0
where

R(p) = APA* (14)

A=[B 1] (15)

p=[m par " (16)

og=[o ... on] (17

p=[p" o] (18)

P = diag (p) (19)

Alternatively, one may consider the more general
{r, ¢}-SPICE formulationf] [33], [34]

minimize y" R~y + [|pl|, + [lo|l,  (20)
p>

Using the wideband dictionary over B in or
will allow for much smaller dictionaries as
opposed to using ordinary sinusoidal dictionaries.
Many other sparse reconstruction techniques may

’In this formulation, we assume that the columns of the dictionaries
are normalized to have unit norm.
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Fig. 7: A single wideband element for varying

bandwidths (Rp - ratio, BWW - bandwidth).

be extended similarly. Generally, the wideband dic-
tionary may be used either as an energy detector
which finds the parts of the spectrum that have most
energy, or in a zooming procedure similar to the one
described above.

IV. PARAMETER SELECTION

From our discussion on the integrated wideband
dictionary and its use for sparse signal estimation,
one may note that there are two parameters which
should be chosen by the user, namely the number of
used bands and the number of zooming steps. The
choice of the number of the bands, B, will depend
on the required resolution, whereas the number of
zooming steps will decrease the computation com-
plexity (for a fixed resolution) as with each zooming
step inactive parts of the spectra are discarded from
future computations. Therefore, the choice of the
total number of bands one should use is dependent
on the required resolution. Furthermore, for each
zooming step, the distribution of these bands should
be made such that the subsequent selection will
guarantee a high likelihood of including the true
support. This idea is illustrated in Figure [6| where
the success rate of finding the true support is shown
to depend on the number of bands, the number of
samples, and the number of components in the data.

As may be expected, the use of the wideband
dictionary does not remove such user choices; in
fact, the here proposed framework does not remove
any of the usual user choices or limitations of a
sparse reconstruction technique, be it the LASSO,
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SPICE, or any other dictionary based technique,
and the same restrictions will apply that do so for
the particular method if used with a narrowband
dictionary. Rather, the wideband dictionary allows
for an efficient refinement procedure speeding up
the calculations required in forming the estimate.
On the other hand, the use of a wideband dictio-
nary does introduce the need to select the number
of used bands, which directly relates to the width
of the used bands as these bands are assumed to
span the full parameter range. Due to the integration,
the wideband elements will suffer from a reduced
gain in the middle of the covered band; this will be
negligible for bands of limited width, but will be
pronounced, and will affect the estimation results,
for wider bands. This is illustrated in Figure
showing a single wideband element for varying
bandwidths. To quantify this effect, we define Rp as
the ratio between the minimum and maximum gains
of the wideband element. This ratio will depend on
both the number of bands, B, and the number of
samples in the signal, N. It may be well approxi-
mated by fitting a second order polynomial for B,
as well as a linear fit over NV, to the numerically
computed ratios over a wide range of parameters
(here, we used B = [4,100] and N = [50,500]),
yielding
P —0.49B% + 90B + 5546 — 4N
b 104
The impact of Rp on the resulting estimates is
shown in Figure [§] where we have considered a

21

signal consisting of N = 30 samples containing
K = 2 (complex-valued) sinusoids corrupted by a
zero-mean white Gaussian noise with SNR= 20dB.
The figure shows the percentage of correctly esti-
mated model orders for different number of bands
and the corresponding Rp ration (here, to simplify
the presentation, the shown second stage zooming
used a constant By = 2 elements), computed using
1000 Monte-Carlo simulations. As can be seen from
the figure, the percentage of correctly estimated
model order will decrease as R, shrinks, with the
decrease being more rapid if using fewer zooming
stages. Note, however, that most of the incorrectly
estimated model orders stem from over estimation
and not from underestimation. Thus, it is possible
to improve the order estimation in the subsequent
zooming stages. For a single stage estimator, we
recommend using Rp > 0.81, yielding a success
rate of about 95%; for a two stage pstimator, one
may reduce this further, selecting Rz > 0.66 to
achieve the same performance. After selecting an
appropriate ratio for the problem at hand, taking
the number of zooming steps into account, one may
then determine the corresponding number of bands
using (21)), for a given N.

V. COMPLEXITY ANALYSIS

To illustrate the computational benefits of using
the wideband dictionary as compared to forming
the full dictionary, we proceed with our example of
determining K M-D sinusoids by solving (/) using
the popular ADMM algorithm [31]. In order to do
so, we first transform the problem into a vector form
reminiscent to (6), and split the variable 3 into two
variables, here denoted x and z, after which the
optimization problem may be reformulated as

1
min 5|’Y—Aaz|]§+)\HzH1 subj. to x =z
| (22)

having the (scaled) augmented Lagrangian
1
Sy = Az(B+ Azl + Slle — = +ul} @23)

where u is the scaled dual variable and p is the
step length (see [31] for a detailed discussion on
the ADMM). The minimization is thus formed by
iteratively solving for  and z, as well as
updating the scaled dual variable w. This is done
by finding the (sub-)gradient for  and z of the



augmented Lagrangian, and setting it to zero, fixing
the other variables to their latest values. The steps
for the jth iteration are thus

2Vt = (AHA + pI)_1 (AHy +20) — u(j))

(24)
S0+ — S(az(jH) + uW, A p) (25)
wIt) = 4, + 20U+ _ LG+ (26)

where (-)¥ denotes the Hermitian transpose, (-)\)
the jth iteration, and S(v, ) is the soft threshold
operator, defined as

max (|v| — &, 0)

S(v, k) =

~ max (Jv] — k,0) + &

OXY) 27)
where © denotes the element-wise multiplication for
any vector v and scalar x.

The computationally most demanding part of the
resulting ADMM implementation is to form the
inverse in and to calculate Afy. These steps
are often done by QR factorizing the inverse in
(24) prior to the iteration, so that this part is only
calculated once. After this, the QR factors are used
when forming the inner product. To give a simple
example on the difference between the two types of
dictionaries, we exclude any further computational
speed-ups and show the difference on brute force
computations of the above ADMM. This is done
to give an idea on the effect P < NN has on the
computational complexity. The total computational
cost for the step in (@k depends on the size of the
matrix A. Let N = [[\_, N, and P = [[*_, P,.,
then A is a N x P matrix. If P < N, computing the
inverse will cost approximately P3 operations, plus
an additional P2N operations to form the Gram ma-
trix A” A. Furthermore, to compute A"y requires
PN operations, and the final step to compute x
costs P? operations. If instead P > N, one may
make use of the Woodbury matrix identity [32],
allowing the inverse to be formed using N3+ 3PN?
operations, whereafter one has to compute Afy
and the final matrix-vector multiplication, together
costing PN + P? operations. In total, the x-step will
have the cost of roughly P + (N +1)P?+ NP, if
P < N,or N3+ 3PN?+ PN + P% if N < P.

Since using the banded dictionary allows for a
smaller dictionary, one may calculate the compu-
tational benefit of using the integrated dictionary
as compared to just using an ordinary dictionary
with large P. Consider using only a single-stage

narrowband dictionary, D, with P > N dictionary
elements. This requires C; = N*+3PN?*+P?+PN
operations if using the above ADMM solution, with
the dictionary D; in the place of A in (24)-(26).
If, on the other hand, one uses a multiple-stage
wideband dictionary with N dictionary elements in
the initial coarse dictionary, B; (which is more than
required, but simplifies the calculations), the cost
of forming the first stage (coarse) minimization is
Cy = 2(N?® + N?). By taking the difference, i.e.,
forming

R=C, —Cy=N?+3PN*+ P+
+PN —2(N?® + N?)

one obtains the available computational resources,
R, that are left for the dictionaries of the zoomed-in
stages, without increasing the overall computational
cost above that of the narrowband dictionary solu-
tion. Let B, denote the zoomed-in dictionary with
17N number of bands, where 0 < 1 < 1 denotes the
ratio between the number of available bands in the
dictionary and the number of samples. Then, one
may deduce the grid size for each B, that is al-
lowed without increasing the overall computational
complexity as compared to using the narrowband
dictionary by solving

R=KIL ((nN)* + (N + 1)(nN)* +nN?)

where [, denotes the number of zooming steps and
K the number of sinusoids in the signal. To illus-
trate the resulting difference, consider the following
settings: P = 1000, N = 100, K = 5, and = 2/3.
To only use half the resources that are needed to
solve the full narrowband problem, one may, using
the wideband dictionary, use 4 stages of zooming,
resulting in a grid spacing of roughly 1077, as
compared to 1073 for the narrowband dictionary.
One may of course also use a zooming procedure
when using the narrowband dictionaries, although
this would increase the risk of missing any off-grid
component. This means that the smallest number
of dictionary elements, for the narrowband dictio-
nary to avoid missing any off-grid components, is
P = N, and thus the wideband dictionary would
need only at most n? of the computational resources
needed for the ordinary dictionary, at each zooming
stage.
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Fig. 9: The probability of (top) correctly estimating
and (bottom) underestimating the number of spectral
lines, for the (single-stage) narrowband dictionary,
using P = 1000 elements (cyan, dashed) and
P = 75 elements (green, dot-dashed), and for the
initial wideband dictionary, using B; = 75 ele-
ments (blue, dotted), and the (two-stage) wideband
dictionary, using B; = 75 elements, together with
By = 25 elements per activated bands in the refining
dictionary (red, solid).

VI. NUMERICAL EXAMPLES

In this section, we proceed to examine the perfor-
mance of the proposed method, initially illustrating
that the use of a two-stage wideband estimator will
have the same estimation quality as when using the
ordinary (one-stage) narrowband LASSO estimator.

A. One-dimensional data

We initially considered a signal consisting of
N = 75 samples containing K = 3 (complex-
valued) sinusoids corrupted by a zero-mean white
Gaussian noise with SNR= 10dB. In each simu-
lation, the sinusoidal frequencies are drawn from a
uniform distribution, over [0, 1), with all amplitudes
having unit magnitude and phases drawn from a
uniform distribution over [0, 27). The performance
is then computed using three different dictionaries,
namely the (ordinary) narrowband dictionary, D,
with P = 1000 and P = 75 elements, respectively,
and the proposed wideband dictionary, B, using
By = 75 elements, followed by a second-stage
narrowband dictionary using By = 25 elements per
active band. For each dictionary, we evaluate the
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Fig. 10: Mean-square error curves for different SNR
levels for the single-stage narrowband dictionary,
using P = 100, as compared to the two-stage dictio-
nary, using B; = 20 integrated wideband elements
in the first stage, followed by B; = 5 wideband
elements in the second stage. The percentage of
correct model order estimation (excluding outliers)
is shown as a percentage on top of the corresponding
MSE value.

performance for varying values of the user parame-
ter o using A\ = @\ a2, Where A0, = max; |x7y|
is the smallest tuning parameter value for which
all coefficients in the solution are zero [19]. Here,
ax; denotes either the ¢th column of the D dictio-
nary or the ith column of the B dictionary. Each
estimated result is then compared to the ground
truth, counting the number of correctly estimated
and underestimated model orders. The results are
shown in Figure 9] As can be seen from the figure,
the best results are achieved when o < 0.65, in
which case the proposed wideband dictionary, using
B, = 75 bands, followed by a second stage narrow-
band dictionary, with B, = 25 for each activated
band, have similar performance to the narrowband
dictionary using P = 1000 dictionary elements.

Proceeding, we assess the mean-square error
(MSE), defined as

K
MSE = = 3" (i~ /i) (28)

k=1
where f; and fk denote the true and the estimated
frequency, respectively, for the two-stage dictionary,
showing the MSE as a function of SNR for the first-
stage wideband dictionary, B;, and second-stage
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Fig. 11: Mean-square error curves for different SNR
levels for the single-stage narrowband dictionary,
using P = 100, as compared to the two-stage dictio-
nary, using B; = 20 integrated wideband elements
in the first stage, followed by B; = 5 wideband
elements in the second stage. The percentage of
correct model order estimation (excluding outliers)
is shown as a percentage on top of the corresponding
MSE value.

wideband refining dictionary, B,. Here, and in the
following, we consider situations where the number
of elements in the dictionary is less than number of
samples. As was described before, this is a situation
where the performance of narrowband dictionaries
can deteriorate seriously. For this experiment, we
considered a signal with N = 300 samples con-
taining X' = 2 (complex-valued) sinusoids, being
corrupted by different levels of zero-mean white
Gaussian noise with SNR in the range [5,20] dB.
Figure [I0] shows the resulting MSE for the LASSO
estimator for the estimates with correctly estimated
model order; for runs with the correct model order
estimation we also removed outliers from the final
MSE calculation. We consider an estimate as an
outlier if |f — f| > Af, where Af was defined
as two times the possible resolution, where possible
resolution is defined as 1/ P for the narrowband dic-
tionary and 1/(B; - By) for the wideband dictionary.
Figure [I 1] shows the MSE for the same experiment
done using the SPICE estimator. The number of
outliers removed for the LASSO estimator was: 4,
0, 0, 0 for the wideband dictionary and 7, 16, 10 and
11 for the narrowband dictionary (corresponding to
SNRs of 5, 10, 15, and 20 dB). The number of
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| Settings [| Relative complexity |

P =1000, N = 200, K = 2 1

B; =20,B, =5 0.001
By = 20, B; = 40 0.015
B; = 10, B, = 10,Bs = 5 0.001

TABLE I: Relative complexity between using the
narrow- and wideband dictionaries. Here, P indi-
cates the number of columns in the narrowband
dictionary, whereas B; and B, indicate the number
of wideband elements in the first and second stage
of the zooming procedure, respectively. In the last
row, a third stage has been added using B3 wideband
elements.

outliers removed for the SPICE estimator was; 17,
1, 1, 0 for the wideband dictionary and 52, 80,
117, and 103 for the narrowband dictionary. As can
be seen from the figures, the two-stage dictionary
using a wideband dictionary using B; = 20 bands,
followed by a refining dictionary using By, = 5
wideband elements, achieves the same performance
as the single-stage narrowband dictionary using
P = 100 elements in terms of resolution. However,
the narrow-band dictionary will for this case fail
to reliably restore the signal with reconstruction
success rates of merely 30 — 50%.

Table |I| shows the relative complexity between
using a full narrowband dictionary (using P = 1000,
N = 200, and K = 2) and some different settings
for the wideband dictionaries used in the numerical
section. To simplify the comparison, the given com-
plexity is the one of solving the ADMM without
utilising any structures of the dictionary matrices.
From the table, it is clear that it is more efficient
to use the zooming procedure utilising the wideband
dictionary as compared to solving the same problem
using a full narrowband dictionary.

Next, we consider non-uniformly sampled data
with N = 400 samples, for K = 2 sinusoids. For
this experiment, we also added a third estimation
step for the iterative wideband dictionary. After
initial estimation with B; = 10 wideband dictio-
nary elements, we zoom into the active bands with
By = 10 dictionary elements per active band, and
then once again with B3 = 5 dictionary elements.
In spite of the three stage zooming, the method
requires considerably less computational operations
as compared to using a corresponding narrowband
dictionary, but results in better performance both in
terms of resolution and model-order accuracy. The
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Fig. 12: Signal estimation for non-uniform sam-
pling: mean-square error curves for different SNR
levels for the single-stage narrowband dictionary,
using P = 200 elements, as compared to the three-
stage dictionary, using B; = 10 integrated wideband
elements in the first stage, followed by By = 10
and B3 = 5 wideband dictionaries in the second
stage and third stage per active band detected in the
previous stage. The correct model order estimations
are shown in percentage above each point.

resulting MSEs are shown in Figure [I2] All results
are computed using 1000 Monte-Carlo simulations.

B. Two-dimensional data

In this subsection, we present results on a 2-D
data set. In this example, each dimension is sampled
uniformly with N = 100 samples. We compare a
narrowband dictionary with P = 49 elements per di-
mension with the wideband dictionary using B = 7
bands per dimension in the first step and a wideband
dictionary with By = 7 elements per active band
in a second (zooming) step. Here, we use two
separate wideband dictionaries, the first, B, using
integrated dictionary elements as defined in (8)), and
the second, Bppgss, which contains elements based
on DPSS. For the DPSS-based dictionary, we used
a sequence length of ) = 100 and W = 1/2.1.
Using W < 1/2.1 results in dictionary elements
which concentrate energy in a more narrow band
and are therefore not suitable for the dictionary with
By = By = 7 elements. We considered a signal
containing K = 2 (complex-valued) sinusoids per
dimension, with the signal being corrupted by a
zero-mean white Gaussian noise. In each simulation,
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Fig. 13: Signal estimation in two dimensions: mean-
square error curves for different SNR levels for the
single-stage narrowband dictionary D, using P =
49 per dimension, as compared to the two-stage
dictionaries (DPSS based and integrated sinusoids
based), using B; = 7 wideband elements in the first
stage, followed by By = 7 wideband elements in the
second stage (per active band).

the sinusoidal frequencies are drawn from a uniform
distribution, over [0,1), with all the amplitudes
having unit magnitude. The two dictionaries are
compared against each other based on the MSE
performance in the same manner as in the previous
subsection, with the MSE being calculated as the
average value for both dimensions if the model
order estimate for the iteration was correct. The
percentages of correct model order estimates are
shown for each SNR value. Figure [I3] shows the
resulting MSE curves. It can be seen that the wide-
band dictionary with integrated sinusoids marginally
outperforms the DPSS-based wideband dictionary
both in terms of MSE and model-order accuracy.
Comparing to using the narrowband dictionary, it
can be seen that both wideband dictionaries outper-
form it considerably in terms of model-order esti-
mation, although the narrowband dictionary shows
slightly better performance in terms of MSE. Also
in this example, the wideband dictionaries provide a
considerable reduction in computational complexity
as well as a robustness in terms of estimating off-
grid components. All results are computed using
100 Monte-Carlo simulations.

Using the same setup as described above we also
evaluated the performance of the proposed approach
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Fig. 14: Percentage of correct model order esi-
mations for different number of sinusoids and for
different SNR levels for wideband dictionary (W-
B) and narrowband dictionary (N-B).

when the number of sinusoids to detect is higher.
Again, we considered the ordinary narrowband dic-
tionary, D, and the wideband dictionary, B, from the
previous experiment. We calculated the percentage
of correct model order estimation for signals with
K = 4,6,8, and 10 (complex-valued) sinusoids.
The results were computed using 100 Monte-Carlo
simulations; the correct model order estimation per-
centages for different SNR levels are shown in
Figure The best regularization parameters A\
for solving the LASSO for each case were found
beforehand with the grid-search method. For this,
we selected the range of parameter o € [0.7,0.05]
with the step-size 0.05 and ran 100 Monte-Carlo
simulations for each model order and then picked
the best parameter for the selected model order
based on model order accuracy. For the two-step
wideband dictionary, a grid-search was done for the
set of o parameter for the both stages. It can be
clearly seen that for situations where the number
of elements in the dictionary is lower than the
number of samples, the narrow-band dictionary fails
to produce any meaningful results.

C. Measured data example

Finally, we examine the performance of the pro-
posed wideband framework on measured nuclear
magnetic resonance (NMR) data, again comparing
with using the full narrowband dictionary. The
measured data NMR measurement consist of N =
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Fig. 15: The resulting estimates using a dictionary
with 2000 narrowband elements (top), and a two-
stage zooming approach using wideband elements,
using B; = 40 in the first stage and By = 50 for
each activated bands in a second stage. The signal
is a measured NMR signal of length N = 256.

256 samples, and contains five damped sinusoidal
signals. To make the comparison fair, we neglect
the damping in the modelling (as the wideband
dictionary will implicitly allow for the resulting
wide peaks, whereas the narrowband dictionary will
require an additional parameter to do so). This
results in estimates containing clusters of peaks in-
stead of individual component. Figure [15] illustrates
the resulting estimates, showing the result of using
a narrowband dictionary with 2000 elements (top),
as well as a two-stage wideband dictionary (using
By = 40 elements in the first stage and By = 50
elements in the second). The resulting estimates will
thus have the same final grid resolution. As can
be expected, both estimators show similar results,
having the same support and roughly the same
relative amplitudes. Using the introduced ADMM
implementation described in Section the wide-
band estimate was formed in 0.315 seconds, which
was 20 times faster than the narrowband estimate.
Here, one may note that if an iterative narrowband
zooming would be used, it would require at least
256 elements in the first stage to avoid losing any
peaks; doing so would require more complexity than
the two-stage wideband estimator.



VII. CONCLUSION

In this paper, we have introduced a wideband
dictionary framework, allowing for a computation-
ally efficient reconstruction of sparse signals. Wide-
band dictionary elements are formed as spanning
bands of the considered parameter space. In the
first stage, one may typically use a coarse grid
using the integrated wideband dictionary locating
the bands of interest, whereafter non-active parts
of the parameter space are discarded. In the next
stage, a refining dictionary can be used to more
precisely determine the parameters of interest on
the active bands from the previous step, allowing
for an iterative zooming procedure. The technique
is illustrated for the problem of estimating multi-
dimensional sinusoids corrupted by Gaussian noise,
showing that the same accuracy can be achieved,
although at a computationally substantially lower
cost and with much less risk of missing any off-
grid components. The proposed framework is here
illustrated for the LASSO and SPICE estimators,
but other sparse reconstruction techniques may be
extended similarly.
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