
IMPROVING THE SPATIAL DIMENSIONALITY OF GAUSS-LEGENDRE AND
EQUIANGULAR SAMPLING SCHEMES ON THE SPHERE

Zubair Khalid†, Rodney A. Kennedy� and Salman Durrani�

† School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
� Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia

Email: zubair.khalid@lums.edu.pk, rodney.kennedy@anu.edu.au, salman.durrani@anu.edu.au

ABSTRACT

For the fast and exact computation of spherical harmonic trans-
form (SHT) of a band-limited signal defined on the sphere from
its samples, the Gauss-Legendre (GL) and equiangular sampling
schemes on the sphere require asymptotically least number of sam-
ples. In comparison to the equiangular scheme, the GL scheme has
larger spatial dimensionality, defined as the number of the samples
required for the exact computation of SHT. In this work, we propose
an efficient GL sampling scheme with spatial dimensionality equal
to that of equiangular scheme. We also propose optimisation of sam-
ples along longitude to further reduce the spatial dimensionality of
equiangular, GL and efficient GL sampling schemes. Furthermore,
we demonstrate that the accuracy of the SHT is not affected with the
proposed reduction in the spatial dimensionality.

Index Terms— spherical harmonic transform, sampling, har-
monic analysis, band-limited signal, spherical harmonics.

1. INTRODUCTION

Signals on the sphere appear in a variety of fields of science and
engineering (e.g., [1–5]). Processing of signals on the sphere in
the harmonic domain is enabled by the spherical harmonic trans-
form (SHT)–well-known counterpart of the Fourier transform.
Therefore, the ability to compute SHT of a signal from its sam-
ples (or measurements) is of significant importance. Furthermore, in
applications where the cost of acquiring samples on the sphere can
be large (e.g., [6]), the sampling scheme on the sphere should have
minimum spatial dimensionality defined as the number of samples
required for the exact computation of SHT [7]. In this work, we
propose optimisations to reduce the number of samples required by
the existing sampling schemes that allow exact computation of SHT
of band-limited signals on the sphere.

The development of sampling schemes on the sphere and meth-
ods to compute spherical harmonic transform from samples has been
extensively explored in the literature, for example [7–15] and the ref-
erences therein. In this work, we focus on the iso-latitude sampling
schemes [7–11,13–15], where the samples along longitude are taken
over iso-latitude rings, as these schemes enable efficient computa-
tion of SHT due to separation of variables. Among these schemes,
the equiangular [9,13,14] and Gauss-Legendre (GL) [8,15,16] sam-
pling schemes require asymptotically least number of samples for
the exact computation of SHT of a band-limited signal.

For the exact computation of SHT of a signal band-limited
at spherical harmonic degree L (formally defined in Section 2.1),
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the Gauss-Legendre [15, 16] scheme, which we refer to as stan-
dard Gauss-Legendre sampling, requires L samples, chosen as the
roots of Legendre polynomial of degree L, along co-latitude and
2L − 1 equiangular samples along longitude in each iso-latitude
ring. Thus, the spatial dimensionality of standard GL scheme is
NGL = L(2L − 1). We note that the samples along latitude in the
the GL scheme are symmetric around equator. Such a symmetry of
samples is useful in a sense that it reduces the computational time to
evaluate SHT [15], approximately, by a factor of two. Furthermore,
the symmetry of samples is required in diffusion medical reso-
nance imaging application where the diffusion signal is antipodal in
nature [2, 6].

The equiangular sampling on the sphere proposed in [14] re-
quires least number of samples for the exact computation of SHT.
The equiangular scheme proposed in [14] requires L samples along
co-latitude, where a sample is taken at either of the poles. Due to
the presence of a sample at the pole, the spatial dimensionality of
the equiangular scheme [14] is NE = (L − 1)(2L − 1) + 1, which
is less than the spatial dimensionality of standard GL scheme by
NGL −NE = 2(L− 1) .

In this work, we address the following questions:

• Can we design an efficient GL quadrature based sampling
scheme with spatial dimensionality NE, that is, equal to the
spatial dimensionality of equiangular scheme?

• Can we further improve the spatial dimensionality of both
GL and equiangular sampling schemes such that they require
fewer than NE samples for the exact SHT computation?

• How do the the proposed improvements in the spatial dimen-
sionality of different sampling schemes impact on the accu-
racy of the SHT?

In order to answer these questions, we organise the remainder of
the paper as follows. We review the mathematical preliminaries in
Section 2. An efficient GL sampling scheme on the sphere is pre-
sented in Section 3 and the optimisation of samples along longitude
to reduce the spatial dimensionality is proposed in Section 4. The
numerical accuracy of the SHT of a signal sampled over sampling
schemes with proposed optimisations is evaluated in Section 5 and
finally, the conclusions are made in Section 6.

2. SIGNALS ON THE SPHERE

In this work, we consider finite energy functions, referred to as
signals, of the form f(θ, φ), defined on unit sphere S

2 � {u ∈
R

3 : |u| = 1}, where θ ∈ [0, π] represents the co-latitude,
φ ∈ [0, 2π) represents the longitude and | · | denotes the Euclidian



norm. The space of square integrable complex valued functions
defined on the S

2 forms a complete Hilbert space L2(S2) [17].

2.1. Harmonic Analysis on the Sphere

The spherical harmonic functions (or spherical harmonics) form a
complete orthonormal set of basis functions of the space L2(S2) [17]
and are defined for integer degree � ≥ 0 and integer order |m| ≤ �
as [17]

Y m
� (θ, φ) �

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ) eimφ, (1)

where Pm
� (·) represents the associated Legendre functions [17]. Due

to completeness of spherical harmonics, any signal f ∈ L2(S2) can
be expanded as

f(θ, φ) =

∞∑
�=0

�∑
m=−�

(f)m� Y m
� (θ, φ), (2)

where (f)m� denotes the spherical harmonic coefficient of degree �
and order m, and is calculated using the spherical harmonic trans-
form (SHT) given by

(f)m� �
∫
S2

f(θ, φ)Y m
� (θ, φ) sin θ dθ dφ. (3)

The signal f ∈ L2(S2) is defined to be band-limited at degree L if
(f)m� = 0 for � ≥ L. The set of bandlimited signals forms an L2

dimensional subspace of L2(S2), which is denoted by HL.

2.2. Sampling Schemes on the Sphere – Notation

We define the iso-latitude sampling on the sphere in a general
setting. Let the sample positions along co-latitude are denoted
by θ1, θ2, . . . , where the samples are indexed, for convenience,
in the increasing order of their angular distance from the equa-
tor (θ = π/2). For sampling along longitude, we choose equally
spaced sampling points along φ in each iso-latitude ring. Now
we define the GL sampling and equiangular sampling schemes for
which the SHT of a band-limited signal f ∈ HL can be exactly
computed.

Standard Gauss-Legendre (GL) Sampling

The standard GL scheme [15, 16], denoted by SGL(L), composed
of L samples, chosen as the roots of Legendre polynomial of degree
L, along co-latitude and 2L−1 equiangular samples along longitude
in each iso-latitude ring.

Equiangular Sampling on the Sphere

Here, we consider a variant of the equiangular scheme [14], denoted
by SE(L), composed of L+1 equiangular samples along co-latitude
with samples at both of the poles and 2L − 1 equiangular samples
along longitude in each iso-latitude ring. Due to the placement of
samples at both of the poles, the spatial dimensionality of SE(L) is
NE + 1.

3. EFFICIENT GAUSS-LEGENDRE SCHEME

In this section, we address the first question posed in the Section 1
and propose the GL quadrature based sampling scheme of spatial
dimensionality NE.

3.1. Harmonic Formulation

For a band-limited signal f ∈ HL, the summation over degree � in
(2) is truncated at L− 1. By defining

Gm(θ) =

L−1∑
�=|m|

(f)m� P̃m
� (θ), (4)

where P̃m
� (θ) � Y m

� (θ, 0) denotes scaled associated Legendre
functions, we rewrite the spherical harmonic expansion, given in
(2), of a band-limited signal f ∈ HL as

f(θ, φ) =

L−1∑
m=−(L−1)

Gm(θ)eimφ, (5)

which can be substituted in (3) to reformulate the SHT as

(f)m� = 2π

∫ π

θ=0

Gm(θ)P̃m
� (θ)dθ, (6)

where the orthogonality of complex exponentials is employed.

3.2. Efficient Gauss-Legendre Sampling on the Sphere

We propose an efficient GL sampling on the sphere, denoted by
SEGL(L), composed of L−1 iso-latitude rings of samples placed at
θ1, θ2, . . . , θL−1 taken as roots of Legendre polynomial of degree
L − 1, P 0

L−1, and an additional sample θL at either of the poles.
Similar to the standard GL scheme and equiangular scheme, we take
2L− 1 number of samples along longitude in each iso-latitude ring.

Remark 1 The proposed efficient GL scheme SEGL(L) has spatial
dimensionality NEGL = (L−1)(2L−1)+1 = NE, that is, SEGL(L)
requires 2L − 2 fewer samples than required by the standard GL
scheme SGL(L) for SHT computation.

We now show that the SHT of a band-limited signal can be com-
puted by taking the samples of the signal over SEGL(L). The for-
mulation of a signal f in (5) indicates that Gm(θr), for each θr and
each |m| < L, can be computed by taking FFT over 2L−1 samples
along an iso-latitude ring placed at θr . Once Gm(θr) is computed
for each |m| < L and each θr , the spherical harmonic coefficients
(f)m� can be computed using (6) provided the integral involved can
be evaluated exactly over the number of samples along co-latitude.

Using (4), we rewrite the integrand in (6) as

Im� (θ) = Gm(θ)P̃m
� (θ) =

L−1∑
�′=|m|

(f)m�′ P̃
m
�′ (θ)P̃

m
� (θ). (7)

For � < L − 1, the polynomial degree of the integrand Im� (θ) is
L+ �− 1 or the maximum polynomial degree is 2L− 3. If we take
L − 1 samples along co-latitude as roots of Legendre polynomial
P 0
L−1, the Gauss-Legendre quadrature allows to compute the inte-

gral exactly if the degree of integrand is less than 2L − 3. Hence,
the spherical harmonic coefficients (f)m� of all degrees � < L − 1
and orders |m| ≤ � can be computed by discretising the integral in
(6) as

(f)m� = 2π

L−1∑
r=1

Gm(θr)P̃
m
� (θr)q(θr) � ≤ L− 1, (8)



where q(θr) denotes the GL quadrature weight given by

q(θr) =
2L− 1

2π

(
sin θr

(L− 1) P 0
L−2(θr)

)2

. (9)

We yet need to compute the spherical harmonic coefficients of
degree L − 1, that is, (f)mL−1 for |m| < L. We first focus on the
computation of (f)mL−1 for m �= 0. For � = L − 1 and m �= 0, the
maximum polynomial degree of the integrand Im� (θ) is 2L− 2, due
to which the GL quadrature rule with L − 1 samples, that supports
the computation of integral of degree 2L−3, may not be directly ap-
plied. However, the GL quadrature rule with L−1 samples along co-
latitude ensures that the orthogonality between P̃m

L−1(θ) and P̃m
�′ (θ)

for �′ < L − 1 is preserved as the product P̃m
�′ (θ)P̃

m
L−1(θ) always

have the maximum degree of 2L− 3. Thus, (f)mL−1 for m �= 0 can
be computed as follows:

(f)mL−1 =
2π

Qm
L

L−1∑
r=1

Gm(θr)P̃
m
L−1(θr)q(θr) m �= 0, (10)

where

Qm
L =

L−1∑
r=1

(
P̃m
L−1(θr)

)2

q(θr), (11)

serves as a normalization constant.
The formulation in (10) cannot be used for the computation of

(f)0L−1 as the samples θr, r ∈ [1, L− 1] are chosen as the roots of
P 0
L−1, due to which there will be no contribution of (f)0L−1 towards

G0(θr). In order to compute (f)0L−1, we use the signal at L-th
sample taken at either of the poles, that is, θL = 0 or θL = π. Since
we have already computed (f)0� for 0 ≤ � < L− 1, (f)0L−1 can be
computed using (4) as

(f)0L−1 =

f(θL, 0)−
L−2∑
�=0

(f)0� P̃
0
� (θL)

P 0
L−1(θL)

, (12)

where we have noted G0(θL) = f(θL, 0). It is worth noting here
that P 0

L−1(θL) �= 0 for θL = 0, π and any band-limit L.

4. OPTIMISATION OF SAMPLES ALONG LONGITUDE

With an objective to reduce the total number of samples required
for the computation of SHT, we here present an optimisation to re-
duce the number of samples taken along longitude in the iso-latitude
rings. The proposed optimisation can be applied to either standard
GL sampling SGL(L), efficient GL sampling SEGL(L) or equian-
gular sampling SE(L).

4.1. Optimisation of samples

We first define the optimisation of samples along longitude and later
we show that the SHT of a band-limited signal can be computed
exactly from its values taken over the proposed sampling scheme.
Instead of taking 2L − 1 samples along each iso-latitude ring as
required by SGL(L), SEGL(L) or SE(L), we propose to choose
2L− 1 equiangular samples in the ring placed at θ1, 2L− 3 equian-
gular samples in the ring placed at θ2 and 2L − 5 equiangular sam-
ples in the remaining iso-latitude rings. We add a superscript ‘O’
to the notation SGL(L), SEGL(L) or SE(L) to denote this optimi-
sation (or reduction) of samples along longitude and the sampling
schemes are referred to as optimised sampling schemes.

4.2. Computation of SHT

For each sampling scheme, the computation of SHT requires to com-
pute Gm(θr) for each order |m| < L and each sample θr along co-
latitude. In order to enable this computation, these schemes consider
2L− 1 samples along each iso-latitude ring. We here show that Gm

can be computed for each |m| < L and each sample θr for each
optimised sampling scheme (SO

GL(L), S
O
EGL(L) or SO

E (L)).
Since we have taken 2L−1 number of samples in a ring placed at

θ1 (closest to the equator θ = π/2), Gm(θ1) for each |m| < L can
be computed by employing FFT following (5). As there is only one

coefficient of each order L−1 and −(L−1), (f)L−1
L−1 and (f)

−(L−1)
L−1

computed from GL−1(θ1) and G−(L−1)(θ1), respectively, using (4)
as

(f)mL−1 � Gm(θ1)

P̃m
L−1(θ1)

, |m| = L− 1, θ1 �= 0, π. (13)

Note that the denominator P̃m
L−1(θ1) ∝ (sin θ1)

m is always non-
zero for |m| = L− 1, θ1 �= 0, π.

Once we compute (f)mL−1 for |m| = L − 1, these can be used
to update the signal at all sample positions (except for the samples
in the ring placed at θ1) as follows:

f(θ, φ) ← f(θ, φ)− f̃L−1(θ, φ) (14)

where

f̃m(θ, φ) �
L−1∑
�=m

(
(f)m� Y m

� (θ, φ) + (f)−m
� Y −m

� (θ, φ)
)

After the update in (14), the signal f , given in (5), at the remaining

samples can be reformulated as f(θ, φ) =
L−2∑

m=−(L−2)

Gm(θ)eimφ,

which indicates that the signal now does not have a contribution of
complex exponentials ei(L−1)φ and e−i(L−1)φ. Thus, we only need
2L−3 number of samples in the ring placed at θ2 in order to recover
Gm(θ2) for |m| < L − 1 using FFT. Now we have Gm(θ1) and
Gm(θ2) for all |m| < L, which can be used to compute the spherical
harmonic coefficients (f)m� of order |m| = L − 2 and degree � =
L − 2, L − 1. The location of θ1 depends on the band-limit L and
the choice of sampling scheme, due to which the computation of
(f)m� of order |m| = L − 2 is presented for two cases. We first

note that P̃m
L−2(θ) ∝ (sin θ)m and P̃m

L−1(θ) ∝ (sin θ)m cos θ for
|m| = L− 2 [17].

Case 1: θ1 = π/2

This case arises when the band-limit L is odd for SGL(L) and even
for SEGL(L) and SE(L). We consider |m| = L−2 throughout this

subsection. Due to the presence of cos θ in P̃m
L−1(θ), the spherical

harmonic coefficient (f)mL−1 does not contribute to Gm(θ1). There-
fore, (f)mL−2 can be computed using Gm(θ1) as follows

(f)mL−2 � Gm(θ1)

P̃m
L−2(θ1)

, |m| = L− 2, θ1 �= 0, π, (15)

which can be used to determine (f)mL−1 using Gm(θ2) through

(f)mL−1 � Gm(θ2)− (f)mL−2P̃
m
L−2(θ2)

P̃m
L−1(θ2)

, |m| = L− 2. (16)



Case 2: θ1 �= π/2

For this case, θ2 = π − θ1, that is, symmetric around equator. The
coefficients (f)mL−2 and (f)mL−1 for |m| = L − 2 can be computed
exactly using Gm(θ1) and Gm(θ2) by setting up an orthogonal sys-
tem of linear equations using (4).

Once the spherical harmonic coefficients of order |m| = L − 2
are computed, the signal at the sample positions (except for the sam-
ples in the rings placed at θ1, θ2) is updated as follows f(θ, φ) ←
f(θ, φ) − f̃L−2(θ, φ). With this update, the signal now have the
contribution of complex exponentials eimφ for |m| < L− 2, which
implies that we only require 2L − 5 samples in the rings placed at
θr, r > 2 to determine Gm(θr) for |m| < L− 2 using FFT.

Remark 2 With the proposed optimisation of samples along longi-
tude, the SHT can be computed with 4L− 10, L > 2 fewer samples
for efficient Gauss-Legendre scheme and equiangular scheme and
4L−6, L > 1 fewer samples for standard Gauss-Legendre scheme.
This reduction in the spatial dimensionality can be useful in appli-
cations where the band-limit of the signal is small. For example, we
expect that the reduction achieved by the proposed optimisation can
be of great use in diffusion magnetic resonance imaging (dMRI) ap-
plication [2,6] where the band-limit is of the order 10−102 and the
cost of acquisition is proportional to the number of samples (mea-
surements).

5. ACCURACY ANALYSIS

We analyse the accuracy of the SHT of a band-limited signal sam-
pled over standard GL SGL(L), equiangular SE(L), efficient
GL SEGL(L) sampling schemes and optimised versions of these
schemes, SO

GL(L), S
O
E (L) and SO

EGL(L). We implement the SHT
associated with each of the sampling scheme in MATLAB in dou-
ble precision arithmetic. In our implementation of SHT associated
with the GL quadrature based sampling schemes, we use the three
term recurrence relation [7] for the computation of scaled asso-
ciated Legendre functions P̃m

� (θr) = Y m
� (θr, 0) for all degrees

� < L and orders |m| ≤ � and for the required samples θr along
latitude. In the implementation of SHT for equiangular sampling
scheme [14], Wigner-d functions are computed using the recursion
relations proposed in [18].

For each sampling scheme, we carry out the accuracy test com-
posed of following steps: 1) obtain a band-limited test signal fT ∈
HL in the harmonic domain by generating its spherical harmonic
coefficients (ft)

m
� for 0 < � < L, |m| ≤ � with real and imag-

inary parts uniformly distributed in the interval [−1, 1], 2) obtain
the signal f in the spatial domain over the samples of each sam-
pling scheme using (2), and 3) apply SHT associated with each of
the sampling scheme to the signal in the spatial domain to compute
the reconstructed spherical harmonic coefficients, denoted by (fr)

m
� .

We repeat the test 50 times and record the average value for the max-
imum error Emax given by

Emax � max |(ft)m� − (fr)
m
� |, (17)

which is plotted in Fig. 1 for standard GL sampling SGL(L), ef-
ficient GL sampling SEGL(L), equiangular sampling SE(L) and
optimised versions of these schemes and band-limits in the range
16 ≤ L ≤ 1024. It is evident that the reconstruction errors do not
change with the proposed optimisation of samples along longitude.
It can also be observed that the maximum error Emax is slightly larger
for efficient GL scheme, which is due the normalization by the factor
Qm

L in (10) for the computation of spherical harmonic coefficients of
degree L− 1.
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Fig. 1: The maximum error Emax given in (17) is plotted for different
sampling schemes and band-limits in the range 16 ≤ L ≤ 1024. It
can be observed that the errors do not change due to the proposed
optimisation of samples along longitude (indicated by the superscript
‘O’).

6. CONCLUSIONS

For the fast and exact computation of spherical harmonic trans-
form (SHT) from the samples of a signal defined on the sphere
and band-limited at spherical harmonic degree L, we have pro-
posed an efficient GL sampling scheme with spatial dimensionality
NEGL = (L− 1)(2L− 1)+1 = NE, that is, equal to that of equian-
gular scheme. For each equiangular, GL or efficient GL sampling
scheme, we have also proposed the optimisation of samples along
longitude to reduce the spatial dimensionality by approximately
4L. This reduction in the number of samples can be useful in dif-
fusion magnetic resonance imaging (dMRI) application where the
band-limit is of the order 10− 102.
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