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ABSTRACT

Performing likelihood ratio based detection with high dimensional
multimodal data is a challenging problem since the computation of
the joint probability density functions (pdfs) in the presence of inter-
modal dependence is difficult. While some computationally expen-
sive approaches have been proposed for dependent multimodal data
fusion (e.g., based on copula theory), a commonly used tractable ap-
proach is to compute the joint pdf as the product of marginal pdfs ig-
noring dependence. However, this method leads to poor performance
when the data is strongly dependent. In this paper, we consider the
problem of detection when dependence among multimodal datais
modeled in a compressed domain where compression is obtained
using low dimensional random projections. We employ a Gaussian
approximation while modeling inter-modal dependence in the com-
pressed domain which is computationally more efficient. We show
that, under certain conditions, detection with multimodaldependent
data in the compressed domain with a small number of compressed
measurements yields enhanced performance compared to detection
with high dimensional data via either the product approach or other
suboptimal fusion approaches proposed in the literature.

Index terms: Compressive sensing, multimodal data, inter-
modal dependence, likelihood ratio based detection, copula theory

1. INTRODUCTION

Fusion of high dimensional heterogenous data for differentinference
problems is challenging in many applications [1]. While likelihood
ratio (LR) based detection (with no unknown parameters) is optimal
in the Bayesian setting, its optimality is not guaranteed when the
exact joint probability density function (pdf) is not available. It is
difficult to compute the joint pdf in the presence of multimodal de-
pendence unless data can be modeled as Gaussian. To model com-
plex dependencies among multivariate data in order to compute the
joint pdf, copula theory has been used in [2–8]. While there are sev-
eral copula density functions available in the literature,finding the
best copula function that fits a given set of data is computationally
challenging. Further, in order to fuse multimodal data withmore
than two modalities, finding multivariate copula density functions is
another challenge since most of the existing copula functions are de-
rived considering the bivariate case. Thus, the benefits of the use of
copula theory for LR based detection with multimodal data comes
at a higher computational price. One of the commonly used sub-
optimal methods for fusion of multimodal data is to neglect inter-
modal dependence and compute the likelihood ratio only based on
the marginal pdfs of each modality (we call this ’the productap-
proach’ in the rest of the paper). However, this approach is expected
to lead to poor performance when inter-modal dependence is strong.

To overcome the computational difficulties in the fusion of high
dimensional multimodal data for detection, in this paper, we con-

sider the fusion problem in a compressed domain where compres-
sion is achieved via low dimensional random projections as pro-
posed in the compressive sensing (CS) literature [9–12]. The prob-
lem of detection with compressive measurements has been addressed
by several recent works [13–24]. While some of the work, such
as [13, 14, 17, 20, 21, 24] focused on sparse signal detection, some
other works [15,16,18,19] considered the problem of detecting sig-
nals which are not necessarily sparse. When the signals are not nec-
essarily sparse, it was observed that there is a performanceloss when
performing LR based detection in the compressed domain compared
to that with uncompressed data. However, when the signal-to-noise
ratio (SNR) is sufficiently large, this loss is not significant and the
compressed detector, i. e., the detector based on compressed data, is
capable of providing similar performance as the uncompressed de-
tector. In [23], the authors have extended known signal detection
with CS to the multiple sensor case. While intra-signal dependence
was considered with Gaussian measurements, the inter-sensor de-
pendence was neglected in [23]. To the best of authors knowledge,
the benefits of CS based detection when it is difficult to perform LR
based detection with uncompressed data due to inter-modal depen-
dence have not been investigated in the literature.

In this paper, we seek the answer to the following question; is
it beneficial, in terms of both performance and computational com-
plexity, to model intermodal dependence to perform LR basedde-
tection in the compressed domain via Gaussian approximation over
either neglecting dependence (product approach) or model depen-
dence using suboptimal methods (e.g., copula based fusion with-
out knowing exactly the best copula function that models depen-
dence) with uncompressed data? With arbitrary marginal pdfs for
each modality with uncompressed data, we show that, under cer-
tain conditions, better (or equivalent) detection performance can be
achieved in the compressed domain with a small number of com-
pressive measurements compared to performing fusion (i). with the
product approach and (ii). when widely available copula functions
are used to model dependence of uncompressed data. We briefly
discuss how to determine conditions under which performingcom-
pressed detection is efficient and effective over suboptimal detection
with uncompressed data in the presence of inter-modal dependence.

2. DETECTION WITH UNCOMPRESSED DATA

Let there beL sensor nodes in a network deployed to solve a detec-
tion problem. The measurement vector at each node is denotedby
xj ∈ R

N for j = 1, · · · , L. Under hypothesesH1 andH0, xj has
the following pdfs:

H1 : xj ∼ f1(xj)

H0 : xj ∼ f0(xj), j = 1, · · · , L (1)

respectively, wherefi(xj) denotes the joint probability density func-
tion (pdf) ofxj underHi for i = 0, 1 andj = 1, · · · , L. We assume
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that the elements ofxj are independent of each other, however, the
vectorsx′

js are dependent forj = 1, · · · , L. This is a suitable model
when the time samples collected at a given sensor are independent
and there is spatial dependence among sensors in a distributed net-
work. To perform LR based detection, it is required to compute the
joint pdf of {x1, · · · ,xL}, which in general is difficult unless each
xj has a joint Gaussian pdf.

2.1. Copula based approach

In a parametric framework, copulas are used to construct a valid
joint distribution describing an arbitrary, possibly nonlinear depen-
dence structure [25]. According to copula theory, the pdfs of x =
{x1, · · · ,xL} underHi can be written as [25],

fi(x) =

N∏

n=1

L∏

l=1

fi(xnl)cin(u
i
n1, · · · , u

i
nL)

for i = 0, 1 wherecin(·) denotes the copula density function,ui
nl =

F (xnl|Hi) with F (x|Hi) denoting the marginal cdf ofx underHi,
andxnl is then-th element ofxl. Then, the log LR (LLR) can be
written in the following form:

TLLR(x) = log
f1(x)

f0(x)
=

L∑

l=1

N∑

n=1

log
f1(xl[n])

f0(xl[n])

+

N∑

n=1

log
c1n(u

1
1n, · · · , u

1
Ln|φ1n)

c0n(u0
1n, · · · , u

0
Ln|φ0n)

(2)

whereφ1n andφ0n are copula parameters underH1 andH0, re-
spectively, forn = 1, · · · , N . In this case, in general,N different
copulas where each one isL-variate are selected to model depen-
dence.

One of the fundamental challenges in copula theory is to find
the copula density function that will best fit the given data set. Fur-
ther, most of the copula density functions proposed in the literature
consider the bivariate case. In order to model dependence ofmulti-
modal data with more than two modalities, several approaches such
as the use of vines have been proposed in the literature [7], which
are in general computationally complex. Thus, in order to better uti-
lize copula theory for multimodal data fusion, these challenges need
to be overcome. In the following, we consider a computationally
efficient approach for multimodal data fusion in which dependence
among data is modeled in a low dimensional transformed domain.
We discuss the advantages/disadvantages of the proposed approach
over the copula based approach.

3. DETECTION WITH COMPRESSED DATA

When the signalsxj ’s are high dimensional, it is desired that fu-
sion be performed in a compressed domain. The use of low di-
mensional random projections for solving inference problems has
been addressed in the recent literature [13–23]. LetAj be specified
by a set of unique sampling vectors{aj,m}Mm=1 with M < N for
j = 1, · · · , L. Then, the low dimensional samples can be expressed
as,

yj = Ajxj (3)

for j = 1, · · · , L whereyj is theM × 1 compressed measurement
vector at thej-th node, and them-th element of the vectorAjxj is
given by(Ajxj)m = 〈aj,m,xj〉 for m = 1, · · · ,M where〈., .〉

denotes the inner product. In CS theory, the mappingAj is often
selected to be a random matrix. Solving (3) whenxj ’s are Gaussian
is considered in [15] with a single sensor and it is extended to the
multiple sensor case in [23]. The degradation of performance in the
compressed domain compared to that with uncompressed data while
performing LR based detection is expressed in terms of the output
SNR or the deflection coefficient in [15, 23]. However, whenxj ’s
are not Gaussian and there is dependence among them, proper per-
formance comparison for detection in the uncompressed and com-
pressed domains is not available in the literature.

3.1. LR based detection with compressed data

In order to perform LR based detection based on (3), the computation
of the joint pdf of{y1, · · · ,yL} is necessary. If the marginal pdf of
xj ’s are available, the marginal pdfs of each element inyj ’s can be
computed as in the following. Them-th element ofyj , ymj , can be
written as,

ymj =
N∑

n=1

Aj [m,n]xnj

where Aj [m,n] is the (m,n)-th element ofAj . Having the
marginal pdfs ofxnj and using the independence assumption, the
joint pdf of z = ymj can be found after computing the characteristic
function of z. It is further noted that{ymj}

M
m=1 for a givenj are

not necessarily uncorrelated of each other although{xnj}
N
n=1’s are

uncorrelated unless certain conditions are satisfied byAj andxj .
For example, if the elements ofxj are zero mean Gaussian with
the covariance matrixσ2

vI, and the projection matrix satisfies the
conditionAjA

T
j = I, then the elements ofyj are uncorrelated.

However, in general this uncorrelatedness may not hold. Once the
marginal pdfs of the elements inyj for j = 1, · · · , L are found,
copula theory can be used in order to find the joint pdf of the com-
pressive measurement vectorsy1, · · · ,yL. Lettinguj = Fj(yqp)
for j = M(p − 1) + q wherep = 1, · · · , L, q = 1, · · · ,M , the
LLR based on copula functions can be expressed as,

TLLR(y) =
L∑

l=1

M∑

k=1

log
f1(ykl)

f0(ykl)
+ log

c1(u1, · · · , uML|φ
∗
1)

c0(u1, · · · , uML|φ∗
0)

. (4)

The second term on the right hand side in (4) requires finding copula
density functions ofML variables which is computationally very
difficult. Since we assume that the elements in eachxj are indepen-
dent under any given hypothesis, each element inyj can be approx-
imated by a Gaussian random variable (via Lindeberg-Fellercentral
limit theorem assuming the required conditions are satisfied [26,27])
for givenAj whenN is sufficiently large. Then, LR based detec-
tion can be performed via Gaussian approximation, which makes the
modeling of dependence among multimodal data with compressed
measurements easier.

3.2. LR based detection via Gaussian approximation

Lety = [yT
1 · · ·yT

L ]
T be aML× 1 vector. With Gaussian approx-

imation we havey|Hi ∼ N (µi,Ci) where

µ
i = [µi

1
T
· · ·µi

L
T
]T (5)

and

C
i =







Ci
1 Ci

12 · · · Ci
1L

Ci
21 Ci

2 · · · Ci
2L

· · · · · · · · · · · ·
Ci

L1 Ci
L2 · · · Ci

L







(6)



with µi
j = E{yj |Hi},Ci

j = E{(yj−E{yj})(yj−E{yj})
T |Hi},

Ci
jk = E{(yj − E{yj})(yk − E{yk})

T |Hi} with j 6= k,
k = 1, · · · , L and j = 1, · · · , L for i = 0, 1. Further, let
βi

j = E{xj |Hi}, Di
j = E{(xj − E{xj})(xj − E{xj})

T |Hi}

andDi
jk = E{(xj − E{xj})(xk − E{xk})

T |Hi} for j 6= k. Then
we have,

µ
i
j = Ajβ

i
j ,C

i
j = AjD

i
jA

T
j , andC

i
jk = AjD

i
jkA

T
k (7)

for j, k = 1, · · · , L andi = 0, 1. Then, we can write,

µ
i = Aβ

i andC
i = AD

i
A

T (8)

where

A =






A1 0 · · 0

0 A2 · · 0

· · · · ·
0 0 · · AL




 (9)

is aML×NL matrix andβi andDi are notations analogous toµi

andCi, respectively. Then, the decision statistic of the LLR based
detector is simply given by,

Λ = y
T (C1−1

−C
0−1

)y − 2(µ1T
C

1−1
− µ

0T
C

0−1
)y.

To illustrate the detection performance with multimodal data in the
compressed domain with Gaussian approximation compared tode-
tection with uncompressed data, in the following, we present a nu-
merical example consideringL = 2. We further consider the ele-
ments ofAj to be iid zero mean Gaussian forj = 1, 2.

3.3. Example

We consider two cases. In Case I,x1, andx2 have the follow-
ing marginal pdfs under the two hypotheses (as considered in[3]):
xi1|Hj ∼ N (0, σ2

j ), andxi2|Hj ∼ Exp(λj). It is noted that
x ∼ Exp(λ) denotes thatx has an exponential distribution with
f(x) = λe−λx for x ≥ 0 and0 otherwise. UnderH1, xi2’s are
generated so thatxi2 = x2

i1 + w2 wherew ∼ N (0, σ2
1). Then we

havexi2 ∼ Exp(λ1) with λ1 = 1
2σ2

1

. UnderH0, xi2’s are generated

independent ofxi1 for i = 1, · · · , N with parameterλ0.
For Case II, we consider thatxi1 ∼ Exp(λj) andxi2|Hj ∼

Beta(ai, bi = 1) wherex ∼ Beta(a, b) denotes thatx has a beta
distribution with pdff(x) = 1

B(a,b)
xa−1(1− x)b−1 andB(a, b) =

Γ(a)Γ(b)
Γ(a+b)

is the beta function. UnderH1, xi2’s are generated so that

xi2 =
u

u+ xi1

whereu ∼ Gamma(α1, β1 = 1/λ1). Thenxi2|H1 ∼ Beta(a1, b1 =
1) with a1 = α1. It is noted thatx ∼ Gamma(α, β) denotes that
x has Gamma pdf withf(x) = 1

βαΓ(α)
xα−1e−x/β for x ≥ 0 and

α, β > 0. UnderH0, xi2 is generated independent ofxi1 with
parametersa0 andb0 = 1.

First, we illustrate how the dependence structure of the data
changes from uncompressed domain to the compressed domain.In
Fig. 1, we show the scatter plots for both compressed and uncom-
pressed data at the two sensors underH1. In Fig. 1, the top and
bottom subplots are for Case I and Case II, respectively while left
and right subplots are for uncompressed and compressed data, re-
spectively. It can be observed that while uncompressed dataat the
two sensors are strongly dependent of each other, compressed data
appears to be weakly dependent with a completely different (Gaus-
sian like) pattern.
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Fig. 1: Scatter plots of uncompressed and compressed data under
H1; N = 1000, M = 200, L = 2
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Fig. 2: Detection performance with multimodal dependent data in
the compressed and uncompressed domains:N = 1000

3.4. Product approach with uncompressed data vs. Gaussian
approximation with compressed data

In the following, we compare the detection performance withcom-
pressed multimodal data and the product approach (where depen-
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Fig. 3: Detection performance with multimodal dependent data in
the compressed and uncompressed domains for case II;1/λ0 = 10,
1/λ1 = 10.2, a0 = 9.8, a1 = 10, b0 = b1 = 1

dence is ignored) with uncompressed data. Fig. 2 shows the perfor-
mance in terms of the ROC curves for the two cases considered in
Example 3.3. We make several important observations here. In Case
I, the detection performance with the Gaussian approximation in the
uncompressed domain is only slightly better than that with the prod-
uct approach in the uncompressed domain when the compression
ratio, cr = M

N
, is relatively large and the probability of false alarm

is high. For smallcr, the product approach with uncompressed data
shows better performance than the Gaussian approximation,how-
ever, the performance gap is not very significant. In Case II,we
observe a significant performance gain when performing detection
with compressed data even with relatively smallcr compared to the
product approach in the uncompressed domain. It is noted that in
Case I, the observations at the two sensors are uncorrelatedwith un-
compressed data (although they are dependent) thusD1 is diagonal.
Thus, not taking dependence into account in the uncompressed do-
main seems not to result in a large performance loss comparedto
taking dependence in the compressed domain into account. Onthe
other hand, when considering Case II, it is noted thatD1 is not diag-
onal, and the uncompressed observations underH1 are strongly cor-
related. Thus, ignoring dependence with uncompressed dataleads to
severe performance loss compared to taking dependence (viaGaus-
sian approximation) into account in the compressed domain even
with very smallcr. Further, in that case, it is observed that, there is a
threshold forcr after which the Gaussian approximation in the com-
pressed domain starts to perform better than the product approach
with uncompressed data.

3.5. Copula based fusion with uncompressed data vs. Gaussian
approximation with compressed data

Next, we compare the detection performance when copulas are
used to compute the joint pdf with uncompressed data in Fig. 3.
Since finding optimal copula function that models a given data set
is computationally complex, we plot the detection performance us-
ing widely available bivariate copula functions. To that end, we
consider Gaussian, t, Gumbel and Clayton copula functions as de-
scribed in [3,8]. Further, we consider Example 3.3 with CaseII. We
further plot the detection performance with the product approach

with uncompressed data. It is observed from Fig. 3 that fusion with
Gaussian and t copula functions leads to perfect detection,while
fusion with Gumbel and Clayton copula provides poor performance
even compared to the product approach. On the other hand, fusion
performance with compressed data withcr = 0.2 is capable of
providing perfect detection with the parameters considered. Thus,
with the considered problem parameters, the use of copula functions
with uncompressed data seems to be a waste of resources when per-
fect detection can be achieved with less computational complexity
in the compressed domain via Gaussian approximation. Thus,it is
worthwhile to investigate as to when it is beneficial to use copula
theory to model dependence with uncompressed data comparedto
performing fusion by modeling dependence with compressed data
in a computationally easier fashion. We briefly address thisissue in
the following.

In order to quantify the performance of detection with both
uncompressed and compressed data, we consider Kullback-Leibler
(KL) distance to be the performance metric. The KL distance be-
tween the pdfs under the two hypotheses in the compressed domain
with the Gaussian approximation can be computed as [28]

Dc,G
KL(f0||f1)

=
1

2

{

tr(A‡
D

0) + (β1 − β
0)TA‡(β1 − β

0)

−ML+ log
|AD1AT |

|AD0AT |

}

(10)

whereA‡ = AT (AD1AT )−1A andtr(·) denotes the trace oper-
ator. In the case wherexl’s for l = 1, · · · , L are assumed to be
independent of each other underH0, we havef0(x) =

∏

l,n

fm
0 (xnl)

wherefm
i denotes the marginal pdf underHi. Thus, the KL distance

betweenf0(·) andf1(·) with uncompressed data can be written as,

Du
KL(f0||f1) = Du,p

KL(f0||f
m
1 )

− E

{
N∑

n=1

log c1n(u
1
1n, · · · , u

1
Ln|φ1n)|H0

}

︸ ︷︷ ︸

Υf0,c

whereDu,p
KL(f0||f

m
1 ) denotes the KL distance under the product ap-

proach. When the marginal pdfs are available,Du,p
KL(f0||f

m
1 ) can

be computed. It is noted that the termΥf0,c depends on the partic-
ular copula function used to model dependence. Thus, for a given
copula function, whenΥf0,c > Du,p

KL − Dc,G
KL performing detection

in the compressed domain with givenM (Dc,G
KL is a function ofM )

appears to be more effective and efficient than copula based fusion
in the uncompressed domain. This issue will be further addressed in
detail in future work.

4. CONCLUSION

In this paper, we showed that, under certain conditions, detection
with multimodal dependent data with compressive sensing can be
better (or equivalent) than detection with the widely considered
product approach and copula based fusion with uncompresseddata.
We briefly discussed the conditions under which modeling depen-
dence for likelihood ratio based detection in the compressed domain
is more efficient and effective than modeling dependence with un-
compressed data using copula theory which is computationally
expensive most of the time. Experiments with real datasets will be
considered in future work.
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