
PRIVACY PRESERVING DISTANCE COMPUTATION USING SOMEWHAT-TRUSTED
THIRD PARTIES

Abelino Jimenez and Bhiksha Raj

Carnegie Mellon University, Pittsburgh, PA, USA
{abjimenez,bhiksha}@cmu.edu

ABSTRACT

A critically important component of most signal processing proce-
dures is that of computing the distance between signals. In multi-
party processing applications where these signals belong to different
parties, this introduces privacy challenges. The signals may them-
selves be private, and the parties to the computation may not be will-
ing to expose them. Solutions proposed to the problem in the lit-
erature generally invoke homomorphic encryption schemes, secure
multi-party computation, or other cryptographic methods which in-
troduce significant computational complexity into the proceedings,
often to the point of making more complex computations requiring
repeated computations unfeasible. Other solutions invoke third par-
ties, making unrealistic assumptions about their trustworthiness.

In this paper we propose an alternate approach, also based on
third party computation, but without assuming as much trust in the
third party. Individual participants to the computation “secure” their
data through a proposed secure hashing scheme with shared keys,
prior to sharing it with the third party. The hashing ensures that
the third party cannot recover any information about the individual
signals or their statistics, either from analysis of individual compu-
tations or their long-term aggregate patterns. We provide theoretical
proof of these properties and empirical demonstration of the feasi-
bility of the computation.

Index Terms— Secure Distance Computation, Information-
theoretic Privacy, Locality Sensitive Hashing

.

1. INTRODUCTION

A key signal processing operation is the computation of the distance
between two signals. This simple operation can suddenly become
challenging if the two signals belong to two mistrustful parties who
are unwilling to share them. We must now facilitate the continuation
of the operations, without exposing their signals to one another.

More formally stated, two parties, Alice and Bob, have two real
valued vectors x1 and x2 ∈ RN respectively. The signal processing
operation requires the computation of ‖x1 − x2‖, which may be
required by one or both parties. However, at the same time, it is
required that none besides Alice learns about x1, and similarly none
besides Bob is exposed to x2.

A number of methods have been suggested in the literature to
solve this problem. These have generally involved the use of secure
multi-party computation protocols [GCS] [1] or fully homomorphic
[2, 3] which enables the computation of distances over encrypted
data. Although this provides the participants with the desired pri-
vacy, they are computationally unattractive. They can increase both
the communication and the computational cost of computing the dis-
tance by several orders of magnitude.

An alternate approach uses trusted third parties to facilitate the
computation. Here, Alice and Bob interact with a third party, Char-
lie to compute the distances between their signals with information-
theoretic privacy. No party gets additional information despite their
computational power. Under this approach, protocols based on se-
cret sharing using polynomials on finite fields have been proposed
to compute the euclidean distance [4] between privately held real-
valued vectors. While secure, the precision of the computation de-
pends on how well real numbers are represented in the selected field.
Moreover, the communication complexity of this kind of protocol is
proportional to the dimensionality of the data, which is problematic
when Alice and Bob need to compute a distance between high di-
mensional vectors in presence of communication constraints.

Even if the above concerns were somehow allayed, an additional
problem arises from the fundamental definition of the basic problem
itself. The outcome of the computation – the distance – itself reveals
information about the signals. The party who obtains this result,
which may be either Alice or Bob, or both of them, learns about
the relationship between their signals. In trusted third-party settings,
Charlie may get to know this distance too. Ideally, while this “leak-
age” of information cannot be avoided, we would like to limit it. In
particular, it is preferable that the third party Charlie not be exposed
to the information at all.

In this paper we propose several third-party based protocols for
the computation of distances between signals, which address the
above issues. We propose to encode the signals through a modular
hashing scheme [7] with cryptographic properties that ensure that
none of the parties can recover the original signal from the hashes,
without the appropriate keys. The hashes have the property that they
permit limited release of the information between vectors – the true
distance is only revealed if the vectors are sufficiently close and the
distance between them lies below a threshold, but is naturally effec-
tively thresholded when the distance is greater, ensuring that even
the parties that do get the distance only get as much as is required
for effective computation of the signal processing processes, but not
enough to chart out the other person’s data. We impose protocols on
top of the hashing which ensure that the third party cannot gather any
information besides the limited distance computed. When the third
party may be trusted to know this limited distance then, unlike other
cryptographic or secret sharing based schemes, the communication
overhead may be made independent of the dimension of the signals,
permitting control of the precision of the distance estimate. Finally,
we also analyze how the protocols may be modified in order to not
expose even the limited distance to the third party.

In the next section (Section 2) we discuss the hashing scheme.
In Section 3 we describe our protocols and in Section 4 we explain
how they may be extended to hide the distance from the third party
(Charlie). Finally we present our conclusions in Section 5.

ar
X

iv
:1

60
9.

05
17

8v
2

 [
cs

.C
R

]
 2

3
Se

p
20

16

2. LIMITED DISTANCE COMPUTATION THROUGH
MODULAR HASHES

Our proposed approach requires Alice and Bob to transform their
signals into hashes prior to further processing. We now describe the
transform. This transformation may be considered as a modular vari-
ant of the p-stable Locality Sensitive Hashing (LSH) [5] [6]. How-
ever, unlike the standard LSH, the introduction of modularity helps
to generate uninformative hashes, i.e. the distribution of the result-
ing hash does not depend on its input. Furthermore, the euclidean
distance between two signals may be estimated through comparison
of their hashes, provided the distance is shorter than some threshold.

2.1. Modular Hashing

Definition: Let k be an integer larger than 1,A be anM×N matrix,
U ∈ [0, k]M , and Zk be the set of integers {0, 1, . . . , k − 1}. We
define a Modular Hash as the function Qk,A,U : RN → ZMk as

Qk,A,U (x) = bAx+ Uc (mod k) (1)

where the floor function and modulo are component-wise.
Definition: If A and U are randomly selected, we say that Qk,A,U
is a Secure Modular Hash (SMH) if

1. ∀x ∈ RN , Qk,A,U (x)i is independent of Qk,A,U (x)j for
every i 6= j,

2. ∀i ∈ {1, ...,M}, ∀z ∈ Zk, P (Qk,A,U (x)i = z) = 1
k

One example of SMH is given in [7] as follows:
Theorem 1. Qk,A,U is a SMH if A is randomly generated where its
components are i.i.d with

aij ∼ N
(
0, δ−2)

for some δ, and U is independent of A, with i.i.d components

ui ∼ Unif(0, k)

It is shown in [7] that for SMH defined as above, the expected value
of the Hamming distance between Qk,A,U (x1) and Qk,A,U (x2) re-
lates to the actual value of ‖x1 − x2‖, until the former achieves the
value of 1 − 1

k
, beyond which the hash is information theoretically

secure and reveals no information about ‖x1 − x2‖. We will hence-
forth assume that we work with this kind of SMH.

2.2. Limited Euclidean Distance from Secure Modular Hashes

The Lee distance [8] between two integers a, b ∈ Zk is the length of
the shortest path from a to b along a ring of circumference k.

dLee(a, b) = min (|a− b|, k − |a− b|)

Using this distance metric, we can obtain the following result:
Theorem 2. ∀x1 ,x2 ∈ RN , ∀i ∈ {1, ...,M}, ∀k even, then
we obtain the following relation between the ith components of
Qk,A,U (x1) and Qk,A,U (x2):

E [dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)] =

k

4
− 2k

π2

∞∑
j=1

1

(2j − 1)2
e
−2

(
π‖x1−x2‖(2j−1)

δk

)2

Moreover, bounding this expression it is possible to prove that when
‖x1 − x2‖ → ∞ the described series converges to k

4
.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

‖x1 − x2‖

E
[d

L
e
e
(Q

k
,A

,U
(x

1
) i
,Q

k
,A

,U
(x

2
) i
)]

k = 4
k = 8
k = 16

Fig. 1. Expected value of the Lee Distance between Qk,A,U (x1)i
andQk,A,U (x2)i as a function of ‖x1−x2‖ using expression given

by Theorem 2 and considering δ =
√

2
π

.

The expected value of the Lee distance between Qk,A,U (x1)i
and Qk,A,U (x2)i approximates the Euclidean distance between x1

and x2. The following result bounds the error of the approximation.

Proposition 1. Let δ =
√

2
π

. We define the error

ε(‖x1 − x2‖, k) :=
|E[dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)]− ‖x1 − x2‖|

The following relation holds:

ε(‖x1 − x2‖, k) ≤ F (‖x1 − x2‖, k) (2)

where

F (t, k) = t · exp
(
− k2

4πt2

)
It is easy to see that F is increasing in t and decreasing in k.

Even more, for fixed t, when k tends to infinity F (t, k) tends to 0.
Therefore, we can prove the following proposition:

Proposition 2. ∀ε > 0 , ∀T > 0, ∃k even, ∀‖x1 − x2‖ < T

ε(‖x1 − x2‖, k) < ε

This proposition says that given a threshold T we can find a
value of k large enough, such that the difference between ‖x1−x2‖
and the expected value of the Lee distance between the correspond-
ing hashes is as small as we want for all ‖x1 − x2‖ < T . This is il-
lustrated by Figure 1 which shows the expression given by Theorem
2 against ‖x1 − x2‖. The relation is seen to be an identity for dis-
tances smaller than a threshold, and then converging to k

4
. Hence, we

can compute an accurate estimate of the euclidean distance between
x1 and x2 directly from the Lee distance between their hashes.

The above relations are all statements of statistical expectation.
In real applications, however, we must deal with a single realization
of this kind of random process. To proceed, we note that the random
variables { dLee(Qx,A,U (x2)i , Qx,A,U (x2)i)}i are i.i.d.

We define the Mean Lee Distance as the empirical average of the
Lee distances between components ofQk,A,U (x1) andQk,A,U (x2):

dLee (Qk,A,U (x1) , Qk,A,U (x2)) =

1

M

M∑
i=1

dLee (Qk,A,U (x1)i , Qk,A,U (x2)i)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

‖x1 − x2‖

d
L
e
e
(Q

k
,A

,U
(x

1
),
Q

k
,A

,U
(x

2
))

k = 4
k = 8
k = 16

Fig. 2. Mean Lee distance between hashes as a function of ‖x1−x2‖
for δ =

√
2
π

, N = 5000 and M = 500.

To determine the value of M such that the Mean Lee Distance be-
tween the hashes of x1 and x2 is a reasonable estimate of the ex-
pected value of the Lee distance, we can use the Hoeffding inequal-
ity and note that the Lee distance is a number between 0 and k

2
to

prove that

Proposition 3. For δ =
√

2
π

, if M ≥ log(2)·(β+1)·k2
8ε2

, then

P

(∣∣∣dLee (Qk,A,U (x1) , Qk,A,U (x2))−

E
[
dLee (Qk,A,U (x1)i , Qk,A,U (x2))i

] ∣∣∣ < ε

)
≥ 1− 1

2β

Thus, the Mean Lee Distance is similar to its expected value with
high probability if M satisfies the described condition. For instance,
if β = 10, ε = 0.5 and k = 8, then with M ≥ 244 we can obtain
an estimate of the expected Lee Distance with precision 0.5 with
probability more than 0.999.

An important consequence of this result is that the value of M
required to obtain a good estimate of the expectation of the Mean
Lee Distance between the hashes of x1 and x2, which in turn relates
to the Euclidean distance between the signals, is not dependent on
N , the dimensionality of the signal! Thus, we may even consider
this kind of transform as a dimensionality-reduction technique or as
a dimensionality-hiding hash. Figure 2 shows simulation plots of
how the Mean Lee Distance approximates the euclidean distance,
when the latter is lower than some threshold, for different values of
k. This is absolutely consistent with the previous theoretical results.

3. PROTOCOL TO COMPUTE DISTANCES

We now describe a three-party protocol which uses SMH to estimate
the distance between two private signals without revealing them.

Input: Alice and Bob have x1 and x2 ∈ RN respectively.
Output: Alice and/or Bob obtain an estimation of ‖x1 − x2‖, pro-
vided it is lower than some threshold.
Protocol:

1. Alice and Bob agree on a threshold T and precision ε, and com-
pute k and M using results from propositions 3 and 4.

2. Alice generates (k,A, U) and sends them to Bob securely, this is

aij ∼ N
(
0,
π

2

)
and ui ∼ Unif(0, k)

3. Alice computes Qk,A,U (x1) and sends it to Charlie.

4. Bob computes Qk,A,U (x2) and sends it to Charles.

5. Charles computes d = dLee (Qk,A,U (x1) , Qk,A,U (x2)) and
sends d to Alice and Bob.

First, we can see that after this protocol no party gets anything
more than the estimate of ‖x1 − x2‖. Alice and Bob never see each
others’ vectors. Charlie never sees the plain vectors and receives
just two vectors in ZMk , where each one can be seen as a sequence
of independent realizations of draws from a uniform distribution in
Zk. Since Charles does not know (A,U), he does not have any
mechanism to reconstruct the actual vectors, and even extract any
kind of information more than the distance between them.

Note that it is important that Charlie must not know (A,U); oth-
erwise he may reconstruct the original vectors, particularly if he has
some knowledge of the domain of the signals. For the same reason
Alice and Bob cannot directly share their hashes after sharing the
key (k,A, U). Provided these conditions are followed, the scheme
can be shown to be information theoretically secure.

One drawback of this protocol is related to the key transmission.
Indeed, if the vectors have a high dimension, transmitting the matrix
A may cause a communication overhead. However, we can make A
public because the security property of the hash reside on the random
vector U . Hence, we can adapt the protocol as follows:

Input: Alice and Bob have x1 and x2 ∈ RN respectively. The
N ×M matrix A is public.
Output: Alice and/or Bob obtain an estimation of ‖x1 − x2‖, pro-
vided it is lower than some threshold.
Protocol:
1. Alice generates aM -dimensional vector U with ui ∼ Unif(0, k),

and a random permutation ofM componentsP . Then Alice sends
(U,P) to Bob.

2. Alice computesP(Qk,A,U (x1)) privately and sends it to Charles.

3. Bob computes P(Qk,A,U (x2)) privately and sends it to Charles.

4. Charles computes d = dLee (Qk,A,U (x1) , Qk,A,U (x2)) and
sends d to Alice and Bob.

Note that, despite the fact that vector U results in hashes with
uniform distribution, we added the permutation P in order to ob-
struct an exhaustive reconstruction by exploring all possible values
of U . Following a similar analysis to the first protocol we can con-
clude that this protocol is secure.

However, these protocols have the disadvantage that the third
party has access to the estimate of the euclidean distance between
x1 and x2. Ideally we would like not to trust the third party to know
this. In the next section we explore some solutions for this setting.

4. PROTOCOL TO HIDE DISTANCE VALUE

In order to not reveal the distance to the Third Party, we propose
two protocols. The first does not consider the Third Party, and the
distance computation between two real valued vectors is based on a
Secure Hamming Distance computation between binary vectors.

The second protocol considers the idea of adding noise to the
hashes in order to hide the true distance value.

4.1. No Third Party

One way to prevent the use of a Third Party is to establish a crypto-
graphic protocol which lets us compute the Lee Distance privately.

However, the computation of the Lee Distance involves a minimum
between two numbers, a task that can increase the computational
complexity.

Nevertheless, it is possible to reduce the Lee distance computa-
tion to a Hamming Distance computation. In fact, we can encode
any element in Zk as a vector in {0, 1}

k
2 . In particular, if a ∈ Zk,

we define c(a) ∈ {0, 1}
k
2 as follows:

If a ≤ k
2

,

c(a)i =

{
1 if i ≤ a
0 otherwise

If a > k
2

,

c(a)i =

{
0 if i ≤ a− k

2
1 otherwise

For example, in Z6 the coding left

c(0) =

 0
0
0

 c(1) =

 1
0
0

 c(2) =

 1
1
0



c(3) =

 1
1
1

 c(4) =

 0
1
1

 c(5) =

 0
0
1


This kind of coding has the property that

dLee(a, b) = dHamming(c(a) , c(b)) =

k/2∑
i=1

c(a)i ⊕ c(b)i

Therefore, an element z ∈ ZMk can be coded as c(z) ∈
{0, 1}M·

k
2 , where

c(z)> =
[
c(z1)

>, c(z2)
>, · · · , c(zM)>

]
Then, the Mean Lee Distance between z1 and z2 ∈ ZMk is equal

to
dHamming(c(z1), c(z2))

M
With this result we enable the estimation of the euclidean dis-

tance between two points in RN using the Hamming distance of two
binary vectors. As a consequence, we can replace the Third Party
computation by any protocol which computes securely the Ham-
ming distance between binary vectors; for example, in [9] defines
a two party protocol based on Oblivious Transfer.

To summarize, we define the following protocol,
Protocol:
1. Alice generates (k,A, U) and sends them to Bob.

2. Alice computes c(Qk,A,U (x1)) privately.

3. Bob computes c(Qk,A,U (x2)) privately.

4. Alice and Bob apply a secure two party protocol to compute the
Hamming distance d between c(Qk,A,U (x1)) and c(Qk,A,U (x2)).

5. Alice and Bob compute the estimate of ‖x1 − x1‖ as d
M

.

Unlike most protocols based on homomorphic encryption to
compute the euclidean distance, the complexity of the presented
protocols does not depend on the dimensionality of the vector at the
moment of applying the cryptographic technique. Hence, our pro-
posal for computing the euclidean distance between two vectors is to
embed them in binary vectors and compute the Hamming distance
between them.

One problem of this protocol is the fact we lose information-
theoretical privacy, unlike the previous ones.

4.2. Obfuscating Information to the Third Party

One alternative is to retain the Third Party but hide information from
it through obfuscation. We simply propose adding noise to the cor-
responding hashes. The protocol is as follows:
Protocol:
1. Alice generates (k,A, U), two independent vectors z1 and z2 in

ZPk , where each component is independent and distributed uni-
formly in Zk, and a permutation P ofM+P elements, and sends
(k,A, U, z1, z2,P) to Bob.

2. Alice computes P
([

Qk,A,U (x1))
z1

])
privately, and sends it

to Charlie.

3. Bob computes P
([

Qk,A,U (x2))
z2

])
privately, and sends it to

Charlie.

4. Charlie computes the Mean Lee distance d between the received
vectors and sends it to Alice and Bob.

5. Alice and Bob compute privately the Mean Lee distance d̃ be-
tween z1 and z2 and compute

(M + P) · d− P · d̃
M

obtaining the estimate of ‖x1 − x2‖.

It is easy to see that Mean Lee distance between Qk,A,U (x1)) and
Qk,A,U (x1)) is equal to the last expression of the protocol. One
of the advantages of this protocol is the fact that, when P is large

enough, P
([

Qk,A,U (x2))
z2

])
is indistinguishable from a vector

with uniformly distributed i.i.d components, therefore, the value of
d should be close to k

4
for every pair x1 and x2.

A natural drawback is that the number of parameter to run the
protocol, which may cause a computational overhead.

5. CONCLUSIONS

In this paper we have presented a random transformation, that given
a threshold T , can generate hashes from vectors that preserving the
euclidean distance between them if it is smaller than T . These hashes
are uninformative if the random parameters of the function are un-
known.

With this kind of transformation, we are able to describe pro-
tocols to compute distances privately and efficiently. In fact, the
proposed transformation is not only uninformative, it can be see as a
transformation which reduces the data dimension and preserves the
euclidean distance through the Lee distance output space.

Although the fact that the distance is preserved until some
threshold seems to be a drawback, if both Alice and Bob know the
maximum possible distance between their vectors, then they can
set an appropriate value of k which lets preserve distances to any
desired threshold. We also describe how to hide the distance value
from the third party, action that may increase the computational cost
of the protocol, as it is expected.

We still have many questions. How can we extend these pro-
tocols to multiparty versions? How easy is a reconstruction of x
knowing Qk,A,U (x) and (k,A, U)? We have also trusted the third
party to not collude with Alice or Bob. Can this restriction be lifted?

6. APPENDIX - PROOFS

Theorem 2. ∀x1 ,x2 ∈ RN , ∀i ∈ {1, ...,M}, ∀k even, then
we obtain the following relation between the ith components of
Qk,A,U (x1) and Qk,A,U (x2):

E [dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)] =

k

4
− 2k

π2

∞∑
j=1

1

(2j − 1)2
e
−2

(
π‖x1−x2‖(2j−1)

δk

)2

Proof

We can consider, with loss of generality, that M = 1.
We have that

P

(
dLee(Qk,A,U (x1), Qk,A,U (x2)) ≤ j

∣∣∣∣∣ ‖A(x1 − x2)‖

)

is given by the function gk depending onL = ‖A(x1 − x2)‖,
described in the following figure

Besides, we know that the density function of L is

fL(l) =

√
2

π

δ

‖x1 − x2‖
e
− δ2l2

2‖x1−x2‖2

Then

P (dLee(Qk,A,U (x1), Qk(x2)) ≤ j) =
∫ ∞
0

gk(l)fL(l)dl

But, since both gk and fL are positive, we can extend these
functions over real line, defining g̃k as

g̃k(x) =

{
gk(x) if x ≥ 0
gk(−x) if x < 0

Similarly we define f̃L. Then

P (dLee(Qk,A,U (x1), Qk,A,U (x2)) ≤ j) =
1

2

∫ ∞
−∞

g̃k(l)f̃L(l)dl

However, we can see that

g̃k(l) = traink ∗ h (l)

where

traink(l) =
∞∑

i=−∞

δ(l − ik)

and

h(x) =


x + j + 1 if x ∈ [−j − 1,−j]

1 if x ∈ [−j, j]

−x + j + 1 if x ∈ [j, j + 1]

0 otherwise

Additionally, using the Parseval’s theorem we have

P (dLee(Qk,A,U (x1), Qk,A,U (x2)) ≤ j) =
1

2

∫ ∞
−∞

ˆ̃gk(ξ)
ˆ̃
fL(ξ)dξ

where ˆ̃gk and ˆ̃
fL are the Fourier transform of g̃k and f̃L re-

spectively. But, using the definition of g̃k we have

ˆ̃gk(ξ) = ĥ(ξ) · ˆtraink(ξ)

=
1

2π2ξ2
(cos(2πξj)− cos(2πξ(j + 1)))

·

(
1

k

∞∑
i=−∞

δ

(
ξ − i

k

))

because

ĥ(ξ) =
1

2π2ξ2
(cos(2πξj)− cos(2πξ(j + 1)))

On the other hand, since f̃L is a gaussian, it is easy to see

ˆ̃
fL(ξ) = 2e

−2
(
π‖x1−x2‖ξ

δ

)2

Therefore

P (dLee(Qk,A,U (x1), Qk,A,U (x2)) ≤ j)

=

∫ ∞
−∞

1

k

1

2π2ξ2
(cos(2πξj)− cos(2πξ(j + 1)))

·
∞∑

i=−∞

δ

(
ξ − i

k

)
e
−2

(
π‖x1−x2‖ξ

δ

)2

dξ

=
1

k

∞∑
i=−∞

1

2
(
πi
k

)2 [cos(2πj ik
)
− cos

(
2π(j + 1)

i

k

)]
· e−2

(
π‖x1−x2‖i

δk

)2

=
k

π2

∞∑
i=1

[
cos
(
2πj i

k

)
− cos

(
2π(j + 1) i

k

)]
i2

e
−2

(
π‖x1−x2‖i

δk

)2

+
2j + 1

k

Finally, noting that if k is even, we have

0 ≤ dLee(Qk,A,U (x1), Qk,A,U (x2)) ≤
k

2

And

E [dLee(Qk,A,U (x1), Qk,A,U (x2))]

=

k/2∑
i=0

1− P (dLee(Qk,A,U (x1), Qk,A,U (x2)) ≤ j)

we can prove that

E [dLee(Qk,A,U (x1), Qk,A,U (x2))] =

k

4
− 2k

π2

∞∑
i=1

1

(2i− 1)2
e
−2

(
π‖x1−x2‖(2i−1)

δk

)2

�

Corollary

k

4
− k

4
e
−2

(
π‖x1−x2‖

δk

)2

≤

E[dLee(Qk,A,U (x1), Qk,A,U (x2))] ≤
k

4
− 2k

π2
e
−2

(
π‖x1−x2‖

δk

)2

Proof

Considering just the first term of the series, we have

E[dLee(Qk,A,U (x1), Qk,A,U (x2))] ≤
k

4
−2k

π2
e
−2

(
π‖x1−x2‖

δk

)2

On the other hand, we can notice that

∞∑
i=1

1

(2i− 1)2
e
−2

(
π‖x1−x2‖(2i−1)

δk

)2

≤
∞∑
i=1

1

(2i− 1)2
e
−2

(
π‖x1−x2‖

δk

)2

= e
−2

(
π‖x1−x2‖

δk

)2 ∞∑
i=1

1

(2i− 1)2

= e
−2

(
π‖x1−x2‖

δk

)2 π2

8

Then, applying this inequality, the second inequality holds.
�

Proposition 1. Let δ =
√

2
π

. Defining the error

ε(‖x1 − x2‖, k) :=
|E[dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)]− ‖x1 − x2‖|

the following relation holds:

ε(‖x1 − x2‖, k) ≤ F (‖x1 − x2‖, k)

where

F (t, k) = t · exp
(
− k2

4πt2

)
Proof

Using the same scheme as in the proof of theorem 2, we can
see that

E [dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)] =

∫ ∞
0

fL(u)w(u)du

where fL is given by

fL(u) =

√
2

π

δ

‖x1 − x2‖
e
− δ2u2

2‖x1−x2‖2

and w by the function shown in the following plot

It is easy to see that

w(u) ≤ u ∀u

then

E [dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)] ≤
∫ ∞
0

fL(u)u du

=

√
2

π
· ‖x1 − x2‖

δ

Besides, noting that

dLee (Qk,A,U (x1)i, Qk,A,U (x2)i) ≥ 0

we can write∣∣∣∣∣E [dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)]−
√

2

π
· ‖x1 − x2‖

δ

∣∣∣∣∣ =∣∣∣∣∫ ∞
0

fL(u) · (w(u)− u) du
∣∣∣∣

but

∣∣∣∣∫ ∞
0

fL(u) · (w(u)− u)du
∣∣∣∣ ≤ ∫ ∞

k
2

fL(u) · u du

and we have

∫ ∞
k
2

fL(u) · u du =

√
2

π

‖x1 − x2‖
δ

e
− δ2k2

8‖x1−x2‖2

Hence, setting δ =
√

2
π

we have

∣∣∣∣∣E [dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)]− ‖x1 − x2‖

∣∣∣∣∣ ≤
‖x1 − x2‖ · e

− k2

4π‖x1−x2‖2

And defining

F (‖x1 − x2‖ = ‖x1 − x2‖ · e
− k2

4π‖x1−x2‖2

we have the result.
�

Proposition 2. ∀ε > 0 , ∀T > 0, ∃k even, ∀‖x1 − x2‖ < T

ε(‖x1 − x2‖, k) < ε

Proof

To see this is enough to verify that F (t, k) is increasing in t
and when k tends to infinity F (t, k) tends to 0.
To see that F increases in twe can just compute the derivative
and it is easy to verify that is positive.
On the other hand, it is clear that, when k tends to infinity,
F (t, k) tends to zeros for every value of t

�

Proposition 3. For δ =
√

2
π

, if M ≥ log(2)·(β+1)·k2
8ε2

, then

P

(∣∣∣dLee (Qk,A,U (x1) , Qk,A,U (x2))−

E
[
dLee (Qk,A,U (x1)i , Qk,A,U (x2))i

] ∣∣∣ < ε

)
≥ 1− 1

2β

Proof

The Hoeffding inequality establish that, if Xi ∈ [ai, bi], and
X =

∑
iXi, then

P (|E(X)−X| ≥ δ) ≤ 2 exp

(
−2δ2∑

i(bi − ai)2

)
In our case, noting that

0 ≤ dLee(Qk,A,U (x1), Qk(x2)) ≤
k

2

we have

P

(∣∣∣∣∣E(dLee(Qk,A,U (x1)i, Qk,A,U (x2)))

−
∑M
i=1 dLee (Qk,A,U (x1)i, Qk,A,U (x2)i)

M

∣∣∣∣∣ ≥ ε
)

≤ 2 exp

(
−8Mε2

k2

)
Then, setting

2 exp

(
−8Mε2

k2

)
= 2−β

We can conclude that a sufficient condition is to consider

M ≥ log(2) · (β + 1)k2

8ε2

�

7. REFERENCES

[1] M. Pathak and B. Raj, “Privacy-Preserving Speaker Verifica-
tion and Identification Using Gaussian Mixture Models.” IEEE
Transactions on Audio, Speech and Language Processing, Vol
21:2, pp. 397-406, 2013.

[2] M. Naehrig, K. Lauter and V. Vaikuntanathan, “Can homomor-
phic encryption be practical?.” Proceedings of the 3rd ACM
workshop on Cloud computing security workshop, 2011.

[3] S. Rane and P. T. Boufounos, “Privacy-Preserving Nearest
Neighbor Methods: Comparing Signals Without Revealing
Them.” IEEE Signal Processing Magazine, Vol. 30(2), pp. 18-
28, 2013.

[4] Y. Wang, P. Ishwar and S. Rane, “Information-theoretically se-
cure three-party computation with one active adversary.” 2012.
[Online]. Available: http://arxiv.org/abs/1206.2669

[5] P. Indyk and R. Motwani. “Approximate Nearest Neighbors: To-
wards Removing the Curse of Dimensionality.” Proceedings of
30th Symposium on Theory of Computing, 1998.

[6] M. Datar, N. Immorlica, P. Indyk and V.S. Mirrokni, “Locality-
Sensitive Hashing Scheme Based on p-Stable Distributions.”
Proceedings of the Symposium on Computational Geometry,
2004.

[7] A. Jimenez, B. Raj, J. Portelo and I. Trancoso, “Secure Modular
Hashing.” Proceedings of WIFS, 2015.

[8] E. Deza and M. Deza, “Dictionary of Distances”, Elsevier, 2014.

[9] J. Bringer, H. Chabanne and A. Patey, “SHADE: Secure HAm-
ming DistancE Computation from Oblivious Transfer.” Finan-
cial Cryptography and Data Security Volume 7862 of the series
Lecture Notes in Computer Science pp 164-176. 2013.

http://arxiv.org/abs/1206.2669

	1 Introduction
	2 Limited Distance Computation through Modular Hashes
	2.1 Modular Hashing
	2.2 Limited Euclidean Distance from Secure Modular Hashes

	3 Protocol to Compute Distances
	4 Protocol to Hide Distance Value
	4.1 No Third Party
	4.2 Obfuscating Information to the Third Party

	5 Conclusions
	6 Appendix - Proofs
	7 References

