
ar
X

iv
:1

70
1.

02
57

8v
2 

 [
cs

.I
T

] 
 3

0 
Ja

n 
20

17
Multiprocessor Approximate Message Passing

with Column-Wise Partitioning∗

Yanting Ma

North Carolina State University

yma7@ncsu.edu

Yue M. Lu

Harvard University

yuelu@seas.harvard.edu

Dror Baron

North Carolina State University

barondror@ncsu.edu

Abstract

Solving a large-scale regularized linear inverse problem using multiple processors is important
in various real-world applications due to the limitations of individual processors and constraints
on data sharing policies. This paper focuses on the setting where the matrix is partitioned
column-wise. We extend the algorithmic framework and the theoretical analysis of approxi-
mate message passing (AMP), an iterative algorithm for solving linear inverse problems, whose
asymptotic dynamics are characterized by state evolution (SE). In particular, we show that
column-wise multiprocessor AMP (C-MP-AMP) obeys an SE under the same assumptions when
the SE for AMP holds. The SE results imply that (i) the SE of C-MP-AMP converges to a state
that is no worse than that of AMP and (ii) the asymptotic dynamics of C-MP-AMP and AMP
can be identical. Moreover, for a setting that is not covered by SE, numerical results show that
damping can improve the convergence performance of C-MP-AMP.

1 Introduction

Many scientific and engineering problems can be modeled as solving a regularized linear inverse
problem of the form

y = Ax+ w, (1)

where the goal is to estimate the unknown x ∈ R
N given the matrix A ∈ R

n×N and statistical
information about the signal x and the noise w ∈ R

n.
In some scenarios, it might be desirable to partition the matrix A either column-wise or row-

wise and store the sub-matrices at different processors. The partitioning style depends on data
availability, computational considerations, and privacy concerns. For example, in high-dimensional
settings where N ≫ n, or in situations where the columns of A, which represent features in feature
selection problems [2], cannot be shared among processors for privacy preservation, column-wise
partitioning might be preferable. In this paper, we consider multiprocessor computing for the
(non-overlapping) column-wise partitioned linear inverse problem:

y =

P
∑

p=1

Apxp + w, (2)

where P is the number of processors, Ap ∈ R
n×Np is the sub-matrix that is stored in Processor p,

and
∑P

p=1Np = N .
Many studies on solving the column-wise partitioned linear inverse problem (2) have been in the

context of distributed feature selection. Zhou et al. [3] modeled feature selection as a parallel group

∗This document serves as a supporting document for [1]
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testing problem. Wang et al. [4] proposed to de-correlate the data matrix before partitioning, and
each processor then works independently using the de-correlated matrix without communication
with other processors. Peng et al. [5] studied problem (2) in the context of optimization, where
they proposed a greedy coordinate-block descent algorithm and a parallel implementation of the
fast iterative shrinkage-thresholding algorithm (FISTA) [6].

Our work is based on the approximate message passing (AMP) framework [7]. AMP is an
efficient iterative algorithm for solving linear inverse problems (1). In the large scale random
setting, its average asymptotic dynamics are characterized by a state evolution (SE) formalism [8],
which allows one to accurately predict the average estimation error at every iteration. Recently, a
finite-sample analysis of AMP [9] showed that when the prior distribution of the input signal x has
i.i.d. sub-Gaussian entries,1 the average performance of AMP concentrates to the SE prediction at
an exponential rate in the signal dimension N .

Our goal is to extend the AMP algorithmic framework and the SE analysis in [9] to the column-
wise partitioned linear inverse problem (2). We show that column-wise multiprocessor AMP (C-
MP-AMP) obeys a new SE under the same model assumptions where the SE for AMP holds.
With the new SE, we can predict the average estimation error in each processor at every iteration.
Moreover, the comparison between the SE of AMP and that of C-MP-AMP implies that (i) the
estimation error of C-MP-AMP is no worse than that of AMP and (ii) with a specific communi-
cation schedule between the processors and the fusion center that coordinates the processors, the
asymptotic dynamics of C-MP-AMP are identical to that of AMP. This result implies a speedup
linear in the number of processors.

It is worth mentioning that row-wise multiprocessor AMP [10–12] obeys the same SE as AMP,
because it distributes the computation of matrix-vector multiplication among multiple processors
and aggregates the results before any other operations. Some existing work on row-wise multipro-
cessor AMP [12–14] introduces lossy compression to the communication between processors and the
fusion center, whereas we assume perfect communication and focus on the theoretical justifications
and implications of the new SE of C-MP-AMP.

The remainder of the paper is organized as follows. Section 2 introduces the C-MP-AMP algo-
rithm (Algorithm 1), the state evolution sequences, and our main performance guarantee (Theorem
1), which is a concentration result for PL loss functions acting on the outputs generated by Algo-
rithm 1 concentrates to the state evolution prediction. Section 3 proves Theorem 1. The proof is
mainly based on Lemmas 3 and 4. The proof of Lemma 3 is the same as in [9] using the result that
we prove in Lemma 2. Section 4 proves Lemma 4.

2 Column-Wise Multiprocessor AMP and State Evolution

2.1 Review of AMP

Approximate message passing (AMP) [7] is a fast iterative algorithm for solving linear inverse
problems (1). Starting with an all-zero vector x0 as its initial estimate, at the tth iteration, AMP
proceeds according to

zt = y −Axt +
zt−1

n

N
∑

i=1

η′t−1([x
t−1 +A∗zt−1]i), (3)

xt+1 = ηt(x
t +A∗zt), (4)

1A random variable X is sub-Gaussian if there exist positive constants c and κ such that P (|X − EX| > ǫ) ≤

ce−κǫ2 ,∀ǫ > 0.
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where vectors with negative iteration indices are all-zero vectors, A∗ denotes the transpose of a
matrix A, ηt : R → R is a Lipschitz function with weak derivative η′t, for any u ∈ R

N , [u]i denotes
its ith entry. The function ηt acts coordinate-wise when applied to vectors. That is, the vector
(ηt(u1), ηt(u2), ..., ηt(uN )) is denoted by ηt(u).

Under the assumptions on the measurement matrix A, the signal x, the measurement noise w,
and the denoising function ηt(·) as listed in [9, Section 1.1], the sequence of the estimates {xt} that
is generated by AMP (3) (4) has the following property [9]. For all ǫ ∈ (0, 1), there exist constants
Kt, κt > 0 independent of n or ǫ, such that

P

(∣

∣

∣

∣

∣

1

N

N
∑

i=1

φ(xt+1
i , xi)− E

[

φ(ηt(X + τ tZ),X)
]

∣

∣

∣

∣

∣

≥ ǫ

)

≤ Kte
−κtnǫ2 , (5)

where φ : R2 → R is a pseudo-Lipschitz function of order 2 (PL(2)),2 X ∼ pX , Z is a standard
normal random variable that is independent of X, and τ t is defined via the following recursion
((σ0)2 = δ−1

E[X2], δ = n/N):

(τ t)2 = σ2W + (σt)2,

(σt+1)2 = δ−1
E

[

(

ηt(X + τ tZ)−X
)2
]

. (6)

Notice that (5) implies, by applying the Borel-Cantelli Lemma, the almost sure convergence
result proved in [8]:

lim
N→∞

1

N

N
∑

i=1

φ(xt+1
i , xi)

a.s.
= E

[

φ(ηt(X + τ tZ),X)
]

. (7)

If we choose φ(x, y) = (x − y)2, then (7) characterizes the mean square error (MSE) achieved
by AMP at each iteration.

2.2 Column-Wise Multiprocessor AMP

In our proposed column-wise multiprocessor AMP (C-MP-AMP) algorithm, the fusion center col-
lects vectors that represent the estimations of the portion of the measurement vector y contributed
by the data from individual processors according to a pre-defined communication schedule. The
sum of these vectors is computed in the fusion center and transmitted to all processors. Each
processor performs standard AMP iterations with a new equivalent measurement vector, which is
computed using the vector received from the fusion center. The pseudocode for C-MP-AMP is
presented in Algorithm 1.

2.3 Performance Guarantee

Similar to AMP, the dynamics of the C-MP-AMP algorithm can be characterized by an SE formula.

Let (σ0,k̂0p )2 = δ−1
p E[X2], where δp = n/Np, ∀p = 1, ..., P . For outer iterations 1 ≤ s ≤ ŝ and inner

2Recall the definition of PL(2) from [8]: a function f : Rm → R is said to be PL(2) if there is L > 0 such that
|f(x)− f(y)| ≤ L(1 + ‖x‖+ ‖y‖)‖x− y‖, ∀x, y ∈ R

m, where ‖ · ‖ denotes the Euclidean norm.
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Algorithm 1 C-MP-AMP

Inputs to Processor p: y, Ap, {k̂s}s=0,...,ŝ (maximum number of inner iterations at each outer
iteration).

Initialization: x0,k̂0p = 0, z0,k̂0−1
p = 0, r0,k̂0p = 0, ∀p.

for s = 1 : ŝ do (loop over outer iterations)

At the fusion center: gs =
∑P

u=1 r
s−1,k̂s−1

u

At Processor p:

xs,0p = x
s−1,k̂s−1

p , rs,0p = r
s−1,k̂s−1

p

for t = 0 : t̂s − 1 do (loop over inner iterations)

zs,kp = y − gs −
(

rs,kp − rs,0p

)

xs,k+1
p = ηs,k(x

s,k
p +A∗

pz
s,k
p )

rs,k+1
p = Apx

s,k+1 − zs,kp

n

∑Np

i=1 η
′
s,k([x

s,k
p +A∗

pz
s,k
p ]i).

Output from Processor p: xŝ,k̂ŝp .

iterations 0 ≤ t ≤ k̂s, we define the sequences {(σs,kp )2} and {(τ s,kp )2} as

(σs,0p )2 = (σs−1,k̂s
p )2, (8)

(τ s,kp )2 = σ2W +
∑

u 6=p

(σs,0u )2 + (σs,kp )2, (9)

(σs,k+1
p )2 = δ−1

p E

[

(

ηs,k(X + τ s,kp Z)−X
)2
]

, (10)

where Z is a standard normal random variable that is independent of X.
With these definitions, we have the following performance guarantee for C-MP-AMP.

Theorem 1. Under the assumptions listed in [9, Section 1.1], let P be a fixed integer, for p =
1, ..., P , let n/Np = δp ∈ (0,∞) be a constant. Define N =

∑P
p=1Np. Then for any PL(2) function

φ : R2 → R, we have ∀ǫ ∈ (0, 1), there exist constants Ks,k, κs,k > 0 independent of n, ǫ, such that

P





∣

∣

∣

∣

∣

∣

1

Np

Np
∑

i=1

φ(xs,k+1
p,i , xp,i)− E

[

φ(ηs,k(X + τ s,kp Z),X)
]

∣

∣

∣

∣

∣

∣

≥ ǫ



 ≤ Ks,ke
−κs,knǫ

2

,∀p,

where xs,k+1
p is generated by Algorithm 1, τ s,kp is defined in (8–10), X ∼ pX , and Z is a standard

normal random variable that is independent of X.

Remark 1: C-MP-AMP converges to a fixed point that is no worse than that of AMP. This
statement can be demonstrated as follows. When C-MP-AMP converges, the quantities in (8–10)
do not keep changing, hence we can drop all the iteration indices for fixed point analysis. Notice
that the last term on the right hand side (RHS) of (9) vanishes, which leaves the RHS independent

of p. That is, (τ s,kp )2 are equal for all p, hence we can further drop the processor index for (τ s,kp )2.

Denote (τ s,kp )2 by τ2 for all s, k, p, and plug (10) into (9), then

τ2 = σ2W +

P
∑

p=1

δ−1
p E

[

(η(X + τZ)−X)2
]

(a)
= σ2W + δ−1

E

[

(η(X + τZ)−X)2
]

,
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which is identical to the fixed point equation obtained from (6). In the above, step (a) holds because
∑P

p=1 δ
−1
p =

∑P
p=1

Np

n = N
n . Because AMP always converges to the worst fixed point of the fixed

point equation (6) [15], the average asymptotic performance of C-MP-AMP is identical to AMP
when there is only one solution to the fixed point equation, and at least as good as AMP in case
of multiple fixed points.

Remark 2: The asymptotic dynamics of C-MP-AMP can be identical to AMP with a specific
communication schedule. This can be achieved by letting k̂s = 1,∀s. In this case, the quantity
(τ s,kp ) is involved only for t = 0. Because the last term in (9) is 0 when t = 0, the computation of
(τ s,0p )2 is independent of p. Therefore, τ s,0p are again equal for all p. Dropping the processor index

for (τ s,kp )2, the recursion in (8–10) can be simplified as

(τ s,0)2 = σ2W +

P
∑

p=1

δ−1
p E

[

(

ηs,0(X + τ s,0Z)−X
)2
]

= σ2W + δ−1
E

[

(

ηs−1,0(X + τ s−1,0Z)−X
)2
]

,

where the iteration evolves over s, which is identical to (6) evolving over t.
Remark 3: Theorem 1 implies almost sure convergence. Similar to the performance guarantee

for AMP [9], the concentration result in Theorem 1 implies

lim
N→∞

1

Np

Np
∑

i=1

φ(xs,k+1
p,i , xp,i)

a.s.
= E

[

φ(ηs,k(X + τ s,kp Z),X)
]

,∀p,

by the Borel-Cantelli Lemma.

3 Proofs of Theorem 1

Our proof follows closely from the proof for AMP in [9], with additional dependence structure to
be addressed due to vectors being transmitted among processors.

3.1 Proof Notations

Without loss of generality, we assume the sequence {k̂s}s≥0 in Algorithm 1 to be a constant value k̂.
Let t = sk̂ + k, θ(t) = ⌊t/k̂⌋k̂. Given w ∈ R

n, xp ∈ R
Np , for p = 1, ..., P , define the column vectors

ht+1
p , qtp ∈ R

Np and btp,m
t
p ∈ R

n for t ≥ 0 recursively as follows. Starting with initial condition

q0p ∈ R
Np :

ht+1
p = A∗

pm
t
p − qtp, qtp = ft(h

t
p, xp)

btp = Apq
t
p − λtpm

t−1
p , mt

p = btp +
∑

u 6=p

bθ(t)u − w (11)

where

ft(h
t, xp) = ηt−1(xp − ht)− xp, and λtp :=

1

δpNp

Np
∑

i=1

f ′t(h
t
p,i, xp,i). (12)

In (12), the derivative of ft : R
2 → R is with respect to the first argument. We assume that ηt is

Lipschitz for all t ≥ 0, then it follows that ft is Lipschitz for all t ≥ 0. Consequently, the weak
derivative and f ′t exit. Further, f

′
t is assumed to be differentiable, except possibly at a finite number

5



of points, with bounded derivative whenever it exits. In (11), quantities with negative indices or
with index θ(t) = 0 (i.e., t < k̂) are defined to be zeros.

To see the equivalence between Algorithm 1 and the recursion defined in (11) and (12), we let
x0p = 0, r0p = 0, ztp = 0, and

ht+1
p = xp − (A∗ztp + xtp), qtp = xtp − xp,

btp = rtp −Apxp, mt
p = −ztp.

Let (σ0p)
2 = δ−1

p E[X2]. We assume that (σ0p)
2 is strictly positive for all p = 1, ..., P and for all

ǫ ∈ (0, 1), there exist K,κ > 0 such that

P

(∣

∣

∣

∣

∣

‖q0p‖2
n

− (σ0p)
2

∣

∣

∣

∣

∣

≥ ǫ

)

≤ Ke−κnǫ2 , ∀p = 1, ..., P. (13)

Define the state evolution scalars {τ tp}t≥0 and {σtp}t≥1 for the the recursion defined in (11) as
follows:

(τ tp)
2 = (σtp)

2 +
∑

u 6=q

(σθ(t)u )2 + σ2W , (σtp)
2 =

1

δp
E

[

(

ft(τ
t−1
p Z,X)

)2
]

, (14)

where Z ∼ N (0, 1) and X ∼ pX are independent. Notice that with the equivalence between
Algorithm 1 and the recursion 11, the state evolution scalars defined in (14) matches (8) - (10).

Writing the updating equations for btp, h
t+1
p defined in (11) in matrix form, we have

Xt
p = A∗

pM
t
p, Y t

p = ApQ
t
p, (15)

where

Xt
p = [h1p + q0p|h2p + q1p| · · · |htp + qt−1

p ], Y t
p = [b0p|b1p + λ1pm

0
p| · · · |bt−1

p + λt−1
p mt−2

p ]

M t
p = [m0

p|m1
p| · · · |mt−1

p ], Qt
p = [q0p|q1p| · · · |qt−1

p ].

Let (mt
p)|| and (qtp)|| denote the projection of mt

p and qtp onto the column space of M t
p and Qt

p,
respectively. That is,

(mt
p)|| =M t

p

(

(M t
p)

∗M t
p

)−1
(M t

p)
∗mt

p

(qtp)|| = Qt
p

(

(Qt
p)

∗Qt
p

)−1
(Qt

p)
∗qtp.

Let
αt
p = (αt

p,0, α
t
p,1, ..., α

t
p,t−1)

∗, γtp = (γtp,0, γ
t
p,1, ..., γ

t
p,t−1)

∗ (16)

be the coefficient vectors of these projections. That is,

αt
p =

(

(M t
p)

∗M t
p

)−1
(M t

p)
∗mt

p, γtp =
(

(Qt
p)

∗Qt
p

)−1
(Qt

p)
∗qtp. (17)

and

(mt
p)|| =

t−1
∑

i=0

αt
p,im

i
p, (qtp)|| =

t−1
∑

i=0

γtp,iq
i
p. (18)

Define
(mt

p)⊥ = mt
p − (mt

p)||, (qtp)⊥ = qtp − (qtp)||. (19)

The main lemma will show that αt
p and γtp concentrate around some constant α̂t

p and γ̂tp, respec-
tively. We define these constants in the following subsection.
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3.2 Concentrating Constants

Let {Z̃t
p}t≥0 and {Z̆t

p}t≥0 each be a sequence of zero-mean jointly Gaussian random variables whose
covariance is defined recursively as follows. For t, r ≥ 0,

E[Z̆r
pZ̆

t
p] =

Ẽr,t
p

σrpσ
t
p

, E[Z̃r
pZ̃

t
p] =

Ĕr,t
p

τ rp τ
t
p

, (20)

where

Ĕr,t
p = Ẽr,t

p +
∑

u 6=p

Ẽθ(r),θ(t)
u + σ2W ,

Ẽr,t
p = δ−1

p E

[

fr(τ
r−1
p Z̃r−1

p ,X)ft(τ
t−1
p Z̃t−1

p ,X)
]

. (21)

Moreover, Z̃r
p is independent of Z̃t

q and Z̆r
p is independent of Z̆t

q for all r, t ≥ 0 whenever p 6= q.

Note that according to the definition of σtp and τ tp in (14), we have Ĕt,t
p = (τ tp)

2, Ẽt,t
p = (σtp)

2,

and E[(Z̃t
p)

2] = E[(Z̆t
p)

2] = 1. In (21), quantities with negative indices or with either θ(t) = 0 or
θ(r) = 0 are zeros.

Define matrices C̃t
p, C̆

t
p ∈ R

t×t, p = 1, 2, such that

[C̃t
p]r+1,s+1 = Ẽr,s

p , [C̆t
p]r+1,s+1 = Ĕr,s

p ,∀r, s = 0, ..., t − 1.

Define vectors Ẽt
p, Ĕ

t
p ∈ R

t, p = 1, 2, such that

Ẽt
p = (Ẽ0,t

p , Ẽ1,t
p , ..., Ẽt−1,t

p ), Ĕt
p = (Ĕ0,t

p , Ĕ1,t
p , ..., Ĕt−1,t

p ).

Define the concentrating values α̂t
p and γ̂tp as

γ̂tp = (C̃t
p)

−1Ẽt
p, α̂t

p = (C̆t
p)

−1Ĕt
p. (22)

Let (σ0p)
2
⊥ = (σ0p)

2 and (τ0p )
2
⊥ = (τ0p )

2, and for t > 0, define

(σtp)
2
⊥ = (σtp)

2 − (γ̂tp)
∗Ẽt

p = (σtp)
2 − (Ẽt

p)
∗(C̃t

p)
−1Ẽt

p,

(τ tp)
2
⊥ = (τ tp)

2 − (α̂t
p)

∗Ĕt
p = (σtp)

2 − (Ĕt
p)

∗(C̆t
p)

−1Ĕt
p. (23)

Lemma 1. The matrices C̃t
p and C̆t

p, ∀t ≥ 0, defined above are invertible, and the scalars (σtp)
2
⊥

and (τ tp)
2
⊥, ∀t ≥ 0, defined above are strictly positive.

Proof. The proof for C̃t
p being invertible and (σtp)

2
⊥ being strictly positive is the same as in [9]. Now

consider C̆t+1
p . Notice that C̆t+1

p is the sum of a positive definite matrix (C̃t+1
p ) and P positive

semi-definite matrices, hence, C̆t+1
p is positive definite. Consequently,

det(C̆t+1
p ) = det(C̆t

p) det((τ
t
p)

2 − (Ĕt
p)

∗(C̆t
p)

−1Ĕt
p) > 0, (24)

which implies (τ tp)
2 − (Ĕt

p)
∗(C̆t

p)
−1Ĕt

p = (τ tp)
2
⊥ > 0.

7



3.3 Condition Distribution Lemma

Let the sigma algebra S t1,t be generated by x,w, b0p, ..., b
t1−1
p ,m0

p, ...,m
t1−1
p , h1p, ..., h

t
p, q

0
p, ..., q

t
p, ∀p.

We now compute the conditional distribution of Ap given S t1,t for 1 ≤ p ≤ P , where t1 is either t
or t+ 1.

Notice that conditioning on S t1,t is equivalent to conditioning on the linear constraints:

ApQ
t1
p = Y t1

p , A∗
pM

t
p = Xt

p, 1 ≤ p ≤ P, (25)

where in (25), only Ap, 1 ≤ p ≤ P , are treated as random.

Let P
‖
Q

t1
p

= Qt1
p ((Q

t1
p )

∗Qt1
p )

−1Qt1
p and P

‖
M t

p
=M t

p((M
t
p)

∗M t
p)

−1M t
p, which are the projectors onto

the column space of Qt1
p and M t

p, respectively. The following lemma provides the conditional
distribution of the matrices Ap, p = 1, ..., P , given Gt1,t.

Lemma 2. For t1 = t or t+1, the conditional distribution of the random matrices Ap, p = 1, ..., P ,
given S t1,t satisfies

(A1, ..., AP )|S t1,t
d
= (Et1,t

1 + P
⊥
M t

1

Ã1P
⊥
Q

t1
1

, ...,Et1 ,t
P + P

⊥
M t

P
ÃPP

⊥
Q

t1
P

)

where P
⊥
Q

t1
p

= I − P
‖
Q

t1
p

and P
⊥
M t

p
= I − P

‖
M t

p
. Ãp

d
= Ap and Ãp is independent of S t1,t. Moreover,

Ãp is independent of Ãq for p 6= q. Et1,t
p is defined as

E
t1,t
p = Y t1

p ((Qt1
p )

∗Qt1
p )

−1(Qt1
p )

∗ +M t
p((M

t
p)

∗M t
p)

−1(Xt
p)

∗

−M t
p((M

t
p)

∗M t
p)

−1(M t
p)

∗Y t1
p ((Qt1

p )
∗Qt1

p )
−1(Qt1

p )
∗.

Proof. To simplify the notation, we drop the superscript t or t1 in the following proof. It should be
understood that Qp represents Qt1

p , Yp represents Y t1
p , Mp represents M t

p, and Xp represents Xt
p.

First let us consider projections of a deterministic matrix. Let Âp be a deterministic matrix
that satisfies the linear constraints Yp = ÂpQp and Xp = Â∗

pMp, then we have

Âp = ÂpQp(Q
∗
pQp)

−1Q∗
p + Âp(I−Qp(Q

∗
pQp)

−1Q∗
p),

Âp =Mp(M
∗
pMp)

−1M∗
p Âp + (I−Mp(M

∗
pMp)

−1M∗
p )Âp.

Combining the two equations above, as well as the two linear constraints, we can write

Âp = Yp(Q
∗
pQp)

−1Q∗
p +Mp(M

∗
pMp)

−1Xp −Mp(M
∗
pMp)

−1M∗
pYp(Q

∗
pQp)

−1Q∗
p + P

⊥
Mp
ÂpP

⊥
Qp
. (26)

We now demonstrate the conditional distribution of A1, ..., AP . Let S1, ..., SP be arbitrary Borel
sets on R

n×N1 ,...,Rn×NP , respectively.

P
(

A1 ∈ S1, ..., AP ∈ SP
∣

∣ApQp = Yp, A
∗
pMp = Xp,∀p

)

(a)
= P

(

E
t1,t
1 + P

⊥
M1
A1P

⊥
Q1

∈ S1, ...,E
t1 ,t
P + P

⊥
MP

APP
⊥
QP

∈ SP
∣

∣ApQp = Yp, A
∗
pMp = Xp,∀p

)

(b)
= P

(

E
t1,t
1 + P

⊥
M1
A1P

⊥
Q1

∈ S1, ...,E
t1 ,t
P + P

⊥
MP

APP
⊥
QP

∈ SP

)

= P
(

E
t1,t
1 + P

⊥
M1
A1P

⊥
Q1

∈ S1

)

...P
(

E
t1,t
P + P

⊥
MP

APP
⊥
QP

∈ SP

)

, (27)

which implies the desired result. In step (a),

E
t1,t
p = Yp(Q

∗
pQp)

−1Q∗
p +Mp(M

∗
pMp)

−1X∗
p −Mp(M

∗
pMp)

−1M∗
pYp(Q

∗
pQp)

−1Q∗
p, p = 1, ..., P,

8



which follows from (26). Step (b) holds since P
⊥
Mp
ApP

⊥
Qp

is independent of the conditioning. The

independence is demonstrated as follows. Notice that ApQp = ApP
||
Qp
Qp. In what follows, we will

show that A
||
p := ApP

||
Qp

is independent of A⊥
r := ArP

⊥
Qr

, for p, r = 1, ..., P . Then similar approach

can be used to demonstrate that P
⊥
Mp
Ap is independent of P

||
Mr
Ar. Together they provide the

justification for step (b). Note that A
||
p and A⊥

r are jointly normal, hence it is enough to show they
are uncorrelated.

E

{

[A||
p ]i,j[A

⊥
r ]m,l

}

= E

{(

N
∑

k=1

[Ap]i,k[P
‖
Qp

]k,j

)(

N
∑

k=1

[Ar]m,k

(

Ik,l − [P
‖
Qr

]k,l

)

)}

(a)
=

1

n
δ0(i,m)δ0(p, r)

(

N
∑

k=1

[P
‖
Qp

]k,jIk,l −
N
∑

k=1

[P
‖
Qp

]k,j[P
‖
Q

t1
r

]k,l

)

(b)
=

1

n
δ0(i,m)δ0(p, r)

(

[P
‖
Qp

]l,j −
N
∑

k=1

[P
‖
Qp

]k,j[P
‖
Qr

]l,k

)

(c)
= 0,

where δ0(i, j) is the Kronecker delta function. In the above, step (a) holds since the original matrix
A has N (0, 1/n) i.i.d. entries, step (b) holds since projectors are symmetric matrices, and step (c)
follows the property of projectors P2 = P.

Combining the results in Lemma 2 and [9, Lemma 4], we have the following conditional distri-
bution lemma.

Lemma 3. For the vectors ht+1
p and btp defined in (11), the following holds for t ≥ 1, p = 1, ..., P :

b0p|S 0,0 d
= (σ0p)⊥Z

′0
p +∆0,0

p , h1p|S 1,0 d
= (τ0p )⊥Z

0
p +∆1,0

p , (28)

btp|S t,t d
=

t−1
∑

i=0

γ̂tp,ib
i
p + (σtp)⊥Z

′t
p +∆t,t

p , htp|S t+1,t d
=

t−1
∑

i=0

α̂t
p,ih

i+1
p + (τ tp)⊥Z

t
p +∆t+1,t

p , (29)

where

∆0,0
p =

(

‖(q0p)⊥‖√
n

− (σ0p)⊥

)

Z
′0
p (30)

∆1,0
p =

[(

‖(m0
p)⊥‖√
n

− (τ0p )⊥

)

I− ‖(m0
p)⊥‖√
n

P
‖
q0p

]

Z0
p + q0p

(

‖q0p‖2
n

)−1(

(b0p)
∗(m0

p)⊥
n

− ‖q0p‖2
n

)

(31)

∆t,t
p =

t−1
∑

i=0

(

γtp,i − γ̂tp,i
)

bip +

[(

‖(qtp)⊥‖√
n

− (σtp)⊥

)

I−
‖(qtp)⊥‖√

n
P
‖
M t

p

]

Z
′t
p

+M t
p

(

(M t
p)

∗M t
p

n

)−1(

(Ht
p)

∗(qtp)⊥
n

−
(M t

p)
∗

n

[

λtpm
t−1
p −

t−1
∑

i=1

λtp,iγ
t
p,im

i−1
p

])

(32)

∆t+1,t
p =

t−1
∑

i=0

(

αt
p,i − α̂t

p,i

)

hi+1
p +

[(

‖(mt
p)⊥‖√
n

− (τ tp)⊥

)

I−
‖(mt

p)⊥‖√
n

P
‖
Qt+1

p

]

Zt
p

+Qt+1
p

(

(Qt+1
p )∗Qt+1

p

n

)−1(

(Bt+1
p )∗(mt

p)⊥
n

−
(Qt+1

p )∗

n

[

qtp −
t−1
∑

i=0

αt
p,iq

i
p

])

, (33)
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where Z
′t
p ∈ R

n and Zt
p ∈ R

Np are random vectors with independent standard normal elements, and

are independent of the corresponding sigma algebras. Moreover, Z
′t
p is independent of Z

′t
q and Zt

p

is independent of Zt
q when p 6= q.

Proof. The proof for each individual p ∈ [P ] is similar to the proof for [9, Lemma 4]. The claim
that Z

′t
p is independent of Z

′t
q and Zt

p is independent of Zt
q when p 6= q follows from Lemma 2,

where we have that Ãp is independent of Ãq for p 6= q.

3.4 Main Concentration Lemma

We use the shorthand Xn
.
= c to denote the concentration inequality P (|Xn − c| ≥ ǫ) ≤ Kte

−κtnǫ.
As specified in the theorem statement, the lemma holds for all ǫ ∈ (0, 1), with Kt, κt denoting the
generic constants dependent on t, but not on n, ǫ.

Lemma 4. With the
.
= notation defined above, the following holds for all t ≥ 0, p = 1, ..., P .

(a)

P

(

‖∆t,t
p ‖2
n

≥ ǫ

)

≤ Kte
−κtnǫ. (34)

P

(

‖∆t+1,t
p ‖2
n

≥ ǫ

)

≤ Kte
−κtnǫ. (35)

(b) (i) For pseudo Lipschitz functions φh : Rt+2 → R,

1

Np

Np
∑

i=1

φh(h
1
p,i, ..., h

t+1
p,i , xp,i)

.
= E[φh(τ

0
p Z̃

0
p , ..., τ

t
pZ̃

t
p,X)]. (36)

(ii) Let ψh : R2 → R be a bounded function that is differentiable in the first argument except
possibly at a finite number of points, with bounded derivative when it exists. Then,

1

Np

Np
∑

i=1

ψh(h
t+1
p,i , xp,i)

.
= E[ψh(τ

t
pZ̃

t
p,X)], (37)

where {Z̃t
p} is defined in (20), and X ∼ pX is independent of {Z̃}tp.

(iii) For pseudo-Lipschitz function phib : R
P (t+1)+1 → R,

1

n

n
∑

i=1

φb(b
0
1,i, ..., b

0
P,i, ..., b

t
1,i, ..., b

t
P,i, wi)

.
= E

[

φb(σ
0
1Z̆

0
1 , ..., σ

0
P Z̆

0
P , ..., σ

t
1Z̆

t
1, ..., σ

t
P Z̆

t
P ,W )

]

,

(38)
where {Z̆t

p} is defined in (20), and W ∼ pW is independent of {Z̆t
p}.

(c)

(ht+1
p )∗q0p
n

.
= 0,

(ht+1
p )∗xp
n

.
= 0. (39)

(btp)
∗w

n

.
= 0. (40)

10



(d) For all 0 ≤ r ≤ t, q 6= p,

(hr+1
p )∗ht+1

p

n

.
= Ĕr,t

p . (41)

(brp)
∗btp
n

.
= Ẽr,t

p . (42)

(e) For all 0 ≤ r ≤ t,

(q0p)
∗qt+1

p

n

.
= Ẽr+1,t+1

p ,
(qr+1

p )∗qt+1
p

n

.
= Ẽr+1,t+1

p . (43)

(mr
p)

∗mt
p

n

.
= Ĕr,t

p . (44)

(f) Define λ̂t+1
p = δ−1

p E[f ′t(τ
t
pZ̃

t
p,X)]. For all 0 ≤ r ≤ t,

λtp
.
= λ̂tp,

(hr+1
p )∗qt+1

p

n

.
= λ̂t+1

p Ĕr,t
p ,

(ht+1
p )∗qr+1

p

n

.
= λ̂r+1

p Ĕr,t
p . (45)

(brp)
∗mt

p

n

.
= Ẽr,t

p ,
(btp)

∗mr
p

n

.
= Ẽr,t

p . (46)

(47)

(g) For Qt+1
p = 1

n(Q
t+1
p )∗Qt+1

p and Mt
p =

1
n(M

t
p)

∗M t
p, when the inverses exist, for all 0 ≤ i, j ≤ t,

0 ≤ i′, j′ ≤ t− 1,

[(Qt+1
p )−1]i+1,j+1

.
= [(C̃t+1

p )−1]i+1,j+1, γt+1
p,i

.
= γ̂t+1

p,i . (48)

[(Mt
p)

−1]i′+1,j′+1
.
= [(C̆t

p)
−1]i′+1,j′+1, αt

p,i′
.
= α̂t

p,i′ , (49)

where γ̂t+1
p,i and α̂t

p,i are defined in (22).

(h)

‖(qt+1
p )⊥‖2
n

.
= (σt+1

p )2⊥. (50)

‖(mt
p)⊥‖2
n

.
= (τ tp)

2
⊥, (51)

where (σt+1
p )2⊥ and (τ tp)

2
⊥ are defined in (23).

3.5 Proof of Theorem 1

Applying Part (b)(i) of Lemma 4, the proof the Theorem 1 is the same as the proof in [9] and
therefore is not repeated here.

4 Proof of Lemma 4

The proof of Lemma 4 uses induction in the iteration index t. We label as Bt the results (35), (38),
(40), (42), (44), (46), (49), (51). The rest of the results in Lemma 4 are labels as Ht+1. In the
proof, K,κ are used as universal constant in the upper bounds.
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4.1 Step 1: Showing B0 holds.

In the following, when a statement involves p = 1, ..., P , we demonstrate the proof for p = 1, and
the cases when p = 2, ..., P can be obtained similarly; unless otherwise specified.

(a) Recall the definition of ∆0,0
1 in (30), we have

P

(

‖∆0,0
1 ‖
n

≥ ǫ

)

≤ P

(∣

∣

∣

∣

‖q01‖√
n

− (σ01)⊥

∣

∣

∣

∣

≥
√

ǫ

2

)

+ P

(∣

∣

∣

∣

∣

‖Z ′0
1 ‖√
n

− 1

∣

∣

∣

∣

∣

≥
√

ǫ

2

)

(a)

≤ Ke−κnǫ +Ke−κnǫ, (52)

where step (a) uses our assumption on q01 in (13), Lemma B.2, and Lemma A.2.
(b) (iii) Recall the conditional distribution of b0p in (28), by Lemma B.1,

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

φb(b
0
1,i, ..., b

0
P,i, wi)− E

[

φb(σ
0
1Z̆

0
1 , ..., σ

0
P Z̆

0
P ,W )

]

∣

∣

∣

∣

∣

≥ ǫ

)

≤ P

(

1

n

n
∑

i=1

∣

∣

∣φb(σ
0
1Z

′0
1,i +∆0,0

1,i , ..., σ
0
PZ

′0
P,i +∆0,0

P,i, wi)− φb(σ
0
1Z

′0
1,i, ..., σ

0
PZ

′0
P,i, wi)

∣

∣

∣ ≥ ǫ

2

)

+ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

φb(σ
0
1Z

′0
1,i, ..., σ

0
PZ

′0
P,i, wi)− E

[

φb(σ
0
1Z̆

0
1 , ..., σ

0
P Z̆

0
P ,W )

]

∣

∣

∣

∣

∣

≥ ǫ

2

)

.

Label the two terms above as T1 and T2, we will show that both are upper bounded by Ke−κnǫ2 .
First consider T1.

T1
(a)

≤ P





1

n

n
∑

i=1



1 +

√

√

√

√

P
∑

u=1

(

σ0uZ
′0
u,i +∆0,0

u,i

)2
+

√

√

√

√

P
∑

u=1

(

σ0uZ
′0
u,i

)2









√

√

√

√

P
∑

u=1

(∆0,0
u,i)

2



 ≥ ǫ

2L





(b)

≤ P





√

√

√

√1 +
P
∑

u=1

‖∆0,0
u ‖2
n

+ 4
P
∑

u=1

(σ0u)
2
‖Z ′0

u ‖2
n

√

√

√

√

P
∑

u=1

‖∆0,0
u ‖2
n

≥ ǫ

2
√
3L





≤ P

((

1 +

P
∑

u=1

‖∆0,0
u ‖√
n

+ 2

P
∑

u=1

σ0u
‖Z ′0

u ‖√
n

)(

P
∑

u=1

‖∆0,0
u ‖√
n

)

≥ ǫ

2
√
3L

)

. (53)

In the above, step (a) holds because φb is pseudo-Lipschitz. Step (b) uses triangle inequality to

obtain

√

∑P
u=1

(

σ0uZ
′0
u,i +∆0,0

u,i

)2
≤
√

∑P
u=1

(

σ0uZ
′0
u,i

)2
+

√

∑P
u=1

(

∆0,0
u,i

)2
(think of it as ℓ2-norm

of length-P vectors), followed by Cauchy-Schwarz and Lemma B.5.
From (53), we have

T1 ≤
P
∑

u=1

P

(

‖Z ′0
u ‖√
n

− 1 ≥ 1

)

+ P

(

P
∑

u=1

‖∆0,0
u ‖√
n

≥
ǫmin{1, 1

2
√
3L

}
2 + 8

∑P
u=1 σ

0
u

)

(a)

≤
P
∑

u=1

P

(

‖Z ′0
u ‖√
n

− 1 ≥ 1

)

+
P
∑

u=1

P

(

‖∆0,0
u ‖√
n

≥
ǫmin{1, 1

2
√
3L

}
P (2 + 8

∑P
u=1 σ

0
u)

)

(b)

≤ Ke−n +Ke−κnǫ,

12



where step (a) follows from Lemma B.1 and step (b) uses Lemma A.2 and B0(a).
Next consider T2. Using Lemma B.1, we have

T2 ≤ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

φb(σ
0
1Z

′0
1,i, ..., σ

0
PZ

′0
P,i, wi)− E(Z1,i,...,ZP,i)

[

φb(σ
0
1Z

′0
1,i, ..., σ

0
PZ

′0
P,i, wi)

])

∣

∣

∣

∣

∣

≥ ǫ

4

)

+ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

E(Z1,i,...,ZP,i)

[

φb(σ
0
1Z

′0
1,i, ..., σ

0
PZ

′0
P,i, wi)

]

− E

[

φb(σ
0
1Z̆

0
1 , ..., σ

0
P Z̆

0
P ,W )

]

∣

∣

∣

∣

∣

≥ ǫ

4

)

.

Label the two terms above as T2,a and T2,b. T2,a has the desire bound by first noticing that the
function φ̃b,i : RP → R defined as φ̃b,i(x1, ..., xP ) := φb(x1, ..., xP , wi) is PL(2) since φb is, and
then applying Lemma A.4 to sequence of i.i.d. length-P random vectors consisting of i.i.d. N (0, 1)
Gaussian random variables (variance factor ν = 1 in Lemma A.4). T2,b has the desired bound by

first noticing that the function φ̂b : R → R defined as φ̂(x) := E

[

φb(σ
0
1Z̆

0
1 , ..., σ

0
P Z̆

0
P , x)

]

is PL(2)

by Lemma C.2.
(c) The function φb(b

0
1,i, ..., b

0
P,i, wi) := b01,iwi is PL(2) by Lemma C.1. Apply B0(b)(iii), we have

1

n

n
∑

i=1

b01,iwi
.
= E

[

σ01Z̆
0
1W

]

= 0.

(d) The function φb(b
0
1,i, ..., b

0
P,i, wi) := (b01,i)

2 is PL(2) by Lemma C.1. Apply B0(b)(iii), we
have

1

n

n
∑

i=1

(b01,i)
2 .
= E

[

(σ01Z̆
0
1 )

2
]

= Ẽ0,0
1 ,

where the last equality uses (20).
(e) Recall that m0

1 = b01 − w. The function φb(b
0
1,i, ..., b

0
P,i, wi) := b01,i − wi is PL(2). Apply

B0(b)(iii), we have

(m0
1)

∗m0
1

n
=

1

n

n
∑

i=1

(b01,i − wi)
2 .
= E

[

(σ01Z̆
0
1 −W )2

]

= (σ01)
2 + σ2W = Ĕ0,0

1 .

The last equality follows from (21) by noticing that Ẽ
θ(0),θ(0)
1 = 0 by definition.

(f) The function φb(b
0
1,i, ..., b

0
P,i, wi) := b01,i(b

0
1,i − wi) is PL(2) by Lemma C.1. Apply B0(b)(iii),

we have
(b01)

∗m0
1

n
=

1

n
b01,i(b

0
1,i − wi)

.
= E

[

σ01Z̆
0
1 (σ

0
1Z̆

0
1 −W )

]

= Ẽ0,0
1 .

(g) Nothing to prove here.
(h) The result is equivalent to B0(e), since ‖(m0

p)⊥‖ = ‖m0
1‖ and (τ0p )

2
⊥ = (τ0p )

2.

4.2 Step 2: Showing H1 holds.

The proof is the same as in [9] and is not repeated hear.

4.3 Step 3: Showing Bt holds.

We prove the statements in Bt assuming that Bt−1 and Ht holds by inductive hypothesis.
(a) The proof is the same as in [9].
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(b)(iii) For brevity, define Eφb
:= E

[

φb(σ
0
1Z̆

0
1 , ..., σ

0
P Z̆

0
P , ..., σ

t
1Z̆

t
1, ..., σ

t
P Z̆

t
P ,W )

]

, and

ai = (b01,i, ..., b
0
P,i, ..., b

t−1
1,i , ..., b

t−1
P,i ,

t−1
∑

r=0

γ̂t1,rb
r
1,i + (σt1)⊥Z

′t
1,i + [∆t,t

1 ]i, ...,

t−1
∑

r=0

γ̂tP,rb
r
P,i + (σtP )⊥Z

′t
P,i + [∆t,t

P ]i, wi)

ci = (b01,i, ..., b
0
P,i, ..., b

t−1
1,i , ..., b

t−1
P,i ,

t−1
∑

r=0

γ̂t1,rb
r
1,i + (σt1)⊥Z

′t
1,i, ...,

t−1
∑

r=0

γ̂tP,rb
r
P,i + (σtP )⊥Z

′t
P,i, wi),

for i = 1, ..., n. Hence, a, c are length-n vectors with elements in R
P (t+1)+1.

Then, using the conditional distribution of btp defined in Lemma 3 (29), together with Lemma
B.1, we have

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

φb(b
0
1,i, ..., b

0
P,i, ..., b

t
1,i, ..., b

t
P,i, wi)− Eφb

∣

∣

∣

∣

∣

≥ ǫ

)

≤ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

(φb(ai)− φb(ci))

∣

∣

∣

∣

∣

≥ ǫ

2

)

+ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

φb(ci)− Eφb

∣

∣

∣

∣

∣

≥ ǫ

2

)

.

Label the two terms above as T1 and T2. To complete the proof, we show that both T1 and T2 are
bounded above byKe−κnǫ2. First consider T1. For convenience, we define ∆

t,t
i := ([∆t,t

1 ]i, ..., [∆
t,t
P ]i),

for i = 1, ..., n.

T1
(a)

≤ P

(

1

n

n
∑

i=1

(1 + ‖ai‖+ ‖ci‖) ‖ai − ci‖ ≥ ǫ

2L

)

(b)

≤ P

(

1

n

n
∑

i=1

(

1 + ‖∆t,t
i ‖+ 2‖ci‖

)

‖∆t,t
i ‖ ≥ ǫ

2L

)

(c)

≤ P





√

√

√

√1 +
P
∑

u=1

‖∆t,t
u ‖2
n

+ 4
‖c‖2
n

√

√

√

√

P
∑

u=1

‖∆t,t
u ‖2
n

≥ ǫ

2
√
3L





≤ P

((

1 +

P
∑

u=1

‖∆t,t
u ‖√
n

+ 2
‖c‖√
n

)(

P
∑

u=1

‖∆t,t
u ‖√
n

)

≥ ǫ

2
√
3L

)

,

where step (a) holds because φb is PL(2), step (b) holds because ‖ai‖ ≤ ‖ci‖+‖∆t,t
i ‖ and ‖ai−ci‖ =

‖∆t,t
i ‖, and step (c) holds by Cauchy-Schwarz followed by Lemma B.5. Further, ‖c‖ can be bounded

as follows by applying Lemma B.5,

‖c‖2 ≤
P
∑

u=1

t−1
∑

r=0

‖bru‖2 + 2

P
∑

u=1

t−1
∑

r=0

t−1
∑

l=0

γ̂tu,rγ̂
t
u,l(b

r
u)

∗blu + 2

P
∑

u=0

(σtu)
2
⊥‖Z

′t
u ‖2 + ‖w‖2.

Denote the RHS of the above by c̃. We will show that 1
n c̃ concentrates to Ec̃ defined as

Ec̃ :=

P
∑

u=1

t−1
∑

r=0

Ẽr,r
u + 2

P
∑

u=1

t−1
∑

r=0

t−1
∑

l=0

γ̂tu,rγ̂
t
u,lẼ

r,l
u + 2

P
∑

u=1

(σtu)
2
⊥ + σ2W =

P
∑

u=1

(

(σlu)
2 + 2(σtu)

2
)

+ σ2W .

In the above, the last inequality uses the definitions in Section 3.2 and follows from

t−1
∑

r=0

t−1
∑

l=0

γ̂tu,rγ̂
t
u,lẼ

r,l
u = (γ̂tu)

∗C̃t
uγ̂

t
u = [(Ẽt

u)
∗(C̃t

u)
−1]C̃t

u[(C̃
t
u)

−1Ẽt
u] = (Ẽt

u)
∗(C̃t

u)
−1Ẽt

u = (σtu)
2 − (σtu)

2
⊥.

(54)
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To see the concentration, let a = Pt+ t2 + P + 1,

P

(∣

∣

∣

∣

1

n
c̃− Ec̃

∣

∣

∣

∣

≥ ǫ′
)

(a)

≤
P
∑

u=1

t−1
∑

r=0

P

(∣

∣

∣

∣

‖bru‖2
n

− Ẽr,r
u

∣

∣

∣

∣

≥ ǫ′

a

)

+

P
∑

u=1

t−1
∑

r=0

t−1
∑

l=0

P

(

∣

∣

∣

∣

(bru)
∗blu
n

− Ẽr,l
u

∣

∣

∣

∣

≥ ǫ′

2aγ̂tu,rγ̂
t
u,l

)

+ P

(∣

∣

∣

∣

∣

‖Z ′t
u ‖2
n

− 1

∣

∣

∣

∣

∣

≥ ǫ′

2a(σtu)
2
⊥

)

+ P

(∣

∣

∣

∣

‖w‖2
n

− σ2W

∣

∣

∣

∣

≥ ǫ′

a

)

(b)

≤ Ke−κnǫ′2 , (55)

where step (a) follows from Lemma B.1 and step (b) follows from the inductive hypothesis B0(d)−
Bt−1(d), Lemma A.2, and the assumption on w. Using this result, T1 can be bounded as follows,

T1 ≤ P

((

1 +

P
∑

u=1

‖∆t,t
u ‖√
n

+ 2

(

c̃√
n
− Ec̃

)

+ 2Ec̃

)(

P
∑

u=1

‖∆t,t
u ‖√
n

)

≥ ǫ

2
√
3L

)

(a)

≤ P

(∣

∣

∣

∣

c̃√
n
− E

1/2
c̃

∣

∣

∣

∣

≥ ǫ

)

+

P
∑

u=1

P

(

‖∆t,t
u ‖√
n

≥ ǫ

2
√
3LP (4 + 2E

1/2
c̃

)

)

(b)

≤ Ke−κnǫ2 +Ke−κnǫ2 ,

where step (a) uses Lemma B.1 and step (b) uses (55), the results in Bt(a), and Lemma B.2.
Next consider T2. Let Z = (Z1, ..., ZP ) be a vector of i.i.d. N (0, 1) random variables, and it

is independent of Z
′r
u for all r = 1, ..., t − 1 and u = 1, ..., P . For each i ∈ [n], define the function

φ̃b,i : R
P → R as for z = (z1, ..., zP ) ∈ R

P ,

φ̃b,i(z) := φb(b
0
1,i, ..., b

0
P,i, ..., b

t−1
1,i , ..., b

t−1
P,i ,

t−1
∑

r=0

γ̂t1,rb
r
1 + (σt1)⊥z1, ...,

t−1
∑

r=0

γ̂tP,rb
r
P + (σtP )⊥zP , wi).

Then φ̃b,i is PL(2) for all i ∈ [n]. For brevity, let Z ′
i := (Z

′t
1,i, ..., Z

′t
P,i), for all i ∈ [n], then

T2 ≤ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

φ̃b,i(Z
′
i)− EZ [φ̃b,i(Z)

)

∣

∣

∣

∣

∣

≥ ǫ

4

)

+ P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

EZ [φ̃b,i(Z)− Eφb

∣

∣

∣

∣

∣

≥ ǫ

4

)

.

Label the two terms in the above as T1 and T2. T1 is bounded above by Ke−κnǫ2 using Lemma
A.4. T2 can be written as

T2 = P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

φ′b(b
0
1,i, ..., b

0
P,i, ..., b

t−1
1,i , ..., b

t−1
P,i , wi)− Eφb

∣

∣

∣

∣

∣

≥ ǫ

4

)

,

where the function φ′b : R
P (t+1)+1 → R is defined as

φ′b(b
0
1,i, ..., b

0
P,i, ..., b

t−1
1,i , ..., b

t−1
P,i , wi) := EZ [φ̃b,i(Z)]

= EZ

[

φb(b
0
1,i, ..., b

0
P,i, ..., b

t−1
1,i , ..., b

t−1
P,i ,

t−1
∑

r=0

γ̂t1,rb
r
1,i + (σt1)⊥Z1, ...,

t−1
∑

r=0

γ̂tP,rb
r
P,i + (σtP )⊥ZP , wi)

]

Then φ′b is PL(2) by Lemma C.2. By inductive hypothesis B0(b)(iii) − Bt−1(b)(iii), we have

1

n

n
∑

i=1

φ′b(b
0
1,i, ..., b

0
P,i, ..., b

t−1
1,i , ..., b

t−1
P,i , wi)

.
= E

[

φ′b(σ
0
1Z̆

0
1 , ..., σ

0
P Z̆

0
P , ..., σ

t−1
1 Z̆t−1

1 , ..., σt−1
P Z̆t−1

P ,W )
]

= E

[

φb(σ
0
1Z̆

0
1 , ..., σ

0
P Z̆

0
P , ..., σ

t−1
1 Z̆t−1

1 , ..., σt−1
P Z̆t−1

P ,

t−1
∑

r=0

γ̂t1,rσ
r
1Z̆

r
1 + (σt1)⊥Z1, ...,

t−1
∑

r=0

γ̂t1,rσ
r
P Z̆

r
P + (σtP )⊥ZP ,W )

]

.
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To obtain the desired result, we need to show

(σ01Z̆
0
1 , ..., σ

0
P Z̆

0
P , ..., σ

t−1
1 Z̆t−1

1 , ..., σt−1
P Z̆t−1

P ,
t−1
∑

r=0

γ̂t1,rσ
r
1Z̆

r
1 + (σt1)⊥Z1, ...,

t−1
∑

r=0

γ̂t1,rσ
r
P Z̆

r
P + (σtP )⊥ZP )

(56)

d
= (σ01Z̆

0
1 , ..., σ

0
P Z̆

0
P , ..., σ

t
1Z̆

t
1, ..., σ

t
P Z̆

t
P ). (57)

Notice that these are zero-mean jointly Gaussian random vectors, hence we only need to demon-
strate that there covariance matrices are equal. For the coordinates on the diagonal, we need to
show

E

[

(
t−1
∑

r=0

γ̂rp,rσ
r
pZ̆

r
p + (σtp)⊥Zp)

2

]

= E

[

(σtpZ̆
t
p)

2
]

= (σtp)
2, ∀p = 1, ..., P. (58)

This is true since

E

[

(

t−1
∑

r=0

γ̂rp,rσ
r
pZ̆

r
p + (σtp)⊥Zp)

2

]

(a)
=

t−1
∑

r=0

t−1
∑

l=0

γ̂tp,rγ̂
t
p,lẼ

r,l
p + (σtp)

2
⊥

(b)
= (σtp)

2,

where step (a) follows from the definition in Section 3.2 and step (b) follows from (54). Next
consider the off-diagonal terms. Notice that Z̆r

p is independent of Z̆ l
q for all 0 ≤ r, l ≤ t whenever

p 6= q and also the i.i.d. random vector (Z1, ...ZP ) is independent of Z̆
r
p for all 1 ≤ p ≤ P, 0 ≤ r ≤ t.

Hence, we only need to show for all 0 ≤ l ≤ t− 1,

E

[

(σlpZ̆
l
p)(

t−1
∑

r=0

γ̂tp,rσ
r
pZ̆

r
p + (σtp)⊥Zp)

]

= E

[

(σlpZ̆
l
p)(σ

t
pZ̆

t
p)
]

= Ẽl,t
p .

This is true since

E

[

(σlpZ̆
l
p)(

t−1
∑

r=0

γ̂tp,rσ
r
pZ̆

r
p + (σtp)⊥Zp)

]

(a)
=

t−1
∑

r=0

γ̂tp,rẼ
l,t
p

(b)
= [C̃t

pγ̂
t
p]l+1

(c)
= Ẽl,t

p ,

where step (a), (b), and (c) uses definition for Ẽl,r
p , C̃t

p, and γ̂
t
p, respectively, in Section 3.2. Hence,

we have proved (57).
(c) Apply the result in Bt(b)(iii) to PL(2) function φb(b

0
1,i, ..., b

0
P,i, ..., b

t
1,i, ..., b

t
P,i, wi) := bt1,iwi,

then we have
1

n

n
∑

i=1

bt1,iwi
.
= E

[

σt1Z̆
t
1W
]

= 0.

(d) Apply the result in Bt(b)(iii) to PL(2) function φb(b
0
1,i, ..., b

0
P,i, ..., b

t
1,i, ..., b

t
P,i, wi) := br1,ib

t
1,i,

then we have
1

n

n
∑

i=1

br1,ib
t
1,i

.
= σr1σ

t
1E

[

Z̆r
1Z̆

t
1

]

= Ẽr,t
1 .

(e) Define the function g : RP+1 → R as g(x) =
∑P

i=1 xi − xP+1 for x = (x1, ..., xP+1) ∈ R
P+1.

Notice that g is Lipschitz. Recall the definition ofmt
1 in (11), we havemt

1,i = g(b
θ(t)
2,i , ..., b

θ(t)
P,i , b

t
1,i, wi).

Notice that θ(t) equals to some integer that is less than or equal to t. Therefore, the function defined
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as φb(b
0
1,i, ..., b

0
P,i, ..., b

t
1,i, ..., b

t
P,i, wi) := g(b

θ(r)
2,i , ..., b

θ(r)
P,i , b

r
1,i, wi)g(b

θ(t)
2,i , ..., b

θ(t)
P,i , b

t
1,i, wi) is PL(2) by

Lemma C.1. Applying the result in Bt(b)(iii), we have

1

n

n
∑

i=1

mr
1,im

t
1,i

.
= E

[

g(σ
θ(r)
2 Z̆

θ(r)
2 , ..., σ

θ(r)
P Z̆

θ(r)
P , σr1Z̆

r
1 ,W )g(σ

θ(t)
2 Z̆

θ(t)
2 , ..., σ

θ(t)
P Z̆

θ(t)
P , σt1Z̆

t
1,W )

]

= Ẽr,t
1 +

P
∑

u=2

Ẽθ(r),θ(t)
u + σ2W = Ĕr,t

1 .

(f) Using the function g defined above and applying B(b)(iii), we have

1

n

n
∑

i=1

br1,im
t
1,i =

1

n

n
∑

i=1

br1,ig(b
θ(t)
2,i , ..., b

θ(t)
P,i , b

t
1,i, wi)

.
= E

[

σr1Z̆
r
1g(σ

θ(t)
2 Z̆

θ(t)
2 , ..., σ

θ(t)
P Z̆

θ(t)
P , σt1Z̆

t
1,W )

]

= E

[

σr1Z̆
r
1

(

P
∑

u=2

σθ(0)u Z̆θ(0)
u + σt1Z̆

t
u −W

)]

= Ẽr,t
1 .

The proof for 1
n

∑n
i=1 b

t
1,im

r
1,i

.
= Ẽr,t

1 is similar.
The proof for (g) and (h) is the same as in [9].

4.4 Step 4: Showing Ht+1 holds.

The proof is the same as in [9] and is not repeated hear.

A Sub-Gaussian Concentration Lemmas

Lemma A.1. [9] For a standard Gaussian random variable Z and ǫ > 0, P (|Z| ≥ ǫ) ≤ 2e−
1

2
ǫ2 .

Lemma A.2. [9, χ2-concentration] For Zi, i ∈ [n] that are i.i.d. ∼ N (0, 1), and 0 ≤ ǫ ≤ 1,

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Z2
i − 1

∣

∣

∣

∣

∣

≥ ǫ

)

≤ 2e−nǫ2/8.

Lemma A.3. [16] Let X be a centered sub-Gaussian random variable with variance factor ν, i.e.,

lnE[etX ] ≤ t2ν
2 , ∀t ∈ R. Then X satisfies:

1. For all x > 0, P (X > x) ∨ P (X < −x) ≤ e−
x2

2ν , for all x > 0.

2. For every integer k ≥ 1,
E[X2k] ≤ 2(k!)(2ν)k ≤ (k!)(4ν)k. (59)

Lemma A.4. Let {Zi}i∈[n] ∈ R
d be a sequence of i.i.d. random vectors on R

d, where d is an integer

and each Zi has i.i.d. sub-Gaussian entries with variance factor ν. The functions {fi}i∈[n] : Rd → R

are pseudo-Lipschitz of order 2 each with pseudo-Lipschitz constant Li. Let L := maxi∈[n]Li. Then
for all ǫ ∈ (0, 1), there exist K,κ > 0 depending on d, L but not n, ǫ such that

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

(fi(Zi)− E [fi(Zi)])

∣

∣

∣

∣

∣

≥ ǫ

)

≤ Ke−κnǫ2 . (60)
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Proof. In what follows, we prove the upper-tail bound

P

(

1

n

n
∑

i=1

(fi(Zi)− E [fi(Zi)]) ≥ ǫ

)

≤ Ke−κnǫ2 . (61)

The lower-tail bound can then be obtained similarly. Together they prove the desired result.
Using the Cramér-Chernoff method:

P

(

n
∑

i=1

(fi(Zi)− E [fi(Zi)]) ≥ nǫ

)

≤ e−nrǫ
E

[

exp

(

r

n
∑

i=1

(fi(Zi)− E [fi(Zi)])

)]

, ∀r > 0. (62)

Next we will show that there exist κ′ > 0 such that the expectation in (62) is bounded by

E

[

exp

(

r

n
∑

i=1

(fi(Zi)− E [fi(Zi)])

)]

≤ eκ
′nr2 , for 0 < r ≤

(

5
√
2L(dν + 12d2ν2)1/2

)−1
. (63)

Then plugging (63) into (62), and choosing the optimal r = ǫ
2κ′ , we can ensure that r falls within

the effective region defined in (62) for all ǫ ∈ (0, 1) by choosing κ′ big enough.
Now we show (63). Notice that

E

[

exp

(

−r
n
∑

i=1

(fi(Zi)− E [fi(Zi)])

)]

(a)

≥ exp

(

−rE
[

n
∑

i=1

(fi(Zi)− E [fi(Zi)])

])

= 1, (64)

where step (a) follows from Jensen’s inequality. Let {Z̃i}i∈[n] be an independent copy of {Zi}i∈[n].
Then we have

E

[

exp

{

r

n
∑

i=1

(fi(Zi)− E [fi(Zi)])

}]

· 1

(a)

≤ E

[

exp

{

r

n
∑

i=1

(fi(Zi)− E [fi(Zi)])

}]

E

[

exp

{

−r
n
∑

i=1

(

fi(Z̃i)− E

[

fi(Z̃i)
])

}]

(b)
=

n
∏

i=1

E

[

exp
{

fi(Zi)− fi(Z̃i)
}]

=

n
∏

i=1

( ∞
∑

k=0

1

k!
E

[

(

fi(Zi)− fi(Z̃i)
)k
]

)

(c)
=

n
∏

i=1

( ∞
∑

k=0

r2k

(2k)!
E

[

(

fi(Zi)− fi(Z̃i)
)2k
]

)

(65)

In the above, step (a) follows from (64),step (b) uses the fact that {Z̃i} is independent of {Zi} and
also they each contain independent elements, and step (c) holds since the odd order terms are zero.
Now we bound the expectation term.

E

[

(

fi(Zi)− fi(Z̃i)
)2k
]

(a)

≤ L2k
i E

[

(

(1 + ‖Zi‖+ ‖Z̃i‖)‖Zi − Z̃i‖
)2k
]

(b)

≤ L2k
E

[

(

‖Zi‖+ ‖Z̃i‖+ ‖Zi‖2 + ‖Z̃i‖2 + 2‖Zi‖‖Z̃i‖
)2k
]

(c)

≤ (5L)2k

5
E

[

2‖Zi‖2k + 2‖Zi‖4k + 22k‖Zi‖2k‖Z̃i‖2k
]

(d)

≤ (5L)2k

5

(

4(k)!(2dν)k + 4(2k)!(2dν)2k + 4(k!)2(4dν)2k
)

, (66)
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where step (a) holds due to the pseudo-Lipschitz property, step (b) uses the fact that Li ≤ L and
‖Zi − Z̃i‖ ≤ ‖Zi‖ + ‖Z̃i‖, step (c) uses Lemma B.5, and step (d) uses Lemma A.3 and another
application of Lemma B.5. Plugging (66) into (65), we have

E

[

exp

{

r

n
∑

i=1

(fi(Zi)− E [fi(Zi)])

}]

(a)

≤ 4

5

∞
∑

k=0

(25r2L2)k
(

(dν)k + (4d2ν2)k + (8d2ν2)k
)

≤
∞
∑

k=0

(25L2)k
(

dν + 12d2ν2
)k

=
1

1− 25r2L2 (dν + 12d2ν2)

(b)

≤ exp
(

50r2L2
(

dν + 12d2ν2
))

,

where step (a) uses the fact 2k(k!)2 ≤ (2k)! and step (b) uses (1−x)−1 ≤ e2x for x ∈ [0, 1/2], which

leads to the effective region for r to be r ≤
(

5
√
2L(dν + 12d2ν2)1/2

)−1
.

B Algebraic Inequalities

Lemma B.1. [9, Concentration of Sums] If random variables X1, . . . ,XM satisfy P (|Xi| ≥ ǫ) ≤
e−nκiǫ2 for 1 ≤ i ≤M , then

P

(∣

∣

∣

∣

∣

M
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ ǫ

)

≤
M
∑

i=1

P
(

|Xi| ≥
ǫ

M

)

≤Me−n(mini κi)ǫ2/M2

.

Lemma B.2. [9, Concentration of Square Roots] Let c 6= 0. Then

If P
(∣

∣X2
n − c2

∣

∣ ≥ ǫ
)

≤ e−κnǫ2 , then P (||Xn| − |c|| ≥ ǫ) ≤ e−κn|c|2ǫ2 .

Lemma B.3. [9, Concentration of Products] For random variables X,Y and non-zero constants
cX , cY , if

P (|X − cX | ≥ ǫ) ≤ Ke−κnǫ2 , and P (|Y − cY | ≥ ǫ) ≤ Ke−κnǫ2 ,

then the probability P (|XY − cXcY | ≥ ǫ) is bounded by

P

(

|X − cX | ≥ min

(
√

ǫ

3
,
ǫ

3cY

))

+ P

(

|Y − cY | ≥ min

(
√

ǫ

3
,
ǫ

3cX

))

≤ 2K exp

{

− κnǫ2

9max(1, c2X , c
2
Y )

}

.

Lemma B.4. [9, Concentration of Scalar Inverses] Assume c 6= 0 and 0 < ǫ < 1.

If P (|Xn − c| ≥ ǫ) ≤ e−κnǫ2 , then P
(∣

∣X−1
n − c−1

∣

∣ ≥ ǫ
)

≤ 2e−nκǫ2c2 min{c2,1}/4.

Lemma B.5. [9] For any scalars a1, ..., at and positive integer m, we have (|a1|+ . . .+ |at|)m ≤
tm−1

∑t
i=1 |ai|m. Consequently, for any vectors u1, . . . , ut ∈ R

N ,
∥

∥

∑t
k=1 uk

∥

∥

2 ≤ t
∑t

k=1 ‖uk‖2.

C Pseudo-Lipschitz Function Lemmas

Lemma C.1. [9, Products of Lipschitz Functions are PL(2)] Let f : Rp → R and g : Rp → R

be Lipschitz continuous. Then the product function h : Rp → R defined as h(x) := f(x)g(x) is
pseudo-Lipschitz of order 2.
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Lemma C.2. [9] Let φ : Rt+2 → R be PL(2). Let (c1, . . . , ct+1) be constants. The function
φ̃ : Rt+1 → R defined as

φ̃ (v1, . . . , vt, w) = EZ

[

φ

(

v1, . . . , vt,

t
∑

r=1

crvr + ct+1Z,w

)]

(67)

where Z ∼ N (0, 1), is then also PL(2).
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