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ABSTRACT
Design of filters for graph signal processing benefits from

knowledge of the spectral decomposition of matrices that en-
code graphs, such as the adjacency matrix and the Laplacian
matrix, used to define the shift operator. For shift matrices
with real eigenvalues, which arise for symmetric graphs, the
empirical spectral distribution captures the eigenvalue loca-
tions. Under realistic circumstances, stochastic influences of-
ten affect the network structure and, consequently, the shift
matrix empirical spectral distribution. Nevertheless, deter-
ministic functions may often be found to approximate the
asymptotic behavior of empirical spectral distributions of ran-
dom matrices. This paper uses stochastic canonical equa-
tion methods developed by Girko to derive such determin-
istic equivalent distributions for the empirical spectral distri-
butions of random graphs formed by structured, non-uniform
percolation of a D-dimensional lattice supergraph. Included
simulations demonstrate the results for sample parameters.

Index Terms— graph signal processing, random graph,
eigenvalues, spectral statistics, stochastic canonical equations

1. INTRODUCTION

Modern technological advances have produced a world of
people, devices, and systems that are increasingly connected,
often in intricate ways that are best described by complex
networks. In network science graphs capture for example re-
lations among individuals in a social network context. In data
science, graphs represent dependencies among streams of
data generated by different sources or agents. Such networks
are frequently large, and it may be desirable to model them
as random variables due to uncertainty or inherent stochastic
influences in their structures. When studying the properties
of the matrices that encode the graph structure of these net-
works, such as the graph adjacency matrix and the graph
Laplacian, spectral decompositions are often invoked. Linear
shift-invariant filtering as defined in graph signal processing
represents an example application in which such eigenvalue
information would be useful. In signal processing on graphs,
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a matrix W related to the graph structure, such as the graph
adjacency matrix or graph Laplacian, defines the shift oper-
ator [1][2]. Filters manifest as polynomial functions P (W )
in the shift operator [1], and decomposition of a signal de-
fined on the nodes according to a basis of eigenvectors of
W play the role of the Fourier Transform [3]. Because the
eigenvalues of the row-normalized adjacency matrix and row-
normalized Laplacian matrix are closely related to a measure
of signal complexity known as total variation, eigenvalues of
the shift matrix can be interpreted as frequencies [2][3][4][5].
If W is a diagonalizable matrix, then P (W ) is simultane-
ously diagonalizable with W , so the frequency response to
an eigenvector v where Wv = λv is P (λ) [4][6]. Hence,
information concerning the shift matrix eigenvalues is critical
to filter design. For instance, knowledge of the eigenvalues
can lead to polynomial filters that accelerate the distributed
average consensus algorithm [7] or, for large filter degrees
and completely known eigenvalues, can even lead to poly-
nomial filters that achieve consensus in finite time [6]. This
paper examines the adjacency matrix eigenvalues for a partic-
ular random network model as the size of the network grows
through the asymptotic behavior of the empirical spectral dis-
tribution of the adjacency matrix, a function that counts the
fraction of eigenvalues of a Hermitian matrix on the interval
(−∞, x] [8][9].

Specifically, this paper examines random graphs formed
by including each link of a D-dimensional lattice accord-
ing to independent Bernouli trails with inclusion probability
depending on the dimension of the lattice to which the link
belongs, a non-uniform Bernouli link-percolation model [10].
In this context, a D-dimensional lattice graph has nodes as-
sociated with D-tuples and has links between nodes if those
nodes correspond to tuples that differ by exactly one symbol,
generalizing the definition of a cubic lattice found in [11]
for example. These lattice graphs, which have at most 2D

adjacency matrix eigenvalues, represent good candidates to
examine because the number of expected adjacency matrix
eigenvalues for the resulting percolation model depends only
on the number of dimensions D and not on the lattice size
[11]. The asymptotic behavior of empirical spectral distri-
butions is sometimes characterizable, as in the well known
case of Wigner matrices with the semicircular law [12] and,
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closely related, in Erdös-Rényi model adjacency matrices
[13]. For the matrices in this paper, sequences of determin-
istic functions that asymptotically approximate the empirical
spectral distribution are computed using the stochastic canon-
ical equations tools developed by Girko, which allow analysis
when symmetric matrix entries are independent, except when
determined by symmetry, but not necessarily identically dis-
tributed [8]. These tools were used by others to analyze the
empirical spectral distribution of a different type of random
network model known as stochastic block models in [14],
that leads to a different system of equations and solution form
when the analysis tools are applied.

Section 2 introduces spectral statistics concepts and an
important theorem, used for the computation of the main re-
sults. This theorem provides a method to compute determin-
istic functions approximating the empirical spectral distribu-
tions. Subsequently, Section 3 derives results describing the
deterministic equivalents for the empirical spectral distribu-
tion of non-uniform percolations of lattice graphs with arbi-
trary parameters. Proof of these results is omitted for brevity
but may be found by referring to [15], a paper by the authors
which contains these results formulated for uniform perco-
lations of lattice graphs. Finally, Section 4 presents a few
concluding remarks.

2. BACKGROUND

Given a N × N Hermitian matrix WN with eigenvalues or-
dered such that λi (WN ) ≤ λj (WN ) for 1 ≤ i < j ≤ N , the
empirical spectral distribution of WN [9]

FWN
(x) =

1

N

N∑
i=1

χ (λi (WN ) ≤ x) (1)

counts the number of eigenvalues on (−∞, x]. The corre-
sponding empirical spectral density function of WN [9]

fW (x) =
1

N

N∑
i=1

δ (x− λi (WN )) (2)

indicates the locations of the eigenvalues. When WN is a
random matrix, FWN

and fWN
are function-valued random

variables. The methods used to analyze the empirical spectral
distribution often rely on the Stieltjes transform

SF (z) =

∫ ∞

−∞

1

x− z
dF (x) , Im {z} 6= 0

=
1

N
tr
(

(WN − zIN )
−1
)
, Im {z} 6= 0

(3)

The values of FWN
and fWN

can be found by inverting the
Stieltjes transform

F (x) = lim
ε→0+

1

π

∫ x

−∞
Im {SF (λ+ εi)} dλ (4)

f (x) = lim
ε→0+

1

π
Im {SF (x+ εi)} (5)

For a sequence of random Hermitian matricesWN indexed by
N and a sequence of functionals gN , a sequence of determin-
istic matrices such that limN→∞ (gN (WN )− gN (W ◦N )) =
0 is known as a deterministic equivalent, with gN (W ◦N ) also
called a deterministic equivalent of gN (WN ) [9]. Theorem 1,
which is the primary theorem used in the computations of this
paper, provides a method of computing a deterministic equiv-
alent for the empirical spectral distribution of random sym-
metric matrices with independent entries in the upper trian-
gular region and other entries determined by symmetry [8].

Theorem 1 (Girko’s K1 Equation [8]) Consider a family
of symmetric matrix valued random variables WN indexed
by size N such that WN is an N × N symmetric matrix in
which the entries on the upper triangular region are inde-
pendent. That is,

{
(WN )ij |1 ≤ i ≤ j ≤ N

}
are indepen-

dent with (WN )ji = (WN )ij . Let WN have expectation
BN = E [WN ] and centralizationHN = WN−E [WN ] such
that the following three conditions hold. Note that in order to
avoid cumbersome indexing, the index N will henceforth be
omitted from most expressions involving WN , BN , and HN .

sup
N

max
i

N∑
j=1

|Bij | <∞ (6)

sup
N

max
i

N∑
j=1

E
[
H2
ij

]
<∞ (7)

lim
N→∞

max
i

N∑
j=1

E
[
H2
ijχ (|Hij | > τ)

]
= 0 ∀ τ > 0 (8)

Then for almost all x,

lim
N→∞

|FWN
(x)− FN (x)| = 0 (9)

almost surely, where FN is the distribution with Stieltjes
transform

SFN
(z) =

1

N

N∑
k=1

Ckk(z), Im {z} 6= 0 (10)

and the analytic functions Ckk (z) satisfy the canonical sys-
tem of equations

Ckk(z)=


B−zI−(δlj N∑

s=1

Css(z)E
[
H2
js

])l,j=N
l,j=1

−1

kk

(11)

for k = 1, . . . , N . Note that the notation (·)l,j=Nl,j=1 indicates
a matrix built from the parameterized contents of the paren-
theses, such that X = (Xij)

l,j=N
l,j=1 , and δlj is the Kronecker

delta function. There exists a unique solution Ckk(z) for k =
1, . . . , N to the canonical system of equations (11) among
L = {X(z) ∈ C | X (z) analytic, Im {z} Im {X (z)} > 0}.
Furthermore, if

inf
i,j
N E

[
H2
ij

]
≥ c > 0, (12)



then
lim
N→∞

sup
x
|FWN

(x)− FN (x)| = 0 (13)

almost surely, where FN is defined as above.

3. MAIN RESULTS

This section computes deterministic approximations to the
empirical spectral distribution of Bernoulli link-percolation
models with lattice supergraphs. Definitions of lattice graphs
vary in the literature, so the relevant definition will be made
precise here. In a D-dimensional lattice graph with size Md

along the dth dimension, the |V| = N =
∏D
d=1Md nodes are

identified with the ordered D-tuples, where the dth entry has
Md possible symbols. A link connects two nodes if the cor-
responding D-tuples differ by exactly one symbol [11]. Note
that any integer 1 ≤ x ≤ N can be written in a mixed-radix
system as

x = 1 +

D∑
d=1

β (x, d)

d−1∏
j=1

Mj

 (14)

for 0 ≤ β (x, d) ≤ Md − 1. Collecting the digits into a vec-
tor β (x), the adjacency matrix of the lattice graph adjacency
matrix may be written as

Aij (Glat) =

{
1 ‖β (i)− β (j)‖0 = 1
0 otherwise (15)

or, in terms of Kronecker products, may be written as

A (Glat) =

D∑
j=1

D⊗
d=1

Xdj , Xdj =

{
KMd

j = d
IMd

j 6= d
(16)

where KMd
is the complete graph on Md nodes. The random

graph model Gperc
(
Glat, {p}d=Dd=1

)
under consideration starts

with a D-dimensional lattice supergraph of given size param-
eters Glat ({Md}d=Dd=1 ) and includes each link of the super-
graph according to an independent Bernoulli trial with proba-
bility pd depending on the lattice dimension along which the
supergraph link exists, forming a non-uniform Bernoulli per-
colation model [10]. One can verify that the scaled adjacency
matrix W (Gperc) = 1

γA (Gperc), where γ is the expected
node degree, satisfies the conditions for application of The-
orem 1.

Theorem 2 derives the form (20) of the solution to equa-
tion (11) for the scaled adjacency matrix W (Gperc), and
Corollary 1 obtains a system of equations (22) that describe
the parameters of the solution (20). This can then be used
to find a deterministic equivalent for the empirical spec-
tral distribution of W (Gperc). Note that supporting proofs
of these statements have been omitted for brevity. Corre-
sponding proofs for the uniform percolation case pd = p for

d = 1, . . . , D, which apply to these statements with subtle
modification, can be found in [15]. The proof of Theorem 2
relies on symmetry and Theorem 1. Corollary 1 follows by
simultaneous diagonalizability of terms in a matrix equation.

Theorem 2 (Solution Form for D-Lattice Percolation)
Consider the D-dimensional lattice graph Glat with N =∏D
d=1Md nodes in which the dth dimension of the lattice has

size Md for d = 1, . . . , D such that the adjacency matrix is

A(Glat) =

D∑
j=1

D⊗
d=1

Xdj , Xdj =

{
KMd

j = d
IMd

j 6= d
. (17)

Form a random graph Gperc
(
Glat, {pd}d=Dd=1

)
by indepen-

dently including each link of Glat along lattice dimension
d with probability pd. Denote the corresponding random
scaled adjacency matrix W = 1

γA (Gperc), expectation B =

E [W (Gperc)], and centralization H (Gperc) = W (Gperc) −
E [W (Gperc)] where γ is the expected node degree

γ = γ
(
{Md}d=Dd=1 , {pd}

d=D
d=1

)
=

D∑
d=1

pd (Md − 1) . (18)

Let Ckk (z) for k = 1, . . . , N be the unique solution to the
system of equations (11) among the class L guaranteed to
exist by Theorem 1, and write

C(z)=

B−zIN−(δlj N∑
s=1

Css(z)E
[
H2
js

])l,j=N
l,j=1

−1. (19)

Note that Ckk (z) is the kth diagonal entry of C (z) and that
uniqueness of Ckk (z) implies uniqueness of C (z). For some
values of αi1,...,iD (z) for i1, . . . , iD = 0, 1

C (z) =

1∑
i1,...,iD=0

αi1,...,iD (z)

D⊗
d=1

Ydid ,

Ydid =

{
KMd

id = 0
IMd

id = 1
.

(20)

Corollary 1 (Stieltjes Transform for D-Lattice Percolation)
The Stieltjes transform of the deterministic equivalent distri-
bution function Fn specified in Theorem 1 for the empirical
spectral distribution of W (Gperc) is given by

SFN
(z) = α1,...,1 (z) , Im (z) 6= 0 (21)

where the 2D complex valued variables αi1,...,iD (z) for



(a) Comparison for 2-dimensional lattice supergraph with di-
mensions (30, 50) and percolation probabilities (.7, .5).

(b) Comparison for 3-dimensional lattice supergraph with di-
mensions (10, 10, 20) and percolation probabilities (.8, .7, .6).

Fig. 1: The above plots compare the expected empirical spec-
tral distribution (left, black) of the scaled adjacency matrix to
the computed deterministic distribution function (left, blue),
with corresponding density functions (right, black and blue,
respectively) also displayed, for different sample parameters.

i1, . . . , iD = 0, 1 solve the system

1∑
i1,...,iD=0

αi1,...,iD (z)

D∏
d=1

λdid(jd) =

(
1

γ

(
D∑
d=1

pdλd0(jd)

)
−z−...

...
1

γ2

(
D∑
d=1

pd(1−pd)(Md−1)

)
α1,...,1(z)

)−1
(22)

of 2D rational equations for j1, . . . , jD = 0, 1 where

λdid(jd) =

 Md − 1 id = 0, jd = 0
−1 id = 0, jd = 1

1 id = 1
. (23)

Solving the system of equations (22) for α1,...,1 (z) results
in an equation for which α1,...,1 (z) is the unique solution with
Im {z} Im {α1,...,1 (z)} > 0 for Im {z} 6= 0. Consequently,
it can be found for a given z via zero finding methods. Sub-
sequently, the empirical spectral distribution can be computed
by inverting the Stieltjes transform [9]. Figure 1 shows a com-
parison of the computed deterministic distributions and den-
sities to simulated expected empirical spectral distributions
and densities for selected lattice parameters and percolation
parameters listed in the caption. Note that as each lattice di-
mension grows without bound in size, the area of the largest

region of the density function asymptotically approaches to-
tality and all other regions diminish. Consequently, Theo-
rem 1 does not give any guarantees about the smaller regions
of the density function, but a good approximation seems to
be achieved. Finally, Theorem 3 shows that, asymptotically,
the row-normalized adjacency matrix has a similar empirical
spectral distribution to that of the scaled adjacency matrix.
Hence, the computed deterministic distributions contain use-
ful information about the scaled adjacency matrix as well. As
previously, the supporting proof can be found in [15].

Theorem 3 (Normalized Adjacency Matrix E.S.D.)
Let W (Gperc) = 1

γA (Gperc) be the scaled adjacency matrix

of Gperc
(
Glat, {p}d=Dd=1

)
for factor γ =

∑D
d=1 pd (Md − 1)

with empirical spectral distribution FW , and let Â (Gperc) =
∆−1 (Gperc)A (Gperc) be the row-normalized adjacency ma-
trix of Gperc (Glat, p) with empirical spectral distribution FÂ,
where ∆ (Gperc) is the diagonal matrix of node degress. Also
let dL (·, ·) be the Lévy distance metric. Assume that all of the
lattice dimension sizes increase without bound as N → ∞.
Then,

lim
N→∞

dL

(
F√γÂ, F

√
γW

)
= 0. (24)

4. CONCLUSION

This paper analyzed the eigenvalues of the scaled adjacency
matrices of a random graph model formed by non-uniform
Bernoulli percolation of a D-dimensional lattice graph where
the link inclusion probability parameter is structured such
that it depends only on the lattice dimension index of the link.
Specifically, a deterministic equivalent sequence of distribu-
tion functions are computed for the sequence of empirical
spectral distributions of the adjacency matrices using the
stochastic canonical equations techniques of Girko in order
to capture the asymptotic behavior as the lattice dimension
sizes increase without bound. Theorem 2 derived the form
of the solution to an important matrix equation from The-
orem 1 used to compute the empirical spectral distribution.
Corollary 1 finds the parameter of this solution form by si-
multaneously diagonalizing the components of this matrix
equation and, thus, computes the Stieltjes transform of the
deterministic equivalent distributions. Simulations demon-
strate the results for selected parameters. Finally, Theorem 3
describes the relationship of the scaled adjacency matrix em-
pirical spectral distribution to the row-normalized adjacency
matrix empirical spectral distribution, which asymptotically
become very close. This type of information could be of
use in the design of linear shift-invariant filters for graph
signal processing, an application of which could, for in-
stance, be accelerated consensus filters for random graphs.
Future efforts will focus on a more precise characterization
of asymptotically diminishing density regions, actual use of
the eigenvalue information for filter design applications, and
extension of this analysis to additional models.
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