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ABSTRACT

We consider the problem of spectral compressed sensing in
continuous domain, which aims to recover a 2-dimensional
spectrally sparse signal from partially observed time samples.
The signal is assumed to be a superposition of s complex sinu-
soids. We propose a semidefinite program for the 2D signal
recovery problem. Our model is able to handle large scale
2D signals of size 500 × 500, whereas traditional approaches
only handle signals of size around 20 × 20.

Index Terms— Compressed sensing, sparse recovery,
Toeplitz matrices, matrix completion

1. INTRODUCTION

Spectral compressed sensing aims to recover a spectrally
sparse signal from sub-Nyquist sampling of time samples.
Consider a frequency-sparse signal XF which consists of
a superposition of s complex sinusoids with 2-dimensional
frequencies fp = (fp1, fp2), where fpi ∈ [0, 1), i = 1, 2.
Suppose we observe m regularly-spaced time samples at
times (j, k) which form an index set T ⊂ {0, . . . , n − 1} ×
{0, . . . , n − 1}. We would like to recover the signal of the
following form:1

XF(j, k) =

s∑
p=1

cpe
i2π(fp1j+fp2k),

(j, k) ∈ T,

(1.1)

where cp is the coefficient of each complex sinusoid.
In the foundational works of Candès et al. [1] and Donoho

[2], successful signal recoveries from very few samples were
guaranteed with high probabilities under the assumption that
the unknown frequencies lie on a grid. However, in real-
world applications, frequencies can possibly lie anywhere on
the continuous domain [3, 4]. If they are still assumed to lie
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1Here we consider square matrices for simplicity, non-square cases can
be readily generalized.

on a certain grid, the recovery might suffer from the “basis
mismatch” issue and the recovery might be far from the orig-
inal true signal [5]. Other approaches for frequency-sparse
signal recovery have also been proposed, for example, finite
rate of innovation (FROI) sampling [6, 7]. Recently, people
have been working on the recovery based on continuous fre-
quency domain. Tang et al. [8] showed that O(s log s log n)
random samples guarantee exact frequency recovery of a 1D
spectrally sparse signal

xF(j) =

s∑
p=1

cpe
i2πfpj , j = 0, . . . , n− 1, (1.2)

with high probability over continuous frequency domain,
given the condition that the frequencies are well sepa-
rated. An atomic norm minimization approach was proposed
therein, which was reformulated as an equivalent solvable
semidefinite program (SDP). Despite the 1D case, there are
more applications involving the recovery of d-dimensional
signals (d ≥ 2). For example, super-resolution imaging
[9] and nuclear magnetic resonance (NMR) spectroscopy
[10]. Chi and Chen [11, 12] extended Tang’s approach to
2D frequency models. However, the equivalence between
the atomic norm minimization and the proposed SDP was
not guaranteed. Xu et al. [13] proposed equivalent SDP
formulations of atomic norm minimization to recover signals
with 2D off-the-grid frequencies using theories from trigono-
metric polynomials. Moreover, the SDP formulations were
generalized to higher dimensions as well.

In Chi’s and Xu’s approaches, the n × n signal matrix
X appeared as an n2 × 1 vector in the positive semidefinite
constraints. The resulting SDP was on a space of dimension
at leastO(n2)×O(n2). For example, to recover a 100× 100
signal X , we would have to solve an SDP of size at least
10001× 10001, which is computationally prohibitive.

In this paper, we propose a model to recover 2D spec-
trally sparse signals, which reduces the size of the SDP to
O(n) × O(n), while at the same time requires a small num-
ber of observed samples to guarantee exact recovery with high
probability, which means the model is able to handle large
scale 2D signals compared to existing approaches.

The remainder of this paper is organized as follows. In
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Section 2, we introduce our proposed SDP formulation for
large scale 2D signal recovery. In Section 3, we give numeri-
cal experiments to validate our model.

2. SEMIDEFINITE FORMULATION FOR 2D
SIGNAL RECOVERY

Notice that the 2D signal (1.1) has the matrix form

XF = V1CV
H
2

=

s∑
p=1

cpvp1v
H
p2

(2.1)

whereC is a diagonal matrix and V1 and V2 are Vandermonde
matrices of the following form2:

C =

 c1
. . .

cs

 ,
V1 = [v11, · · · ,vs1]

=

 ei2πf110 · · · ei2πfs10

...
. . .

...
ei2πf11(n−1) · · · ei2πfs1(n−1)

 ,
V2 = [v12, · · · ,vs2]

=

 e−i2πf120 · · · e−i2πfs20

...
. . .

...
e−i2πf12(n−1) · · · e−i2πfs2(n−1)

 .

(2.2)

We assume that s � n. The ith (i = 1, 2) frequency
components fpi are distinct across p (p = 1, . . . s), so that
rank (XF) = s and can be considered low-rank. The re-
covery problem can thus be formulated as the following rank
minimization problem:

min
X,V1,C,V2

rank(X)

s.t. X = V1CV
H
2 (2.3)

where V1, V2 are full rank Vandermonde matrices,
C diagonal as in (2.2),

X(j, k) = XF(j, k), (j, k) ∈ T,

where T is the set of indices of the observed entries and |T | =
m.

2In (2.2), the negative exponents in entries of V2 arise from the conjugate
transpose of vp2 in (2.1) in order to be consistent with the original form of
the signal (1.1) .

We propose the following semidefinite program for Prob-
lem (2.3)

min
T1,T2,X

1

2
trace(T1) +

1

2
trace(T2)

s.t.
[

T1 X
XH T2

]
� 0,

T1, T2 are Toeplitz,

X(j, k) = XF(j, k), (j, k) ∈ T,

(2.4)

The advantage of this SDP over the ones proposed in [12,
13] is that the size of the semidefinite constraint is 2n × 2n
instead of (n2 + 1) × (n2 + 1), which significantly reduces
the memory needed for computation.

2.1. Why it works

Our SDP model (2.4) is inspired from the SDP model in [14]

min
W1,W2,X

1

2
trace(W1) +

1

2
trace(W2)

s.t.
[
W1 X
XH W2

]
� 0,

X(j, k) = XF(j, k), (j, k) ∈ T,

(2.5)

which is equivalent to the problem of minimizing the nuclear
norm of a matrix X:

min
X
||X||∗

s.t. X(j, k) = XF(j, k), (j, k) ∈ T.
(2.6)

It has been proved to be an effective approach in the low-rank
matrix completion problem [15].

Our model (2.4) for 2D signal recovery can be viewed as
an extension of the low-rank matrix completion problem in
the following sense:

First, model (2.4) will yield a low-rank solution. Notice
that it minimizes the trace of a positive semidefinite matrix[

T1 X
XH T2

]
, which is equivalent to minimizing the sum

of all the (nonnegative) eigenvalues. It can be viewed as a
relaxation of minimizing the number of nonzero eigenval-

ues, therefore minimizing rank
([

T1 X
XH T2

])
and hence

rank(X).
Second, we would like to incorporate the additional struc-

ture of the true signal matrix XF = V1CV
H
2 into the re-

covered solution Xrec, therefore imposing the Toeplitz con-
straints on matrices T1 and T2 so that the problem becomes
our model (2.4). This idea works due to the Caratheodory-
Toeplitz Lemma [8], which states that for Toeplitz positive
semidefinite matrices T1 and T2, we have the following de-
compositions:

T1 = U1D1U
H
1 , T2 = U2D2U

H
2 (2.7)



where D1, D2 are r× r diagonal matrices and U1, U2 are full
rank n × r Vandermonde matrices. Following the similar ar-
gument in [8], the Vandermonde decomposition (2.7) together
with the positive semidefinite constraint in (2.4) imply that X
must have the following form

X = U1AU
H
2 (2.8)

Notice that Ul in (2.8) have exactly the same form as Vl in
(2.2) (l = 1, 2) (they are all Vandermonde matrices). The
only difference between the true signal XF = V1CV

H
2 and

the recovered signal Xrec = U1AU
H
2 is that the matrix C

is required to be diagonal in the true signal, whereas in the
recovered signal, there is no such restriction on the matrix
A, which means that the recovered signal is a structural ap-
proximation of the true signal. Therefore, by solving Problem
(2.4), we expect to get a low-rank solutionXrec that resembles
the form of the true solution XF.

In a nutshell, (2.4) can be viewed as a low-rank matrix
completion problem where the matrix has the additional struc-
ture of Vandermonde factors. We will demonstrate through
numerical experiments in Section 3 that the solution Xrec is
exactly XF with high probability given only a small number
of randomly observed time samples.

3. NUMERICAL EXPERIMENTS

We solve (2.4) by using the alternating direction method of
multipliers (ADMM). To synthesize the n × n true signal
matrix XF, the s frequency pairs are randomly drawn from
[0, 1]2 with a minimum separation condition [8] ∆min ,
minp 6=q{|fp1 − fq1|, |fp2 − fq2|} ≥ 1/n, where p, q =
1, . . . , s. The amplitudes |cp| are drawn randomly from the
distribution 0.5 +w2 with w a zero mean unit variance Gaus-
sian random variable. The phases eiφp are drawn uniformly
at random in [0, 2π). A total of m observed entries are ran-
domly chosen from XF. Different values of parameters m
and s are used in the implementations of ADMM below to
investigate the dependence of m on s. The recovery is con-
sidered successful if the recovered signal Xrec and the true
synthetic signal XF satisfy ‖Xrec−XF‖F

‖XF‖F ≤ 10−3.

3.1. ADMM Details

To apply ADMM, we first reformulate (2.4) as

min
M,N

trace(M)

s.t. M � 0,

N =

[
T1 X
XH T2

]
,

T1, T2 are Toeplitz

X(j, k) = XF(j, k), (j, k) ∈ T,
M −N = 0.

(3.1)

This new formulation splits the semidefinite constraint and
the Toeplitz constraint so that they contain M and N sepa-
rately.

ADMM consists of the following three updates:

Mk+1 = arg min
M

trace(M) +
ρ

2
‖M −Nk + Uk‖2F

(3.2)

s.t. M � 0,

Nk+1 = arg min
N

ρ

2
‖Mk+1 −N + Uk‖2F (3.3)

s.t. N =

[
T1 X
XH T2

]
,

T1, T2 are Toeplitz,

X(j, k) = XF(j, k), (j, k) ∈ T,

Uk+1 = Uk +Mk+1 −Nk+1, (3.4)

where ρ is a user-specified parameter in ADMM [16] . We
pick ρ = 0.1 in the experiments.

M-update can be simplified to

Mk+1 = V D+V
H , (3.5)

where D+ is D with all negative diagonal entries replaced
with 0. And V DV H is the eigendecomposition ofNk−Uk−
1
ρI .

N-update contains 4 blocks that can be simplified to

T k+1
1 (i+ l, i) =

min{n−l,n}∑
i=max{1,1−l}

[Mk+1
1 + Uk1 ](i+ l, i)/(n− l),

(3.6)

T k+1
2 (i+ l, i) =

min{n−l,n}∑
i=max{1,1−l}

[Mk+1
2 + Uk2 ](i+ l, i)/(n− l),

(3.7)

for each l = −(n− 1), . . . , 0, . . . , n− 1

and ∀i = max{1, 1− l}, . . . ,min{n− l, n}.

Xk+1(j, k) =


XF(j, k), (j, k) ∈ T,[
Mk+1

3 + Uk3
]

(j, k), otherwise.
(3.8)

ADMM terminates when both the primal residual rk =
Mk −Nk and dual residual sk = ρ(Nk−1 −Nk) satisfy the
following conditions, as detailed in [16].

‖rk‖F ≤ 2nεabs + εrel max{‖Mk‖F , ‖Nk‖F }, (3.9)

‖sk‖F ≤ 2nεabs + εrel‖ρUk‖F , (3.10)

where εabs and εrel are user-specified parameters and here we
set both of them to be 10−5. Once the algorithm terminates,
the upper right block of N is the output Xrec. The entire
ADMM algorithm can be summarized as:



Algorithm 1 ADMM for (2.4)
1: Input XF, the observed indices set T
2: while (3.9) and (3.10) are not satisfied simultaneously
3: do (3.5)(3.6)(3.7)(3.8)(3.4)
4: Output Xrec.

3.2. Phase Transition

We investigate the dependence ofm on s. Here we fix n = 50
and implement ADMM with different m and s values. For
each (m, s) pair, the simulation is repeated 20 times. The gray
level indicates the number of successful recoveries among all
20 repetitions. In Figure 1, we compare between the phase
transition plots of the proposed model (2.4) and the nuclear
norm minimization in [14] (i.e., after removing the Toeplitz
constraint in (2.4)).
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Fig. 1. m vs s phase transition plots of model (2.4) (left) and
the nuclear norm minimization (right)

We can see that the Toeplitz constraint in our model im-
proves the phase transition because it captures the structure
of the signal (i.e., the Vandermonde factors). Also, Figure 1
(left) indicates that the dependence of m on s is linear.

3.3. Comparison with Existing Approach

Here we compare our approach with Chi’s approach (i.e.,
solving SDP (16) in [12]). We implemented all the experi-
ments on a PC with a 8-core Intel i7-4790 3.60 GHz CPU
and 16 GB memory. First, we synthesized 2D signal matrices
with different sizes n from s = 5 frequency components
and randomly drew m time samples. Then we implemented
Chi’s approach via CVX, and our proposed SDP (2.4) via
both CVX and ADMM. The running times are listed in Ta-
ble 1. We can see that as the size of the SDP slowly increases,
the time required to solve the SDP in [12] grows quickly,
whereas the time required for our proposed SDP remains
small. Actually, as n goes beyond 23, the SDP in [12] crashes
since the size of the SDP is too large to compute. On the
contrary, our proposed SDP is still capable of handling large
scale problems in a reasonable amount of time, which will be
demonstrated in Section 3.4.

n m [12] via CVX (2.4) via CVX (2.4) via ADMM

15 80 38.52 0.55 0.050

16 90 60.57 0.26 0.059

17 100 103.47 0.29 0.060

18 110 161.27 0.49 0.063

19 120 239.09 0.39 0.064

20 130 363.61 0.43 0.074

21 140 534.03 0.68 0.072

22 150 850.19 0.54 0.076

23 160 crashed 0.60 0.087

Table 1. Comparison of running times (in seconds) between
existing approach [12] and the proposed SDP formulation
(2.4) for different sizes n and observations m

3.4. A Large Scale Example

We implemented ADMM on SDP (2.4) to recover a 500×500
signal generated from s = 10 random frequencies on [0, 1)×
[0, 1) with m = 5000 (2%) randomly observed samples. The
ADMM implementation details are demonstrated in Figure 2.
The relative error ‖X

F−Xrec‖F
‖XF‖F = 1.4633 × 10−4, indicating

successful recovery. The Fast ADMM by Goldstein et al.[17]
was applied to accelerate convergence. The running time is
around 24 min on the same PC.
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Fig. 2. Objective values vs number of iterations(left)
Primal and dual residuals vs number of iterations (right)

The size of SDP (2.4) for this problem is 1000 × 1000.
If the approaches in [12, 13] were adopted, it would become
250, 001 × 250, 001, which would be impossible to compute
via existing solvers. Therefore, our approach achieved better
performance in terms of memory savings.

4. CONCLUSION

In this paper, we proposed a model for the recovery of large
scale 2D spectrally sparse signal in continuous domain. This
model is able to handle 2D signal matrices with much larger
size (500× 500) compared with existing approaches (around
20×20). We demonstrated through numerical experiment that
the proposed SDP formulation indeed outperforms existing
approaches in terms of running time and memory.



5. REFERENCES

[1] Emmanuel J Candès, Justin Romberg, and Terence Tao,
“Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information,”
IEEE Transactions on information theory, vol. 52, no.
2, pp. 489–509, 2006.

[2] David L Donoho, “Compressed sensing,” IEEE Trans-
actions on information theory, vol. 52, no. 4, pp. 1289–
1306, 2006.

[3] Chaitanya Ekanadham, Daniel Tranchina, and Eero P
Simoncelli, “Recovery of sparse translation-invariant
signals with continuous basis pursuit,” IEEE transac-
tions on signal processing, vol. 59, no. 10, pp. 4735–
4744, 2011.

[4] Christopher E Parrish and Robert D Nowak, “Improved
approach to lidar airport obstruction surveying using
full-waveform data,” Journal of Surveying Engineering,
vol. 135, no. 2, pp. 72–82, 2009.

[5] Yuejie Chi, Louis L Scharf, Ali Pezeshki, and A Robert
Calderbank, “Sensitivity to basis mismatch in com-
pressed sensing,” IEEE Transactions on Signal Process-
ing, vol. 59, no. 5, pp. 2182–2195, 2011.

[6] Martin Vetterli, Pina Marziliano, and Thierry Blu,
“Sampling signals with finite rate of innovation,” IEEE
transactions on Signal Processing, vol. 50, no. 6, pp.
1417–1428, 2002.

[7] Thierry Blu, Pier-Luigi Dragotti, Martin Vetterli, Pina
Marziliano, and Lionel Coulot, “Sparse sampling of
signal innovations,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 31–40, 2008.

[8] Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah,
and Benjamin Recht, “Compressed sensing off the grid,”
IEEE Transactions on Information Theory, vol. 59, no.
11, pp. 7465–7490, 2013.

[9] Michael J Rust, Mark Bates, and Xiaowei Zhuang,
“Sub-diffraction-limit imaging by stochastic optical re-
construction microscopy (storm),” Nature methods, vol.
3, no. 10, pp. 793–796, 2006.

[10] Jiaxi Ying, Hengfa Lu, Qingtao Wei, Jian-Feng Cai,
Di Guo, Jihui Wu, Zhong Chen, and Xiaobo Qu, “Han-
kel matrix nuclear norm regularized tensor completion
for n-dimensional exponential signals,” arXiv preprint
arXiv:1604.02100, 2016.

[11] Yuejie Chi and Yuxin Chen, “Compressive recovery of
2-d off-grid frequencies,” in 2013 Asilomar Conference
on Signals, Systems and Computers. IEEE, 2013, pp.
687–691.

[12] Yuejie Chi and Yuxin Chen, “Compressive two-
dimensional harmonic retrieval via atomic norm min-
imization,” IEEE Transactions on Signal Processing,
vol. 63, no. 4, pp. 1030–1042, 2015.

[13] Weiyu Xu, Jian-Feng Cai, Kumar Vijay Mishra, Myung
Cho, and Anton Kruger, “Precise semidefinite program-
ming formulation of atomic norm minimization for re-
covering d-dimensional (d ≥ 2) off-the-grid frequen-
cies,” in Information Theory and Applications Workshop
(ITA), 2014. IEEE, 2014, pp. 1–4.

[14] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo,
“Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization,” SIAM re-
view, vol. 52, no. 3, pp. 471–501, 2010.

[15] Emmanuel J Candès and Benjamin Recht, “Exact matrix
completion via convex optimization,” Foundations of
Computational mathematics, vol. 9, no. 6, pp. 717–772,
2009.

[16] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein, “Distributed optimization and
statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine
Learning, vol. 3, no. 1, pp. 1–122, 2011.

[17] Tom Goldstein, Brendan O’Donoghue, Simon Setzer,
and Richard Baraniuk, “Fast alternating direction opti-
mization methods,” SIAM Journal on Imaging Sciences,
vol. 7, no. 3, pp. 1588–1623, 2014.


