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ABSTRACT quential labeling methods, such as hidden Markov models

Natural language understanding and dialogue policy lagrmi (HMMs) and conditional random field (CRF) are widely used
are both essential in conversational systems that preutct t in slot tagging tasks [4+-6]; maximum entropy and support
next system actions in response to a current user utterancéctor machines with linear kernel (LinearSVM) are applied
Conventional approaches aggregate separate models of ni-user intent prediction [7-9]. These models highly rely
ural language understanding (NLU) and system action pre2n careful feature engineering that is laborious and time-
diction (SAP) as a pipeline that is sensitive to noisy ouput consuming. Deep learning techniques making incredible
of error-prone NLU. To address the issues, we propose apfogress on learning expressive feature representatares h
end-to-end deep recurrent neural network with limited conachieved better solutions to NLU modeling in ATIS do-
textual dialogue memory by jointly training NLU and SAP on main [10-14]. The performance was improved significantly
DSTC4 multi-domain human-human dialogues. Experiment8Y incorporating recurrent neural networks (RNN) and CRF
show that our proposed model significantly outperforms thénodel [15:17]. Convolutional neural networks are also used
state-of-the-art pipeline models for both NLU and SAP, whic for domain/intent classification [18,/19].

indicates that our joint model is capable of mitigating tfie a Slot tags and intents, as semantics representations of user
fects of noisy NLU outputs, and NLU model can be refined bybehaviors, may share knowledge with each other such that
error flows backpropagating from the extra supervised ssgnaseparate modeling of these two tasks is constrained toudke f
of system actions. advantage of all supervised signals. Flexible architestof

Index Terms— language understanding, spoken dialogueneural networks provide a way of jointly training with inten

systems, end-to-end, dialogue manager, deep learning cla55|f|9at|on angl slot filling [z(_). .__1]. Conte>_<tu_a| infortizan _
of previous queries and domain/intent prediction was aiso i

corporated into RNN structures [22, 23].
Information flows from NLU to DM, and noisy outputs of

Recent progress of designing conversational agents for corilLU are apt to transfer errors to the following DM, so that
mercial purposes, such as Microsoft's Cortana, Apple’s Sir it brings in challenges for monitoring the belief distritmurt
and Amazon's Echo, has attracted more attention fron@nd predicting system actions. Most successful approaches
both academia and industry. Two essential components &@St the dialog manager as a partially observable Markov de-
these conversational agents are natural language unatrstaCision process (2], which uses hand-crafted features terep
ing (NLU) and dialog manager (DM). NLU typically detects sent the state and acfuon space, and requires a If_;lrge number o
dialog domains by parsing user utterances followed by uséinnotated conversations [24] or human interactions.[2, 26
intent classification and filling associated slots accaydina ~ Converting these methods into practice is far from trivagid
domain-specific semantic templalté [1]; DM keeps monitoring?Xact policy learning is computational intractable. Tlhere,
the belief distribution over all possible user states ulyilggy ~ they are constrained to narrow domains.
current user behaviors, and predicts responsive system ac- In order to address the above problems, we propose an
tions [2,[3]. For example, given a user utteranaay action end-to-end deep RNN with limited contextual dialog mem-
movies recommended this weekend®LU predicts intent ory that can be jointly trained by three supervised signals—
request_movie and slotsgenre anddate; thereafter, DM  user slot tagging, intent prediction and system actionipred
predicts system actiarequest_location. tion (SAP). Our model expresses superb advantages in hatura
Traditional approaches for NLU usually model tasks oflanguage understanding and dialog manager. Highly expres-
domain/intent classification and slot filling separatelye- S sive feature representations beyond conventional agtipega

1. INTRODUCTION
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of slot tags and intents are expected to be captured in auir joi2.2. Joint Modeling

model, so that the affects of noisy output from NLU can be

mitigated. Extra supervised signal from system actionsis ¢ The proposed joint model is a RNN classifier that utilizes
pable of refining NLU model by backpropagating the associbi-directional LSTM cellsH, which takes as inputs-l his-

ated error gradients. tory of current hidden outputs|"™) = { r{""}_, . from
NLU units and performs one-vs-all blnary classn‘lcatlonls fo
2. END-TO-END JOINT MODEL SAP at the output layer (see Fig. 1), in other word,

The joint model can be considered as a SAP model stacked on, N i .

(act) __ (nlu) (act) (act) __ (nlu) (act)
top of a history of NLU models (see FIg. 1). NLU model is de- hi ™ =H (h‘ s ) » hiTT =M (h »hi )
signed as a multi-tasking frgmework by shan_ng bi- dlremlp P — sigm (W(act)%(act) n W(m)e(act))
long short-term memory (biLSTM) layers with slot tagging

and intent prediction. g0 = [, p{*" > threshold
k 0, otherwise

2.1. Sequence to Sequence Model with biLSTM Cells

. . T . wherek € [1, K] denotes the index of system action labels.
Given a sequence of input vec_tors{ ot} a recurTrent UNIt NLU model at thei-th history is considered as a multi-task
#H computes a sequence of hidden veclord /1, }; and @ joint model with shared biLSTM layers for two tasks, where

sequence of output symbojs={ j; }, by iterating the fol- it takes as inputs a sequence of word vectors= { w; },
lowing equations, and performs Seq2Seq for slot tagging and one-vs-all binary

he = H (20, her) = 0 (Wanzt + Unnhe1) class_|f|cat|ons for_|ntent_pred|ct_|on (see Hig). 2). _The binvG _

. architecture mentioned in Sectibn2.1 can be directly agpli

ye = arg max (softmax (Whyht)) to slot tagging task witd/ unique user slot tags,
wheresoftmax (z,) = e*™ />, e*, o is an activation func-
tion, andW,y,, Up, andWy,, are weight matrices. The goal of 1 — 1 ; 1
sequence to sequence model (SquSeq) is to estimate a condi ¢ = H (wu h tii) C R =n (wu h t(ﬁ)
tional probabilityp (y|x) = ]'[t,lp(yt|x) such that the dis-  .(tag)) 2 ag)—>1( ) W(tugﬂ—l( )

A At=1 AT/ Vo= ft W

tance (loss) between predicted distributiofy;|x) and target ¢ At max (so max ( + ))
distributiong (y:|x) is minimized, namely,

where h Y and h; R denotes hidden outputs of the shared

loss=— > q(y=z[x)logp (4 = 2[x) forward and backward layers, respectively. As for intewtpr
t=1 z=1

where M is the number of unique output labels. The loss System Actions at j+1
of this Seq2Seq model can be optimized using backpropag
tion. LSTM cells are chosen as recurrent units since LSTM
can mitigate problems of vanishing or exploding gradients
in long-term dependencies via self-regularization [27heT
LSTM recurrent unit{ can be further expanded as,

Sigmoid

ht = H (.'Ift, htfl) =0t ©® tanh (Ct)

ct = ft ®ci—1 + 1t O gt

ot = sigm (Waomt + Unoht—1), it = sigm (Waimt + Unshe—1)

fe = sigm (Wesxe + Unrhi—1), g« = tanh (Wagxe + Unghi—1)
where the sigmoid functionsigm and tanh are applied
element-wise, and denotes element-wise product. Since ) o
preceding and following lexical contexts are important in Fig. 1: Proposed end-to-end joint model
analysis of user utterances, bi-directional LSTM cells] [28

are used. Therefore sequencend its reverse go through
LSTM layers separately, followed by the concatination &f th

corresponding forward outp@ and backward outpﬁ,

Slot Tagging Slot Tagging Slot Tagging Slot Tagging

diction task in NLU, we add one more recurrent LSTM layer

on top of biLSTM layers, and only consider the last hidden
2(int;)

vector hr, as the output of this second recurrent layer.
=M (mh E’Fl) C he=w (xh ?tﬂ) Real human-human dialogs encode various number of intents
- Z in a single user utterance, and therefore, we design a set of
¥ = arg max (softmax (Why hi+ Why h t)) one-vs-all binary classifiers at the output layer where each

neuron is activated using a sigmoid function. The positae |
wherewhy andWhy are bi-directional weight matrices. bel of each classifier is predicted if its probability is nede



slot tagging is 0.5. We apply 300 training epochs without using any early
9 8% 89 %94 stop strategy. Best models for three tasks are selected sepa

rately upon decision thresholds well tuned on dev set under

different metrics. Token-level micro-average F1 scoresisdi

for slot filling; frame-level accuracy (it counts only whéret

'L = - whole frame parse is correct) is used for user intent prigaict
and system action prediction. The code is reldhsed
ing

Embedding Embedding
‘ Table 1: Statistics of data used in experiments. '#' represents
LSTM the number of unique items.

shared weights

LSTM
Embedd
LSTM

| | #utters  #words #tags #intents #actions

train | 5,648 2,252 87 68 66
multi-label intents 4_@ dev | 1,939 1,367 79 54 53
test | 3,178 1,752 75 58 58

Fig. 2. biLSTMs-based NLU model
Table 2. Performance (%) of end-to-end models for SAP. F1,

than the threshold, P, R are micro-averaged token-level scores; FrmAcc is frame

) ) ) ) level accuracy. Oracle models are provided as references.

hz(“’bti) =N (hz(“’bti) ﬁl(z) <El(z))
K N [ Models | F1 P R [ FrmAcc |
") = sign (WSR3 Baseline (CRE+SVMs) 3L.15 20.92 32.48 7.71
_ L 0™ S threshold Pipeline (biLSTMs) 19.89 14.87 30.01 11.96
gimt) = { o Pno = PATESAO JointModel 19.04 1853 1957 22.84

0, otherwise

Oracle-SAP (SVMs) | 30.61 30.20 31.04 7.65
wheren € [1, N] is the index of intent labels. We choose| Oracle-SAP (biLSTM) | 23.09 22.24 24.01 19.67
the same two-layer recurrent architecture as the intenteiod
to calculate the hidden vectduf"l“) out from thei-th NLU 3.2, Corpus
component with the size af/+N, whereM and N are the
number of unique slot tags and unique intents, respectively DSTC4 corpUd is selected, which collected human-human
dialogs of tourist information in Singapore from Skype sall
R e R ] (hf(jﬁl“”, s %2“)) that spanned five domains—accommodation, attraction, food
shopping, and transportation. Each tourist and guide tend t
End-to-end joint training estimates the conditional prob-he expressed in a series of multiple turns. The guide is de-
ability given a history of word vectorsr;, = { w(? }i such fined as the system in this paper. We transform raw data into

thatloss = [(act) 4 [(tag) 4 [(int) js minimized, where examples that fit our experiments. Each example includes an
- user utterance and its associated slot tags in IOB foimét [30

e = — 3% @gwf) =z Wh) log p (géﬂct) =z Wh) user intents, and responsive system actions. Labels of sys-

k=12=0 tem actions are defined as the concatenation of categodes an

I

((tag) — _ Z

i=1

attributes of speech acts, e.QST_WHEN. NULL is added as

a waiting response from guides when they are expressed in
multiple turns. The consecutive guide actions in respoase t
g <y§j"ti) =z w(i)) log p (g&jnh) =z W(z‘)) a single tourist utterance is merged as multiple labels. The

M=

a (s = 2lw ) 1ogp (59 = 2w(®)

z=1

l(int) — _

M= 1M

M-
M-

i=1n=12z=0 whole corpus is split into train/dev/test (see Tdble 1). ddms
tokens such as words, user intents, slot tags, and system ac-
3. EXPERIMENTS tions in the dev/test set are categorize¥is.

3.1. Training Configurations 3.3. Evaluation Results

We choose a mini-batch stochastic gradient descent methgle compare our proposed joint model with following models
Adam [29] with the batch size of 32 examples. The size 0fy, {hree tasks: slot filling, intent prediction and SAP.

each hidden recurrent layer is 256, and the size of hidden out _ _

put vector of NLU units isM+N, whereM and N are the e Baseline (CRF+SVMs): NLU and SAP are trained
size of unique slot tags and intents, respectively. We assum  separately, followed by being pipelined for testing.
the joint model can only get access to previous history With ixrps:77 i thub. cont xuesongYang/ endzend di al og. g t

I=5. The dimension of word embeddingsis 512. Dropoutrate 2nttp: /7 ww. col i ps. or g/ wor kshop/ dst ¢4/ dat a. ht i



https://github.com/XuesongYang/end2end_dialog.git
http://www.colips.org/workshop/dstc4/data.html

Table 3. Performance (%) of NLU models, where F1, Precision and Racalat token-level and FrmAcc is at frame-level.

Models User Slot Tagging (UST) User Intent Prediction (UIP) NLU (UST+UIP)
F1 Precision Recall FrmAct F1 Precision Recall FrmAcc FrmAcc
NLU-Baseline 40.50 61.41 30.21 77.31 | 49.75 52.56 47.24  37.19 33.13
NLU-Pipeline 46.15 54.63 39.96 76.84| 47.48 52.19 43.55 39.96 36.38
NLU-JointModel | 45.04 53.35 38.97 76.49| 49.67 52.22 47.35 42.20 37.38
CRF is used to train slot filling model with lexical System Actions at j+1
feature of words; one-vs-all SVMs with linear ker- i
nel (LinearSVMs) is used to train intent model with Sigmoid

bag-of-words features of user utterances; SAP utilize:
LinearSVMs with features of one-hot vectors of aggre-
gated user slot tags and intents. Decision thresholds fc
intent model and SAP are 0.225 and 0.162.

e Pipeline (biLSTMs): NLU in Fig[2 and SAP in Fifl 3

are separately trained, followed by being pipelined for Sinarizer
testing. Best decision thresholds for intent model anc@ELE
SAP model are 0.391 and 0.064. Slot Tags

user turn; 3 user turn; user turn; 4 user turn;

e Oracle-SAP (SVMs): The inputs of SAP are clean
slot tags and intents annotated by human experts; Lin-
earSVMs is used for training and testing SAP. Best

decision threshold is 0.162. . ) o L
+ Oracle SAP (BLST: SAP akes s s the samd 0 340 g and ient prciton captues o)
E(;eC;rla:ci:IES)Agebslitc;J:;;girI]_tSh'lr'eMSL(:)rl:jr?sin(i)ng&nd tes'tingother sugervised s%gr?al from system actions is car;able-of re
g)- T fining the biLSTM based model by backpropagating the as-
Evaluation results of end-to-end models are illustrated irsociated error gradients. Best accuracy at frame-levelifar
Table[2. Our proposed joint model outperforms all other endfilling task is obtained by traditional CRF baseline withynl
to-end models in frame-level accuracy by a large margin. Th&exical features of words, and our biLSTM models fall behind
joint model and biLSTMs pipeline achieved absolute inceeaswith absolute decrease 0.47% and 0.82%. Best frame accu-
over baseline with 15.03% and 4.25%, respectively. Bothacy for intent prediction task is achieved by our proposed
models beat the SVMs oracle scores. The biLSTMs pipelinenodel with 5.21% improvement.
model get worse than biLSTM oracle as expected since it
transfer the errors from NLU to the SAP model. Nevertheless, 4. CONCLUSION
the joint model obtains 10.88% increase than pipeline model

and 3.17% than biLSTM oracle. These promising improveyye proposed an end-to-end deep recurrent neural network
ments indicate that joint training can mitigate the dowasid \yith [imited contextual dialog memory that can be jointly
of pipeline model in that the hidden outputs from a historyirained by three supervised signals of user slot fillingerit
of NLU units capture highly more expressive feature repreprediction and system action prediction. Experiments on
sentations than the conventional aggregation of user ®teNyy|ti-domain human-human dialogs demonstrated that our
and slot tags. In comparison of these two oracle modelsroposed model expressed superb advantages in natural lan-
the large improvement (12.02%) for biLSTM model indicatesyyage understanding and dialog manager. It achieved better
that the contextual user turns make significant contriluio  frame-level accuracy significantly than the state of the art
system action prediction. In real human interaction sdesar that pipelines separate models of NLU and SAP together.
frame-level metrics are far more important than tokenileverne promising performance illustrated that contextualogja
ones especially for these multi-label classification taskse memory made significant contribution to dialog manager,
predicting precise number of labels is more challenging.  and highly expressive feature representations beyondseeny
Evaluation results of NLU models that are frozen as injonal aggregation of slot tags and intents could be cagture
dependent models are illustrated in Table 3. Baseline using our joint model such that the affects of noisy output from
CRF and SVMs still maintains a strong frame-level accuracy| y were mitigated. Extra supervised signal from system

with 33.13%, however, biLSTM models taken from pipeline actions is capable of refining NLU model by backpropagat-
and joint model achieve better increase 3.25% and 4.25%, rgyg,

spectively. This observation indicates that joint tragnmith

Fig. 3: biLSTM-based SAP model
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