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ABSTRACT

Performing likelihood ratio based detection with high dimsienal
multimodal data is a challenging problem since the commrtaif
the joint probability density functions (pdfs) in the prese of inter-
modal dependence is difficult. While some computationatiyes-
sive approaches have been proposed for dependent multictda
fusion (e.g., based on copula theory), a commonly useditvsetp-
proach is to compute the joint pdf as the product of margidé -
noring dependence. However, this method leads to poornpeafice
when the data is strongly dependent. In this paper, we centie

sider the fusion problem in a compressed domain where canpre
sion is achieved via low dimensional random projections @&@s p
posed in the compressive sensing (CS) literature [9-12% prbb-
lem of detection with compressive measurements has beeessdd

by several recent works [13-24]. While some of the work, such
as [13, 14, 17, 20, 21, 24] focused on sparse signal detectamnme
other works [15, 16, 18, 19] considered the problem of detgaig-
nals which are not necessarily sparse. When the signalaren-
essarily sparse, it was observed that there is a perforntass@hen
performing LR based detection in the compressed domain acedp
to that with uncompressed data. However, when the sigrabise

problem of detection when dependence among multimodaliglata ratjo (SNR) is sufficiently large, this loss is not significamd the
modeled in a compressed domain where compression is O“ta'n%ompressed detector, i. e., the detector based on comgreats is
using low dimensional random projections. We employ a Gauss capable of providing similar performance as the uncomprbsie-

approximation while modeling inter-modal dependence exabm-
pressed domain which is computationally more efficient. Wans
that, under certain conditions, detection with multimodighendent

tector. In [23], the authors have extended known signalatiete
with CS to the multiple sensor case. While intra-signal deleace
was considered with Gaussian measurements, the intevrsdes

data in the compl_ressed domain with a small number of con_mﬂess pendence was neglected in [23]. To the best of authors kuigele
measurements yields enhanced performance compared tiolete  {he penefits of CS based detection when it is difficult to penfaR

with high dimensional data via either the product approacbtlioer
suboptimal fusion approaches proposed in the literature.

Index terms. Compressive sensing, multimodal data, inter-

modal dependence, likelihood ratio based detection, eaalory

1. INTRODUCTION

Fusion of high dimensional heterogenous data for differgetence
problems is challenging in many applications [1]. Whilecslikood
ratio (LR) based detection (with no unknown parametersptsmal
in the Bayesian setting, its optimality is not guaranteedcnvthe
exact joint probability density function (pdf) is not awatle. It is
difficult to compute the joint pdf in the presence of multirabde-

based detection with uncompressed data due to inter-megaind
dence have not been investigated in the literature.

In this paper, we seek the answer to the following questisn; i
it beneficial, in terms of both performance and computaticoan-
plexity, to model intermodal dependence to perform LR bated
tection in the compressed domain via Gaussian approximatier
either neglecting dependence (product approach) or mazferd
dence using suboptimal methods (e.g., copula based fusitbn w
out knowing exactly the best copula function that modelsedep
dence) with uncompressed data? With arbitrary marginad faif
each modality with uncompressed data, we show that, under ce
tain conditions, better (or equivalent) detection perfance can be
achieved in the compressed domain with a small number of com-

pendence unless data can be modeled as Gaussian. To model cdffSSive measurements compared to performing fusion i the

plex dependencies among multivariate data in order to ctenpe
joint pdf, copula theory has been used in [2-8]. While theessav-
eral copula density functions available in the literatdieding the
best copula function that fits a given set of data is compartatly
challenging. Further, in order to fuse multimodal data withre
than two modalities, finding multivariate copula densitgpdtions is
another challenge since most of the existing copula funstéve de-
rived considering the bivariate case. Thus, the benefitseotise of
copula theory for LR based detection with multimodal datmes

product approach and (ii). when widely available copulacfioms
are used to model dependence of uncompressed data. We briefly
discuss how to determine conditions under which perforneiog-
pressed detection is efficient and effective over subopiit@izction
with uncompressed data in the presence of inter-modal depes.

2. DETECTION WITH UNCOMPRESSED DATA

Let there bel sensor nodes in a network deployed to solve a detec-

at a higher computational price. One of the commonly used subtion problem. The measurement vector at each node is debgted

optimal methods for fusion of multimodal data is to negletei-
modal dependence and compute the likelihood ratio onlychase
the marginal pdfs of each modality (we call this 'the prodapt
proach’ in the rest of the paper). However, this approachkpeeted
to lead to poor performance when inter-modal dependendsoisgs
To overcome the computational difficulties in the fusion igfth
dimensional multimodal data for detection, in this papee, con-

x; € RN forj = 1,---, L. Under hypothese®, and#o, x; has
the following pdfs:

Hi o x5~ fi(x5)

Ho XijO(Xj)7j:17"' L (1)

respectively, wherg; (x;) denotes the joint probability density func-
tion (pdf) ofx; under; fori = 0,1andj = 1,--- , L. We assume
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that the elements of; are independent of each other, however, thedenotes the inner product. In CS theory, the mappingis often

vectorsx’ s are dependent fgr=1, - - - , L. This s a suitable model
when the time samples collected at a given sensor are indepen
and there is spatial dependence among sensors in a disttibat-
work. To perform LR based detection, it is required to coreghe
joint pdf of {x1,---,xr}, which in general is difficult unless each
x; has a joint Gaussian pdf.

2.1. Copulabased approach

In a parametric framework, copulas are used to constructid va
joint distribution describing an arbitrary, possibly niolar depen-
dence structure [25]. According to copula theory, the pdifs a=
{x1,---,xz} underH; can be written as [25],

N L
_ A
= mnl Cin un17 o 7unL)
n=1[=1

fori = 0, 1 wherec;,, (-) denotes the copula density functiar, =
F(zni|Hq) with F(z|H;) denoting the marginal cdf af under#;,
andz,,; is then-th element ofx;. Then, the log LR (LLR) can be
written in the following form:

X
fo X)

J10aln])

xi[n])

=1 n=1

Tror(x)

N

+ Zlog

n=1

Cln(u%'nm U 7U},n|¢1n)
Con(u(l)»m T 7u%n|¢0”)

@)

where ¢1,, and ¢o,, are copula parameters undin and Ho, re-
spectively, forn = 1,--- , N. In this case, in generaly different

copulas where each one Isvariate are selected to model depen-

dence.

One of the fundamental challenges in copula theory is to findoressive measurement vectgrs, - - -

the copula density function that will best fit the given daga $ur-
ther, most of the copula density functions proposed in tieediure
consider the bivariate case. In order to model dependencrilbf
modal data with more than two modalities, several appraasheh
as the use of vines have been proposed in the literature fithw
are in general computationally complex. Thus, in order tocbeiti-
lize copula theory for multimodal data fusion, these chajes need
to be overcome. In the following, we consider a computatigna
efficient approach for multimodal data fusion in which degemce
among data is modeled in a low dimensional transformed domai
We discuss the advantages/disadvantages of the propogezhelp
over the copula based approach.

3. DETECTION WITH COMPRESSED DATA

When the signals;’s are high dimensional, it is desired that fu-

sion be performed in a compressed domain. The use of low dis

mensional random projections for solving inference protdenas
been addressed in the recent literature [13-23].A.gbe specified
by a set of unique sampling vectofs; ., }2/_, with M < N for

selected to be a random matrix. Solving (3) whers are Gaussian

is considered in [15] with a single sensor and it is extendethé
multiple sensor case in [23]. The degradation of perforraand¢he
compressed domain compared to that with uncompressed tide w
performing LR based detection is expressed in terms of tiygudu
SNR or the deflection coefficient in [15, 23]. However, whefs

are not Gaussian and there is dependence among them, pesper p
formance comparison for detection in the uncompressed amd ¢
pressed domains is not available in the literature.

3.1. LR based detection with compressed data

In order to perform LR based detection based on (3), the ctatipn
of the joint pdf of{y1,--- ,yz} is necessary. If the marginal pdf of
x;'s are available, the marginal pdfs of each element;is can be
computed as in the following. The-th element ofy;, y.;, can be
written as,

N
Ymi = > _ Aj[m,nlzn,

where A ;[m,n] is the (m,n)-th element ofA;. Having the
marginal pdfs ofr,; and using the independence assumption, the
joint pdf of z = y,,,; can be found after computing the characteristic
function of z. It is further noted thafy.; }2_, for a givenj are
not necessarily uncorrelated of each other although; }2_,’s are
uncorrelated unless certain conditions are satisfiedbyand x;.

For example, if the elements of; are zero mean Gaussian with
the covariance matrix2I, and the projection matrix satisfies the
conditon A;AT = I, then the elements of; are uncorrelated.
However, in general this uncorrelatedness may not hold.eGine
marginal pdfs of the elements ¥ for j = 1,---, L are found,
copula theory can be used in order to find the joint pdf of thm-co
,yL. Lettingu; = Fj(yqp)

forj = M(p—1)+qwherep=1,--- ,L,q=1,---,M, the
LLR based on copula functions can be expressed as,
L M
f1 ykl c1(ui, -+ ,umr|oi)
T . (4
rir( ZZ co(ur, -, unmr|ef) “)

1=1 k=1

The second term on the right hand side in (4) requires findipgia
density functions of\ L variables which is computationally very
difficult. Since we assume that the elements in eachre indepen-
dent under any given hypothesis, each elemegt;inan be approx-
imated by a Gaussian random variable (via Lindeberg-Fedatral
limit theorem assuming the required conditions are sati§#ie, 27])
for given A; when N is sufficiently large. Then, LR based detec-
tion can be performed via Gaussian approximation, whiches&ke
modeling of dependence among multimodal data with comptess
measurements easier.

3.2. LR based detection via Gaussian approximation

Lety = [y{ - yr]" be aM L x 1 vector. With Gaussian approx-
imation we havey|H; ~ N (u', C*) where

j=1,---, L. Then, the low dimensional samples can be expressed ; T ST
as, po=[pr opr ] ®)
and
yi = Ajx; (3) . . .

) 1 C1.2 T 1L
forj =1,---, L wherey; istheM x 1 compressed measurement i 9 : i
vector at thej-th node, and ther-th element of the vectoA ;x; is C e ®)
given by (A;x;)m = (ajm,x;) form = 1,--- M where(.,.) ci, Ci, Cci



with p = E{y;[H:}, Cf = E{(y; —E{y;})(y; —E{y; )" [H:}, | Case t:under, |

10

e = E{(v; — E{y; Dy — E{yx})T[H:} with j # F, °
k =1,---,Landj = 1,---,L fori = 0,1. Further, let 5
B) = E{x;|H:}, D} = E{(x; — E{x;})(x; — E{x;})7[H:} ) )
andD};, = E{(x; — E{x;})(xx — E{xx})"|H:} for j # k. Then x >0
we have, 5
ui = A;B,C=A;DiA] and Ci, = A;D) AL (7) R T S
forj,k=1,---,Landi =0, 1. Then, we can write, & s
p'=AB" and C' = AD'AT (8)
where
A, O 0
L IR ©
0 o - - Ap 10

isaM L x NL matrix and3‘ andD* are notations analogous td

andC", respectively. Then, the decision statistic of the LLR lase Fig, 1: Scatter plots of uncompressed and compressed data under
detector is simply given by, 1 N = 1000, M = 200, L = 2

A=yT (€ - Dy 2t - e Yy

- 2_, 2_, - =
N=1000, =5, 07=5.1, 1/A; =10, 1/A, =10.2

[N

To illustrate the detection performance with multimodaladia the
compressed domain with Gaussian approximation compardd-to
tection with uncompressed data, in the following, we presenu-
merical example considering = 2. We further consider the ele-
ments ofA ; to be iid zero mean Gaussian fpe= 1, 2.
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3.3. Example

—e—Uncompressed: Product approach
——Compressed: Gaussian approx., < =0.8

We consider two cases. In Casexl,, and x> have the follow-
ing marginal pdfs under the two hypotheses (as considerg®l)in
CCZ‘1|’HJ‘ ~ ./\/‘(O,O'JQ'), and CCilej ~ EXp()\j). It is noted that
x ~ Exp()) denotes that: has an exponential distribution with
f(z) = Xe " for x > 0 and0 otherwise. Undef:, x:2's are
generated so that, = 2% + w? wherew ~ N(0, 7). Then we
havez;s ~ Exp(A1) with Ay = % UnderH,, z;2's are generated

I
N}

- - -Compressed: Gaussian approx., [ =0.5

o
i

Compressed: Gaussian approx., [ =0.1

.2 0.4 0.6 0.8 1
Probability of false alarm

(@) Case lo2 = 5,02 =5.1,1/A0 = 10, 1/A\; =

10.2
independent of;; fori = 1,--- , N with parameten\. N=1000, 1/A =10, U/}, =102, 3= 9.8,a,= 10
For Case Il, we consider that: ~ Exp()\;) andxa|H; ~ 1
Beta(ai, b; = 1) wherex ~ Beta(a, b) denotes that has a beta oof
. . . . a71 b7 "
distribution with pdff () = g2~ (1 —2)"~" andB(a,b) = _oaf
. . o
) is the beta function. Undei, , z:2's are generated so that go7f
v Bos
Tio2 = k) 0.5
U+ i1 =
g 0.4 i ——Compressed: Gaussian approx., ¢ =0.2
whereu ~ Gamma(ah B = 1/)\1) ThenmiQ'Hl ~ Beta(ah b = '8 3 '. - - -Compressed: Gaussian approx., ¢ =0.1
1) with a1 = oq. It is noted thatr ~ Gamma(oc, ﬂ) denotes that o 0.2k d.. Compressed: Gaussian approx., ¢ =0.05
T haS Gamma pdf WltIf(CC) — Bal}‘(a) ‘r@*le*w/ﬁ fOI’ x Z 0 and o1 Compressed: Gaussian approx., ¢, =0.025 | |
o, > 0. UnderH,, zi2 is generated independent of, with — Uncompressed: Product approach

0.2 0.4 0.6 0.8
parameterao andbo =1. Probability of false alarm

First, we illustrate how the dependence structure of tha dat
changes from uncompressed domain to the compressed domain. (b) Case I1:11/A0 = 10, 1/A1 = 10.2, ap = 9.8,
Fig. 1, we show the scatter plots for both compressed andnunco ar =10
pressed data at the two sensors uriler In Fig. 1, the top and
bottom subplots are for Case | and Case I, respectivelyentbit
and right subplots are for uncompressed and compressedrdata
spectively. It can be observed that while uncompressed atatse
two sensors are strongly dependent of each other, comprés$e 34 product approach with uncompressed data vs. Gaussian
appears to be weakly dependent with a completely diffet@aug-  approximation with compressed data
sian like) pattern.

Fig. 2: Detection performance with multimodal dependent data in
the compressed and uncompressed doma¥hs: 1000

In the following, we compare the detection performance wim-
pressed multimodal data and the product approach (wherendep



N=1000, 1A, =10, 1/}, =102, 2;= 9.8, 2,= 10 with uncompressed data. It is observed from Fig. 3 that fusiith

) Gaussian and t copula functions leads to perfect detectibiie
fusion with Gumbel and Clayton copula provides poor pertmoe
even compared to the product approach. On the other handnfus
performance with compressed data with = 0.2 is capable of
providing perfect detection with the parameters consilerghus,

, , | with the considered problem parameters, the use of copntifins

"> Uncompressed: t copula with uncompressed data seems to be a waste of resources emen p

£
s
3 E
Sos 1° U d: Gaussi | i ; ; : ; ;
z § |7 Compresced: Gaussan appron. & =02 fect detection can be achieved with less computational &exitp
Zoap £ |- - -Compressed: Gaussian approx., ¢, =0.1 in the compressed domain via Gaussian approximation. Thiss,
S s H 2 Uncompressed: Product approach | worthwhile to investigate as to when it is beneficial to usputa

" ' ===Uncompressed:. Gumbel copula .

s “O‘Unwm,‘?,essed: Clayton m,‘,’ma theory to model dependence with uncompressed data comfmared

performing fusion by modeling dependence with compressed d
in a computationally easier fashion. We briefly addressifisise in
‘ the following.
08 1 In order to quantify the performance of detection with both
uncompressed and compressed data, we consider Kullballet_e
(KL) distance to be the performance metric. The KL distanee b
Fig. 3: Detection performance with multimodal dependent data inween the pdfs under the two hypotheses in the compressediiom
the compressed and uncompressed domains for casé\;= 10,  with the Gaussian approximation can be computed as [28]
1/)\1 = 102, apg = 98, ar = 10, b() = b1 =1
DS (foll f1)

_ 1 IO 1 O\NT A & 1 0
dence is ignored) with uncompressed data. Fig. 2 shows tiferpe 2 {tr(A DY+ (6 -6) A B -6)
mance in terms of the ROC curves for the two cases considared i |AD'AT|
Example 3.3. We make several important observations he@ase —ML +log |[ADOAT] }
I, the detection performance with the Gaussian approxonati the
uncompressed domain is only slightly better than that wiéhgrod- ~ whereA* = AT(AD*A”)~' A andtr(-) denotes the trace oper-
uct approach in the uncompressed domain when the compnessiator. In the case wherg;’s for [ = 1,--- , L are assumed to be
ratio, ¢, = AL, is relatively large and the probability of false alarm independent of each other undks, we havefy(x) = [/ (1)

In

is high. For smalt,., the product approach with uncompressed data " ) mo
shows better performance than the Gaussian approximdti wheref;" denotes the marginal pdf undal;. Thus, the KL distance

ever, the performance gap is not very significant. In Casevél, Petweenfo(-) andfi(-) with uncompressed data can be written as,

0.4 0.6
Probability of false alarm

(10)

observe a significant performance gain when performingctiete D — puwr m

with compressed data even with relatively smalcompared to the kr(follfr) = DPii(follfi")

product approach in the uncompressed domain. It is notadrtha N 1 1

Case |, the observations at the two sensors are uncorrelitedn- - E Z log c1n (Ui, -+, ura|$1n)|Ho
n=1

compressed data (although they are dependent)Ius diagonal.
Thus, not taking dependence into account in the uncomptetse Yo

main seems not to result in a large performance loss compared

taking dependence in the compressed domain into accounthedn WhereD7 (fo||fi") denotes the KL distance under the product ap-
other hand, when considering Case Il it is noted Iatis not diag- ~ Proach. When the marginal pdfs are availalii®g;7 (fo|[f1") can
onal, and the uncompressed observations uktleare strongly cor-  be computed. It is noted that the tefy, . depends on the partic-
related. Thus, ignoring dependence with uncompressedegatato  ular copula function used to model dependence. Thus, fovengi
severe performance loss compared to taking dependenc&guis=  copula function, whef( s, . > Dt — DS performing detection
sian approximation) into account in the compressed domeaem e in the compressed domain with givér (D}’CL’ is a function ofM)
with very smalle,.. Further, in that case, it is observed that, there is aappears to be more effective and efficient than copula bastanf
threshold fore, after which the Gaussian approximation in the com-in the uncompressed domain. This issue will be further adee in
pressed domain starts to perform better than the producbagp  detail in future work.

with uncompressed data.

4. CONCLUSION

3.5. Copula based fusion with uncompressed data vs. Gaussian

approximation with compressed data In this paper, we showed that, under certain conditionsatien

with multimodal dependent data with compressive sensimgbea
Next, we compare the detection performance when copulas afeetter (or equivalent) than detection with the widely cdeséd
used to compute the joint pdf with uncompressed data in Fig. 3product approach and copula based fusion with uncompreizead
Since finding optimal copula function that models a giveradst ~ We briefly discussed the conditions under which modelingedep
is computationally complex, we plot the detection perfanceus-  dence for likelihood ratio based detection in the compesieenain
ing widely available bivariate copula functions. To thatdemve is more efficient and effective than modeling dependench wit
consider Gaussian, t, Gumbel and Clayton copula functismdea compressed data using copula theory which is computatjonal
scribed in [3, 8]. Further, we consider Example 3.3 with Qasé/e expensive most of the time. Experiments with real datasétdey
further plot the detection performance with the productrepph  considered in future work.
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