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ABSTRACT 
Traditionally, spatial resolution in optical imaging is limited by 
diffraction. Although sub-wavelength information is absent in the 
measurements, state-of-the-art fluorescence based localization tech­
niques such as PALM and STORM manage to achieve spatial 
resolution of tens of nano-meters, but with limited temporal resolu­
tion. A more recent technique super-resolution optical fluctuation 
imaging (SOFI) exploits the temporal statistical behavior of un­
correlated fluorescence emissions to practically improve the spatial 
resolution by a factor of two over the diffraction limit, but with 
considerably faster image capturing. Here we propose to exploit 
the sparse nature of the fluorophores distribution, combined with 
a statistical prior of uncorrelated emissions such as in SOFI to 
achieve spatial resolution comparable to PALM/STORM, while 
retaining the temporal resolution of SOFI. We demonstrate our 
method on simulations and show improved results over STORM 
and SOFI. Our method may facilitate super-resolution imaging and 
capturing of intra-cellular dynamics within living cells. 

Index Terms- Fluorescence, High-resolution imaging, Com­
pressed sensing, Correlation. 

I. INTRODUCTION 

Spatial resolution in diffractive optical imaging is limited by 
one half of the optical wavelength; this limit is known as Abbe's 
diffraction limit [1]. However, modern microscopic methods en­
able super-resolution, even though information on sub-wavelength 
features is absent in the measurements. One of the leading sub­
wavelength imaging modalities is based on fluorescence (PALM 
[2] and STORM [3]). Its basic principle consists of imaging the 
fluorescent light emitted by fluorophores (point emitters) attached 
to regions of interest within the sample. PALM and STORM 
rely on acquiring a sequence of diffraction limited images, such 
that in each frame only a sparse set of fluorophores are active. 
The position of each fluorophore is then found through a super­
localization procedure [4]. Subsequent accumulation of single­
molecule localizations result in a grainy high-resolution image, 
which is then smoothed to form the final super-resolved image. 
The final image has a spatial resolution of tens of nanometers. 

A major disadvantage of these florescence techniques is that 
they require tens of thousands of exposures, which leads to a long 
acquisition cycle, typically on the order of several minutes [5]. This 
implies that fast dynamics - even at the rates of microseconds -
cannot be captured by PALM/STORM. To reduce acquisition time, 
an alternative technique named SOFI (super-resolution fluctuation 
imaging) was proposed [6], which uses high fluorophore density, 
reducing integration time. In SOFI, the emitters usually overlap 
in each frame, so that super-localization cannot be performed. 
However, the emitted photons, which are uncorrelated between 
different emitters, are registered in consecutive frames, that contain 
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information in the pixel-wise temporal correlation between them. 
The measurements are processed such that correlative information 
is used, enabling the recovery of features that are smaller than the 
diffraction limit by a factor of V2. By calculating higher order 
statistics (HOS) in the form of cumulants [7] of each pixel's time­
trace, a theoretical resolution increase equal to the square root of the 
order of the statistics can (in principle) be achieved. Using pixels 
cross-correlations over time it is possible to increase the resolution 
gain further, to an overall factor that scales linearly with the order 
of the statistical calculation [8]. 

SOFI enables the processing of images with high fluorophore 
density, thus reducing the number of required frames for image 
recovery and achieving increased temporal resolution over local­
ization based techniques. However, at least thus far, the spatial res­
olution offered by SOFI does not reach the level of super-resolution 
obtained through STORM and PALM, even when using HOS. The 
use of HOS can in principle increase the spatial resolution, but 
higher (than the order of two) statistical calculations require an 
increasingly large number of frames for their estimation, degrading 
the temporal resolution of SOFI. Moreover, SOFI suffers from a 
phenomena known as dynamic range expansion, in which weak 
emitters are masked in the presence of strong ones. The effect is 
worsened as the statistical order increases. 

Achieving super-resolution based on statistical information can 
be extended beyond the scope of fluorescence microscopy to 
other imaging modalities. In contrast enhanced ultrasound (CUES), 
gas micro-bubbles are injected into the bloodstream to image 
the vascular system. Several localization based super-resolution 
techniques inspired by STORM and PALM were suggested for 
CEUS [9], [10]. These methods achieve excellent sub-diffraction 
spatial resolution but suffer from similar limitations as their optical 
analogues. Inspired by SOFI, the authors of [11] suggested to 
exploit the statistical nature of the fluctuations of the micro-bubbles 
to image capillaries with sub-diffraction resolution while retaining 
clinically relevant temporal resolution. Such ideas suggest that 
super-resolution using statistical information can be considered in 
a wide context of imaging modalities and not only in fluorescence 
microscopy. 

Here we propose a method for super-resolution imaging with 
short integration time which is also computationally efficient, 
leading to fast image reconstruction and is suitable for large-scale 
problems. Our approach enjoys the same benefits of SOFI, i.e. 
fast frame capturing rate of high fluorophore density frames and 
the use of correlative information, while offering the possibility of 
reaching a comparable, single-molecule resolution such as STORM. 
In fluorescence microscopy we rely on fluorophores which attach 
only to specific objects of interest. Thus, only sparse areas within 
the imaged sample emit light. We propose to use sparse recovery on 
correlation information to achieve recovery with increased spatial 
resolution, comparable to super-localization methods, while retain­
ing a short temporal acquisition time similar to SOFI. This may 
facilitate super-resolution imaging of dynamic processes within 
living cells. We demonstrate these ideas on simulated data and 
show that our technique overcomes the dynamic range problem of 
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SOFI when high-order statistics are used, and results in improved 
image reconstruction. 

Mathematically, our method recovers the support of the emit­
ters, by recovering their variance values. Sparse recovery from 
correlation information was previously proposed to improve sparse 
recovery from a small number of measurements [12], [13] , [14]. 
When the non-zero entries of the sparse signal are uncorrelated, 
support size recovery can be theoretically increased up to O(M2), 
where M is the length of a single measurement vector. Here we 
use similar concepts in order to enhance resolution and improve 
SNR in optical imaging. Preliminary results were demonstrated in 
[15]. Here, we provide a detailed mathematical formulation and 
additional numerical examples. 

The rest of the paper is organized as follows : In Section 11 
we present the problem and explain the key idea of SOFI. In 
Section III we formulate our proposed solution . Simulation results 
are demonstrated in Section IV. 

Throughput the paper, x represents a scalar, x represents a vector 
and X a matrix. The notation 11 · llp represents the standard p-norm 
and 11 · 11 F the Frobenius norm. Subscript Xl denotes the lth element 
of x and Xl is the lth column of X. 

11. PROBLEM FORMULATION AND SOFI 

Following [6], [8], the acquired fluorescence signal in the object 
plane is modeled as a set of L independently fluctuating point 
sources, with resulting fluorescence source distribution 

L- 1 
J(r , t) = L oCr - rk) . Sk(t). 

k=O 

Each source (or emitter) has its own time dependent brightness 
function Sk(t) , and is located at position rk E 1R2, k = 
0, ... , L - 1. The acquired signal in the image plane is the result 
of the convolution between J(r, t) and the impulse response of the 
microscope u(r) (also known as the point spread/unction (PSF», 

L- 1 
fer, t) = L u(r - rk) . Sk(t). (1) 

k=O 

Due to the propagation of light, the microscope can be considered 
as a spatial low-pass filter (LPF) [1] , so that (1) consists of 
frequencies below the cutoff of the PSF. We assume that the 
measurements are acquired over a period of t E [0, T ]. Ideally, our 
goal is to recover the locations of the emitters, rk and their variance 
values with high spatial resolution and short integration time. 
The final high-resolution image is constructed from the recovered 
variance value for each emitter. 

To proceed, we assume the following: 
A 1: The locations rk , k = 0, . . . , L - l do not depend on time. 
A 2: The brightness is un correlated in space E{Si(t1)Sj(t2)} = 

0, Vi =1= j, Vt1 , t2. 
A 3: The brightness functions Sk(t), k = 0, . .. , L - 1 are wide 

sense stationary with E{Sk(t)} = Ek and E{Sk(t)Sk(t + r)} = 
9k(r) , Vr where Sk(t) = Sk(t) - E k. 

In SOFI, the time-trace of each pixel in the captured movie is 
correlated with itself for some time lag r. Using assumptions 2 and 
3, the autocorrelation function at each point r is therefore, 

L- 1 
Gf(r,r) = L u2(r - rk) ' 9k(r). 

k=O 
(2) 

Usually the zero time-lag is used and the final SOFI image is 
the value of Gf(r , O) at each point r, where 9k(0) represents the 
variance of emitter Sk. We can see from (2) that the autocorrelation 
function depends on the PSF squared. If the PSF is assumed to 
be Gaussian, its width is reduced by a factor of V2. However, 
the final SOFI image retains the same low resolution grid as the 

captured movie. Similar statistical calculations can be performed 
for adjacent pixels in the movie leading to a simple interpolation 
grid with increased number of pixels in the high-resolution image, 
but at the cost of increased statistical order using cumulants [7]. 
Higher order statistics reduce the PSF size further but at the expense 
of degraded SNR and dynamic range for a given number of frames 
[8]. 

In the next section we introduce our sparsity based method. We 
rely on correlations only without resorting to higher order statistics, 
thus maintaining a short acquisition time, similar to correlation­
based SOFI. In contrast to SOFI, we exploit the sparse nature of 
the emitter's distribution and recover a high-resolution image on 
a much denser grid than the camera's grid. This leads to spatial 
super-resolution without the need to perform interpolation using 
higher order statistics [8]. Our approach is based on Fourier domain 
analysis, and can be implemented very efficiently. 

Since we rely on the assumption of a sparse distribution of 
emitters, we emphasize that it is far less restrictive than in PALM 
/ STORM. In particular we allow for much higher density of 
fluorophores , as long as the features we wish to recover are spatially 
sparse. The assumption of uncorrelated emissions provides further 
prior information to exploit, while the correlation domain provides 
more effective measurements. 

Ill. SPARSE FOURIER SOFI 

To increase resolution by exploiting sparsity, we start by intro­
ducing a Cartesian sampling grid with spacing I3. L, which we refer 
to as the low-resolution grid. The low-resolution signal (1) can be 
expressed over this grid as 

f [mI3.L, n13. L, t] = 
L- 1 
L u [ml3.L - mk , nl3. L - nk]sk(t) , m , n = [0, ... , M - I], 
k=O 

(3) 
where rk = [mk ' nk f E lE? We discretize the possible locations 
of the emitters rk, over a discrete Cartesian grid i, l = 0, ... ,N - 1, 
L « N with resolution I3.h, such that [mk ' nk ] = [ik ' lk ]l3.h for 
some integers ik, lk E [0, .. . , N - 1]. We refer to this grid as the 
high-resolution grid. 

The latter discretization implies that (3) is sampled (spatially) 
over a grid of size M x M, while the emitters reside on a grid of 
size N x N, with the ilth pixel having a fluctuation function Sil (t) 
(only L such pixels actually contain fluctuating emitters, according 
to (3». If there is no emitter in the il ' th pixel, then Sil(t) = ° for 
all t. We further assume that the PSF u is known. 

Rewriting (3) in Cartesian form with respect to the grid of 
emitters yields, 

f [mI3.L , n13.L, t] = 
N - 1 N - 1 

L L u [ml3.L - il3.h ,nl3.L - ll3.h ]Sil(t). 
i=O 1= 0 

(4) 

For simplicity we assume that I3. L = P I3.h for some P :::: 1, and 
consequently N = PM. In addition, it holds that ml3.L - il3.h = 
(mP - i)l3.h. Omitting the spacing I3.h, we can rewrite (4) as 

N - 1 

f [mP, nP, t] = L u [mP - i , nP - l]sil(t). (5) 

i,I=O 

We now what to present (5) in the Fourier domain, which will 
lead to an efficient implementation of our method. 

Since f [mP, nP, t] is an M x M sequence, denote by 
y [m , n , t] = f [mP, nP, t] and its M x M two dimensional discrete 
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Fourier transform (OFT), by Y [km, kn, t]. Performing an M x M 
two dimensional OFT on y[m, n, t] yields 

m,n = O 
N- 1 

= L Sil(t) · 
i,l=O 
MP-P 

L 
m,n= O,P, ... 

where we defined rh = mP and n = nP and km, kn = 
0, ... , M - 1. Next, consider rh , n = 0, ... , N - I and define 
the N x N sequence, 

{ 
U [rh , n], rh , n = 0, P, ... ,N - P, 

il[rh,n] = 
0, else, 

(6) 

where U is the discretized PSF sampled over M x M points 
of the low-resolution grid. Thus, we can equivalently write for 
Y [km, kn, t], 

N-1 

Y [km ' kn , t] = L Sil(t)· 
i,I=O 

N-1 
'"' - [ , ., l ] - j 2N~ k= m - j 2N~ k n n L u m - ~, n - e e . 

m,n=O 

By defining p = rh - i and q = n - I, (7) becomes 

with 
N-1 

U[km,kn] = L U[p,q]e-j";kmPe-j";knq. 
p,q=O 

(7) 

(8) 

(9) 

Note that U[km , kn] is the N x N two dimensional OFT of the 
N x N sequence il, evaluated at discrete frequencies km, kn 
0 , ... , M - 1. 

From (6) and (9), it holds that U [e - j "; k= , e - j "; kn] 
21l" k . 27r k 

U[e-jM =,e-J!vI n] for km,kn = O, ... ,M - 1 (N = PM), 
where U is the M x M two dimensional OFT of u sampled on 
the low-resolution grid. 

Oenote the column-wise stacking of each frame Y [km, kn , t] as 
an M2 long vector yet) and in a similar manner, set) is a len~th­
N 2 vector stacking of Sil(t) for all il. We also define the M x 

M2 diagonal matrix, H = diag { U[O, 0], . .. , U[M - 1, M-I]}. 
Vectorizing (8) then yields 

2 2 
yet) = H(FM 0 FM )s(t) = As(t) , A E CM XN, (10) 

where set) is an L-sparse vector and FM denotes a partial M x N 
OFT matrix (its M rows are the corresponding M low frequency 
rows from a full N x N discrete Fourier matrix). Using assumption 
A 3, we define the autocorrelation matrix of yet) as 

Ry(T) = E {(y(t) - E{y(t)}) (y(t + T) - E{y(t + T)})H~ . 
(11) 

For a discrete time-lag T and total number of frames T, R y(T) is 
estimated from the movie frames using the empirical correlation 

1 T- T 

Ry(T) = T _ T L(y(t) - y)(y(t + T) - y)H , 
t =l 

with 
1 T 

Y = T Ly(t). 
t =l 

From (10), 
(12) 

for some time-lag T. Under assumption A 2, R s(T) is a diagonal 
matrix. Therefore, (12) can be written as 

N 2 

Ry(T) = Lala[irs/ (T) , (13) 
1=1 

with al being the lth column of A , r 8 (T) = diag {Rs (T)} and 
r s / (T) the lth entry of rs(T). By taking T = ° we estimate the 
variance of Sij(t), i , j = O, .. . ,N - 1 (as written in assumption 
A 3), but it is also possible to take into account the fact that the 
autocorrelation matrix Ry(T) may be non-zero for T # 0. For 
simplicity we use T = 0. The support of r s (T) is equivalent to the 
support of set) , which in turn is equivalent to the locations of the 
emitters on a grid with spacing 6h. Thus, our problem reduces to 
recovering the L non-zero values of r s / (0) in (13). 

We denote x = r s (O) and use the LASSO formulation [16] to 
construct the following convex optimization problem 

2 

(F-LASSO) 
1=1 

F 

with a regularization parameter A ~ ° and Xl denoting the lth entry 
in x. We note that it is possible to write a similar formulation to 
(F-LASSO), accounting also for T > ° (without the non-negativity 
constraint). 

We solve (F-LASSO) iteratively using the FISTA algorithm [17] , 
[18], [19], which at each iteration performs a gradient step and then 
a thresholding step. By performing the calculations in the OFT 
domain, we can calculate the gradient of the smooth part of (F­
LASSO), that is the squared Frobenius norm, very efficiently. Our 
technique is summarized in Algorithm l. 

Algorithm 1 FISTA for minimizing (F-LASSO) 

Input: L ~ L f , Ry(O), A> 0, Kmax 
Initialize Zl = Xo = 0 , t1 = 1 and k = I 
while k ::; Kmax or stopping criteria not fulfilled do 

1: Xk = TJ::,. (Zk - y(MZk - v)) 
L 

2: Project to the non-negative orthant Xk(Xk < 0) = 0 
3: tk+1 = 0.5(1 + VI + 4t%) 
4: Zk+ 1 = Xk + ~k-l (X k - Xk -1 ) 

k +l 

5: k +- k + 1 
end while 
return Xkmax 

IV. SIMULATIONS AND RESULTS 

We numerically simulated a movie of sub-wavelength features 
over 1000 frames with some additional out-of-focus features and 
Gaussian noise with SNR = I4.95dB, defined as 

SNR - 20 I 11 y movie 11 F 

- . Og10 I INmoviel IF ' 

were Y movie is an M2 x T matrix, representing the entire blurred, 
noise free movie (each movie frame is column stacked as a single 
column in Y movie ) and Nmovie is the added noise to all the frames 
(same dimensions as Y movie ). 
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Fig. 1: Upper row: unprocessed data. (a) Ground truth: high resolution image of simulated sub-wavelength features_ (b) Positions of 
emitters in a single frame. (c) Diffraction-limited image. (d) Single diffraction limited frame. Lower row: recovered images from a 
noisy sequence of 1000 frames. (e) Smoothed ThunderSTORM (f) Correlations SOFI (zero time-lag). (g) 4th order SOFI (in absolute 
value, zero time-lag)_ (h) Our sparsity based method. The figures were contrast enhanced slightly for display purposes only. 
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Fig. 2: Normalized cross-sections along the solid line (left) and the dashed line (Right) of Fig. 1, comparing the ground truth (dashed 
blue, Fig. la), diffraction-limited image (dash dot green, Fig_ lc), smoothed ThunderSTORM (solid thin purple, Fig. le), 4 t h order SOFI 
(black dot, Fig. 19), and our sparsity based method (solid red, Fig. lh). 

In Figure la we show the simulated ground truth of the image 
with subwavelength features of size 512 x 512 pixels. The imaging 
wavelength is 800nm with a numerical aperture of 1.4. Figure 
lb shows the positions of the emitters for the first frame in the 
movie, while Fig. lc shows the diffraction limited image (a sum 
of all 1000 frames). Figure Id shows a single frame from the 
simulated movie, where each frame size is 64 x 64 pixels and the 
pixel size corresponds to 160nm. The PSF was generated using the 
freely available PSF generator [20], [21]. Figure le shows smoothed 
ThunderSTORM [22] reconstruction (freely available code). Since 
the ground truth is of size 512 x 512 pixels, the raw localizations 
image was resized to that size and smoothed with a Gaussian kernel. 
Figures If and 19 show the second and forth order SOFI images 
respectively (absolute values, zero time-lag). SOFI reconstructions 
were performed using the freely available code of bSOFI [23], 
which also includes a Richardson-Lucy deconvolution step with 
the discretized PSF used in our method. Last, Fig. lh displays the 
reconstruction of our method (512 x 512 pixels) after smoothing 
with the same kernel used in Fig. le. 

In Fig. 2 left and 2 right we show selected intensity cross­
sections along two lines_ Our method reconstructs images of higher 
resolution with more details compared to the ThunderSTORM and 
SOFI images_ 

Figures 1 and 2 demonstrate that our approach achieves in­
creased resolution and additional details over existing methods, 
when high labeling density is used, and manages to detect the cavi-

ties within the sub-wavelength features which are absent in the low 
resolution movie and ThunderSTROM and SOFI reconstructions. 

V. CONCLUSIONS 
We proposed a method which improves the spatial resolution 

of SOFI. Our approach exploits both the sparse nature of the 
emitters and their uncorrelated emissions to facilitate reconstruction 
with a spatial resolution comparable to STORM, while retaining 
the temporal resolution of SOFI. We compared our reconstruction 
to both STORM and SOFI reconstructions on simulated data, 
achieving preferable results in terms of support detection and 
separation of sub-diffraction features_ Similar concepts also apply 
to other imaging modalities, such as CEUS scans. We believe 
that these improvements may facilitate super-resolution imaging 
of dynamic processes within living cells and that the proposed 
framework can be extended to a much wider range of imaging 
modalities, as long as there are statistical priors which can be 
exploited alongside sparsity. 
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