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ABSTRACT

Acoustic unit discovery (AUD) is a process of automatically iden-
tifying a categorical acoustic unit inventory from speech and pro-
ducing corresponding acoustic unit tokenizations. AUD provides
an important avenue for unsupervised acoustic model training in a
zero resource setting where expert-provided linguistic knowledge
and transcribed speech are unavailable. Therefore, to further fa-
cilitate zero-resource AUD process, in this paper, we demonstrate
acoustic feature representations can be significantly improved by (i)
performing linear discriminant analysis (LDA) in an unsupervised
self-trained fashion, and (ii) leveraging resources of other languages
through building a multilingual bottleneck (BN) feature extractor to
give effective cross-lingual generalization. Moreover, we perform
comprehensive evaluations of AUD efficacy on multiple downstream
speech applications, and their correlated performance suggests that
AUD evaluations are feasible using different alternative language
resources when only a subset of these evaluation resources can be
available in typical zero resource applications.

Index Terms— Acoustic unit discovery, unsupervised linear
discriminant analysis, evaluation methods, zero resource

1. INTRODUCTION

Standard supervised training of automatic speech recognition (ASR)
systems typically relies on transcribed speech audio and pronun-
ciation dictionaries. However, for a large majority of the world’s
languages, it is often difficult or even almost impossible to collect
enough language resources to develop ASR systems with current
standard ASR technology [1]. Therefore, developing speech tech-
nologies for a target language with zero expert-provided resources
in that language becomes a significant challenge.

Recent zero resource efforts focused on phonetic discovery, or
acoustic unit discovery (AUD), have made important progress in
fully unsupervised acoustic model training and performing subword
unit tokenization [2, 3]. In [2], a Dirichlet process hidden Markov
model (DPHMM) framework is formulated to simultaneously per-
form three sub-tasks of segmentation, nonparametric clustering
and sub-word modeling, and the spoken term detection task is
used to evaluate the learned sub-word models. [3] also presents a
nonparametric Bayesian framework to solve the same problem of
unsupervised acoustic modeling with three major differences: (i)
the Gibbs Sampling (GS) training algorithm is replaced with Varia-
tional Bayesian (VB) inference, which allows parallelized training
amenable to large scale applications, (ii) a phone-loop model with
a mixture of HMMs (each phone-like acoustic unit is modeled by a
HMM) is seen as a single HMM and thus does not require sub-word
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boundary variables, and (iii) normalized mutual information (NMI)
between the hypothesized acoustic unit sequences and orthographic
phoneme transcripts is used to evaluate the modeling efficacy.

As being unknown to the guidance of word transcripts in zero-
resource scenarios, effective acoustic front-end processing becomes
particularly critical to uncover the phonetic salience by the acoustics
themselves. In supervised ASR system, linear discriminant analysis
(LDA) [4] is often employed to exploit substantial contextual infor-
mation, and the target class labels for LDA can be context-dependent
triphone states given by the forced alignments of speech transcripts
that are unavailable in zero resource setting. In this paper, we ex-
plore applying similar LDA strategy but with target labels acquired
by the first-pass acoustic unit tokenizations, which is considered as
a self-supervised fashion to solve the unknown label problem. Pre-
vious work in [5] also exploits such unsupervised LDA to support
Dirichlet process Gaussian mixture model (DPGMM) based cluster-
ing although being limited to frame-level clustering without acoustic
unit-level segmentation.

To date language-independent bottleneck (BN) features have
been demonstrated as effective speech representations in improving
ASR accuracies [6, 7]. In our study, we explore a state-of-the-
art multilingual time delay neural network (TDNN) technique to
generate robust cross-lingual acoustic features in zero-resource set-
ting, and the hope is that as one moves to new languages, this data
driven feature extraction approach will work as-is, without having
to redesign feature extraction algorithms.

In this paper, we employ the AUD framework in [3] and investi-
gate the efficacy of incorporating LDA and multilingual BN TDNN
techniques to AUD. Given the two distinct evaluations in [2, 3], we
proceed by conducting not only an intrinsic measure of assessing
the NMI between model hypothesis and true reference, but also an
extrinsic measure of AUD’s utility to downstream speech tasks.

Past studies in [8, 9] demonstrated the effectiveness of posterior
features based on automatically derived acoustic structures by spo-
ken term detection and phoneme discrimination tasks, while being
limited to frame-level clustering and loss of phonetic temporal in-
formation. In contrast, [2] succeeded in computing posteriorgram
representations over the learned sub-word units, capturing the pho-
netic context knowledge. In this paper, we also exploit the feature
representation of posteriorgrams across acoustic units learned from
our AUD procedure, and test by a unified evaluation framework pro-
posed in [10, 11] that quantifies how well speech representations
enable discrimination between word example pairs of the same or
different type, which is referred to as the same-different task and
characterized by average precision (AP). [10] demonstrates almost
perfect correlation between such AP and phone recognition accu-
racies of supervised acoustic models; therefore, we would like to
investigate if such AP can also be a proxy for the unsupervised
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AUD accuracies, such that we can still evaluate AUD efficacy in the
zero-resource condition that no orthographic phoneme transcripts for
NMI measure are available but only word pairs. Since such word
pairs can not only be obtained from manual transcripts, also from
unsupervised spoken term discovery systems without relying on any
language-specific resources [12, 13], at little cost compared with ex-
pensive phoneme transcripts.

Finally, previous work like [14, 15] presented the success of us-
ing unit- or word-level acoustic patterns discovered from fully unsu-
pervised setting to provide competitive performance in spoken docu-
ment topical classification and clustering, we also explicitly measure
our AUD utility of learning document representations in this study.

2. IMPROVING FEATURE REPRESENTATION
LEARNING FOR ACOUSTIC UNIT DISCOVERY

AUD is to discover repeated acoustic patterns in the raw acous-
tic stream and learn speaker independent acoustic models for each
unique acoustic unit. We employ the same nonparametric Bayesian
framework as [3]. A phone-loop model is developed as shown in Fig-
ure 1, and each unit is modeled as a Bayesian GMM-HMM. Under
Dirichlet process framework, we consider the phone-loop as an infi-
nite mixture of GMM-HMMs, and the mixture weights are based on
the stick-breaking construction of Dirichlet process. Following [16],
the infinite number of units in the mixture is approximated by a trun-
cation number T , giving zero weight to any unit greater than T .

Model parameters are fully Bayesian, with corresponding prior
and posterior of conjugate distributions for each parameter. The
Variational Bayesian (VB) inference (seen as an extension of the
expectation-maximization algorithm that computes posterior distri-
butions of both model parameters and latent variables) [17] is used to
train the full Bayesian models. We initialize the hyperparameters for
the prior distributions, and the posterior distributions are initialized
the same as their prior distributions before the first training itera-
tion starts. During each iteration, sufficient statistics are computed
and accumulated to update the model posterior distributions. We
can treat such mixture of GMM-HMMs as a single unified HMM
with loop transitions, and thus the segmentation of the data can be
performed using standard forward-backward algorithm in an unsu-
pervised fashion. Parallelized training is conducted and convergence
monitored by computing a lower bound on the data log-likelihood.
After VB training, during evaluation we use Viterbi decoding algo-
rithm to obtain acoustic unit tokenizations of the data, or forward-
backward algorithm to produce posteriorgrams across the learned
acoustic units.

2.1. LDA with Unsupervised Learning

We first parameterize the acoustic data into Mel-frequency cepstral
coefficients (MFCCs) or BN features and apply Cepstral mean and
variance normalization (CMVN), perform a first-pass AUD training
over such raw acoustic features, obtain acoustic unit HMM state to-
kenizations of the data, i.e., 1-best HMM state-level decode for each
acoustic frame, and use the resulting state-level labels as the class
labels for LDA.

To apply LDA, additional context frames after CMVN are
stacked to around the center frame. LDA is then performed on
this higher-dimensional, context-rich representation. We apply the
resulting LDA transformation to project the context-rich raw acous-
tic features back into a lower dimensional representation. These
vectors after CMVN are subsequently used for a second-pass AUD

Fig. 1. AUD phone-loop model with an infinite number of units and
each unit modeled by a Bayesian GMM-HMM.

training. Note that, for the second-pass VB training on the LDA-
based features, rather than starting from scratch, we can first use the
models learned from first-pass training to compute certain sufficient
statistics that can be transferred regardless of different front-end
features, and use them to update the model posteriors just for the
first iteration; e.g., we can transfer the MFCC/BN-based statistics
of accumulated posteriors of certain latent variables (acoustic unit,
HMM state or GMM component), and use them to re-estimate the
posterior’s parameters in the first iteration of LDA-based training,
by assuming certain acoustic structures discovered by the first-pass
model being more accurate than those by our prior models.

2.2. Cross-lingual Generalization of Multilingual BN Network

In our multilingual BN training recipe, we use the TDNN architec-
ture with parallel GPU training (using up to 8 GPUs) as described
in [18] with two major extensions. First, hidden layers with ReLU
nonlinearity are shared across languages (ReLu dimension 600,
i.e., the output dimensions of the weight matrices), while separate
language-specific final output layers with context-dependent tri-
phone state targets are used for each different language. Second, an
additional 42-dimensional bottleneck layer is added just before the
final output layers, giving 6 hidden layers in total. Moreover, 3-fold
training data augmentation with speed perturbations of 0.9, 1.0 and
1.1 are used. Each mini-batch of training data is randomly sampled
based on the relative amounts of acoustic data in different languages,
and any data of each language is used only once in one epoch. 40-
dimensional MFCCs (without cepstral truncation [18]) augmented
with 3-dimensional pitch and probability of voicing features are
used as inputs to the network.

We developed our TDNN-based BN training and validation us-
ing multiple languages in both hybrid and tandem HMM-based ASR
systems, while being unknown to the target language on which we
perform AUD. We assume the word error rate reductions in our BN-
based ASR tasks will translate into more effective cross-lingual gen-
eralization of our BN techniques on unseen target language, in turn,
facilitating more accurate AUD.

3. EVALUATING ACOUSTIC UNIT DISCOVERY

3.1. NMI against Orthographic Phoneme Transcripts

After VB training of the Bayesian AUD models, to evaluate the
quality of the automatically learned acoustic models, we first obtain
acoustic unit tokenizations, i.e., 1-best HMM unit-level decode, of
the development data on which AUD training is performed; alterna-
tively, we can also use the learned models to obtain tokenizations of



any evaluation data that the models do not see during training. Then
we align the decoded acoustic unit sequence Y= Y1, ..., YN with
reference phoneme sequence X= X1, ..., XM , and each Yj(1 ≤
j ≤ N ) is aligned to a Xi(1 ≤ i ≤M ), based on which the mutual
information I(X;Y) is computed. We normalize it by the entropy
H(X) of X, giving the normalized mutual information NMI =
I(X;Y)/H(X). NMI = 0 means Y carries no information about
X, and NMI = 1 means Y perfectly predicts X.

3.2. Same-Different Evaluation

To evaluate AUD models, we can also apply them to a data set by us-
ing forward-backward algorithm to compute posterior distributions
across the learned acoustic units over time. Thus, any word segments
required by the same-different task can be given such HMM unit-
level or state-level posteriorgram features. For each word pair, we
compute a pairwise normalized dynamic time warping (DTW) dis-
tance with symmetric KL-Divergence as frame-level distance metric;
since our acoustic features are posterior distributions, symmetric KL
divergence are demonstrated superior to cosine distance for poste-
rior features [10]. The pairwise normalized DTW distance is further
used as a same/different classifier score; if the score is lower than
some threshold τ , we declare this word pair corresponds to the same
word type. As we sweep the threshold τ , we can obtain a stan-
dard precision-recall curve, under which the area is computed as the
average precision (AP). In such means, we investigate if the better
posterior estimates across automatically derived acoustic categories
in AUD procedure can translate into the improved discriminability
of separating same word type pairs from different word type pairs.

3.3. Spoken Document Classification and Clustering

Spoken document topical classification/identification (ID) is to clas-
sify a given document into one of the predefined set of topics or
classes. Typically, documents are characterized based on a bag-of-
words multinomial representation [19], or a more compact vector
given by probabilistic topic models [20]. To evaluate the quality of
the acoustic unit tokenizations of spoken documents, we employ the
document representations as bags of acoustic units. For such classi-
fication task with topic labeled training data, we use stochastic gra-
dient descent based linear SVM [21, 22] as our multi-class classifier
training algorithm, with hinge loss and L1 norm regularization.

In the case that no topic labels are available, we can still per-
form unsupervised document clustering by the bags of acoustic units
representation. We would like to investigate if reasonable cluster-
ing performance can be obtained without using manual or automatic
transcript from supervised acoustic models but only unsupervised
AUD. Following [15], we use the clustering algorithm of globally
optimal repeated bisection [23].

4. EXPERIMENTS

4.1. Experimental Setup

For our experiments we use the Switchboard Telephone Speech
Corpus [24], a collection of two-sided telephone conversations with
a single participant per side. Following the data set split strategy
in [15], we use the same development and evaluation data set as [15].
There are 360 conversation sides of six different topics (recycling,
capital punishment, drug testing, family finance, job benefits, car
buying) in the development data set of 35.7 hours of audio. Each
conversation side (seen as a single document) has one single topic,

and each topic has equal number of 60 sides of conversations. Simi-
larly, there are another different six topics (family life, news media,
public education, exercise/fitness, pets, taxes) evenly across the 600
conversation sides of evaluation data set (61.6 hours of audio). Un-
supervised VB training of acoustic unit models are performed on
the development set (10 iterations); after the unsupervised learning,
we apply the learned acoustic unit models to obtain the acoustic unit
tokenizations of both development and evaluation sets.

For AUD model definitions, we use the truncation T = 200,
which implies maximum 200 different acoustic units can be learned
from the corpus. For each acoustic unit, we use a HMM of 3 emis-
sion states with a left-to-right topology and 2 Gaussians per state.
Other hyperparameter values are the same as [3].

To compute NMI, we first use a supervised ASR system trained
on Switchboard training corpus (about 300 hrs) to obtain forced
aligned phoneme transcripts as our reference transcripts. During
scoring, we define the distance between an output acoustic unit token
and a reference phoneme token as the time frame difference between
the center frames of two tokens; in doing so, each acoustic unit to-
ken is assigned to a closest reference phoneme token based on the
distance metric defined. As shown in Table 1, the number of units in
the tokenizations of a dataset is determined as the number of unique
units that occur in any of the 1-best Viterbi decode of that dataset;
thus, truncation T = 200 is the ceiling number, and it is possible
that unit numbers differ between development and evaluation data
since all 200 unit models are used during decoding process.

4.2. Feature Extraction Using LDA and Multilingual BN

For AUD experiments, we use manual segmentations provided by
the Switchboard corpus to produce utterances with speech activ-
ity, and speech utterances are further parameterized either as 39-
dimensional MFCCs with first and second order derivatives, or 42-
dimensional BN features, with CMVN applied per conversation side.

11-frame context windows of raw acoustic features (MFCCs or
BN features) with CMVN are stacked to represent the center frame
(equal left and right context frames as 5), and used as the LDA in-
puts. Using truncation parameter T = 200 and 3 HMM emission
states yields 600 possible unique HMM state labels for the first-pass
tokenization of development data. These state labels are used as
LDA class labels. We accumulate LDA statistics and estimate the
transformation matrix from development data, and apply the result-
ing LDA transformation to both development and evaluation data,
reducing the spliced raw acoustic features into 40 dimensions for
each frame. Then we proceed with second-pass AUD training based
on the 40-dimensional LDA features. We reuse the sufficient statis-
tics of certain latent variables (i.e., accumulated posteriors of each
acoustic unit, HMM state transitions and GMM component) that are
computed by the first-pass AUD model on raw features, for updat-
ing the model posterior distributions in the first iteration of second
pass training; we find empirically, this procedure outperforms con-
ducting the second-pass training on LDA features from scratch (i.e.,
initializing posterior distributions the same as their priors).

Using the Kaldi toolkit [25], we conduct our multilingual
TDNN-based BN training with 10 language collections provided
in the IARPA Babel Program (IARPA-BAA-11-02): Assamese,
Bengali, Cantonese, Haitian, Lao, Pashto, Tamil, Tagalog, Viet-
namese and Zulu. 10-hour transcribed speech of each language is
used for training. We first evaluated our multilingual BN recipe
for ASR experiments using this Babel corpus, and observed modest
WER improvements in the hybrid multilingual TDNN system by us-
ing other languages to supplement the training data of test language,



Table 1. AUD Performance evaluated by NMI, same-different task, document classification and clustering on Switchboard

Acoustic Features Average Document Classification Document Clustering
Dataset AUD is based on # units % NMI Precision Accuracy Purity B-Cubed F1

MFCC 145 21.59 0.247 0.3083 ± 0.0908 0.2268 ± 0.0015 0.1817 ± 0.0008
Development MFCC w/ LDA 145 24.55 0.251 0.4361 ± 0.0692 0.2354 ± 0.0026 0.1855 ± 0.0006

Data BN 184 28.20 0.343 0.7028 ± 0.0796 0.2446 ± 0.0018 0.1949 ± 0.0008
BN w/ LDA 184 29.13 0.359 0.7167 ± 0.0733 0.2553 ± 0.0102 0.2023 ± 0.0047

MFCC 144 21.20 0.224 0.4633 ± 0.0702 0.2388 ± 0.0010 0.1899 ± 0.0001
Evaluation MFCC w/ LDA 144 24.07 0.219 0.4833 ± 0.0477 0.2426 ± 0.0031 0.1893 ± 0.0005

Data BN 184 28.01 0.303 0.7167 ± 0.0350 0.2398 ± 0.0069 0.1983 ± 0.0032
BN w/ LDA 184 28.84 0.329 0.7300 ± 0.0567 0.2373 ± 0.0037 0.2140 ± 0.0035

and more robust WER improvements in the tandem TDNN system
with spliced multilingual TDNN-based BN features and MFCCs.
Detailed discussion of ASR results is beyond the scope of this paper.
Particularly, we are interested in learning speech representations
with effective cross-lingual generalization to an unseen language
as in a zero-resource setting where AUD is typically performed.
The multilingual TDNN-based BN training recipes will be available
in the Kaldi code repository [25] as an open-source capability of
language-independent BN feature extraction.

4.3. AUD Evaluations

For same-different tasks, from the time aligned word transcriptions,
we extracted all word examples that are at least 0.50 s in duration and
at least 6 characters as text from development and evaluation data
set respectively. Development set produces approximately 11k word
tokens, 60.8M word pairs of which 96.8k have the same word type.
Evaluation data has 19k tokens and 186.9M word pairs with 281.8k
pairs having the same word type. 200 (T = 200) dimensional AUD
posteriorgram features across HMM units are produced as inputs to
DTW scoring function.

For document classification, we use the acoustic unit trigram
representation, and we scale each trigram feature value by the in-
verse document frequency, referred to as TFIDF features. We further
normalize each feature vector to L2 norm unit length. To be compa-
rable with experimental results in [15], classification accuracies are
reported based on 10-fold cross validation, and average performance
with standard deviations reported in Table 1.

For document clustering, we use the TFIDF features of the
spliced acoustic unit unigrams, bigrams and trigrams. Purity and
B-Cubed F1 score [26, 27] are used as evaluation metrics. We run
all clustering experiments using Cluto clustering library [23], and
for each one, we use 10 different initializations and report average
performance and standard deviations.

As shown in Table 1, for NMI, same-different task and document
classification, both LDA and BN features produce substantial and
correlated improvements, except that performing LDA on MFCCs
does not seem to improve the same-different AP. Specifically, the
best performance across all measures by combining LDA and BN
demonstrates the complementarity between these two approaches.
Given all the same AUD model configurations, we find the improved
same-different AP or document classification accuracy often indi-
cates the NMI improvement, which implies in a zero-resource set-
ting, AUD evaluation can fall back to other resources if necessary,
e.g., word pairs or topic labels, which might be easier to be available
or to obtain than the expensive orthographic phoneme transcripts.

Also, as we can see, NMI only drops slightly between devel-
opment and evaluation data, which shows the learned acoustic unit
models can generalize well on unseen data.

Moreover, we find directly using the raw MFCCs after CMVN
as acoustic features for all word segments gives AP 0.208 on the
same-different task of development data. Therefore, the significantly
higher AP 0.247 provided by our AUD posterior features across
acoustic unit HMMs (learned from MFCCs) demonstrates AUD pos-
teriorgrams as effective acoustic representations. We also find the
600-dimensional AUD posterior features across each acoustic unit
HMM state can provide even higher AP as 0.267, and we leave all
the applications of HMM-state based posterior features for the future
work, since HMM state-level posteriors (with 3 times larger dimen-
sions than HMM unit-level posteriors if we use 3 state HMM) have
much larger computational overhead in DTW scoring.

Also, our legitimate zero-resource document classification effort
with LDA- and BN-based AUD yields accuracy 0.73, which demon-
strates AUD tokenizations to be effective document representations
for discriminative tasks. For topic clustering in development data,
there are consistently marginal gains as other measures improved.
However, this trend does not well hold in evaluation data. Moreover,
on the same development data we use, [15] shows phone trigram fea-
tures by a high-resource supervised phoneme recognizer give classi-
fication accuracy up to 0.9138, clustering purity 0.6194 and B3 F1
score 0.5256, which indicates document processing with unsuper-
vised phonetic information remaining a challenging task.

5. CONCLUSIONS

We present an effective AUD framework that can be successfully im-
proved by integrating a self-supervised LDA technique and a com-
plementary language-independent TDNN-based BN feature extrac-
tion recipe. We demonstrate the effectiveness of AUD-based dis-
criminative features as acoustic representations given by AUD pos-
teriors across automatically discovered units, and as document rep-
resentations given by AUD tokenizations. Moreover, we find the
gains in the intrinsic NMI metric for AUD algorithm development
can often be predicted by the improved efficacy of applying AUD
to real speech applications like same-different task and document
classification. This suggests that in real zero-resource scenarios, as
we optimize the core AUD technology, alternative evaluations by
various different resources can be considered, which serve as zero
resource efforts towards ASR technology without relying on any
expert-provided linguistic knowledge.
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