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ABSTRACT 

 
This paper presents a strategy for enabling speech recognition 

to be performed in the cloud whilst preserving the privacy of 

users. The approach advocates a demarcation of 

responsibilities between the client and server-side 

components for performing the speech recognition task. On 

the client-side resides the acoustic model, which symbolically 

encodes the audio and encrypts the data before uploading to 

the server. The server-side then employs searchable 

encryption to enable the phonetic search of the speech 

content. Some preliminary results for speech encoding and 

searchable encryption are presented. 

 

Index Terms— Speech recognition, privacy, searchable 

encryption, GPGPU computing 

 

1. INTRODUCTION 

 

In many activities involving big data, cloud computing offers 

a common distributed infrastructure for the storage of large 

amounts of data in a scalable, efficient, and low cost way. For 

sensitive data there is the possibility to use encryption for the 

secure storage of data in the cloud. However, whilst we have 

become increasingly good at encrypting data at rest, in order 

to process the data on the cloud we first need to decrypt it, 

which in turn excludes the possibility for using the cloud’s 

resources to process sensitive data, unless it can be done in a 

secure way. 

Speech contains biometric and other information which 

should remain private and therefore inaccessible to the cloud 

provider. Cloud users want to hide sensitive data such as 

speech, from cloud providers; similarly, companies using 

cloud services want to protect their intellectual property from 

cloud providers and users. Hence the need for strategies for 

processing data securely in the cloud becomes increasingly 

more important. 

Speech is not reproducible in the sense that no speaker is 

capable of making the same utterance the same way twice, 

there are always small acoustic differences between 

utterances that have the same base transcription and this is a 

particular challenge of performing encrypted speech 

recognition. By reformulating the typical speech recognition 

task in such a way as to facilitate cloud computation, for 

example by reducing speech recognition to a search 

procedure [1], we demonstrate how secure speech processing 

in the cloud can be realized. 

 

2. PROPOSED ARCHITECTURE 

 

Our proposed solution involves the compression of speech 

containing biometric identifiers to a symbolic representation 

[1] that anonymizes the users’ identity, and then on the other 

hand to use searchable symmetric encryption [2] to enable the 

finding of strings of symbols (e.g. phones) in an encrypted 

speech transcription. Encrypted string matching will then be 

performed to realize the language modelling component of 

the speech recognition system [3]. Fig. 1 illustrates the 

concept and the demarcation of responsibilities between the 

client and cloud server. 

 

 
 

Fig. 1. The client and cloud server concept and division 

of responsibilities for the speech processing task 

 

Speech recognition is typically broken down into acoustic 

and language modelling tasks. The acoustic model converts 

raw speech wave forms into acoustic units such as phones. 

The language model incorporates natural language 

processing and Bayesian probability theory to infer the text 

transcription, given what is known of a particular language, 

and what words the sequences of phones likely correspond to. 

As can be seen from Fig. 1, in the proposed system, the 

acoustic model resides on the client-side and the language 

model resides on the server/cloud-side. 
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3. PRIVACY PRESERVING SPEECH ENCODING 

 

Regarding privacy preservation, in the cloud modality we 

need to make sure that personal information is not shared on 

the cloud. Since speech is a biometric data type, it is possible 

to identify someone and accurately infer a whole host of 

information that extends beyond the obvious information 

such as gender, to data such as height, weight, age, health and 

so on. Hence we need to ensure that speech itself is never in 

an unencrypted form on the cloud.  

Traditionally, Automatic Speech Recognition (ASR) 

involves multiple successive layers of feature extraction to 

compress the amount of information processed from the raw 

audio so that the training of the acoustic model does not take 

an unreasonably long time. However, in recent years with 

increases in computational speed, adoption of parallel 

computation with GPGPUs, and advances in neural networks, 

many researchers are replacing traditional ASR algorithms 

with data-driven approaches that simply take the audio data 

in its frequency form (e.g. spectrogram) and process it with a 

Deep Neural Network (DNN), or more appropriately (since 

speech is temporal) with a Recurrent Neural Network (RNN) 

that can be trained quickly with GPGPUs. The RNN then 

converts the spectrogram directly to phonetic symbols and in 

some cases directly to text [4]. 

The problem with many of these approaches from the 

encryption point of view is that they typically combine the 

acoustic model and the language model with one neural 

network. This involves aligning the acoustic data (containing 

sensitive biometrics) at various stages of the network training 

with the text transcription with Expectation Maximization, 

Viterbi Search or Connectionist Temporal Classification [5]. 

In our approach, we propose that a higher level of privacy 

preservation can be attained by separating the acoustic and 

language model training between the client and server-sides 

of the system. Thus we need a way to train the acoustic model 

in isolation to the language model. In the acoustic model we 

use spectrograms as input and phonemes as output classes for 

training with a Convolutional Neural Network (CNN). Being 

able to train a system to identify time-frequency intervals in 

acoustic data and relate it to acoustic units such as phonemes 

requires extremely accurate labelling of acoustic data, and 

this is afforded by the well-known TIMIT speech corpus [6]. 

 

3.3. Preliminary Experiments 

 

We use an implementation of the GoogLeNet architecture [7, 

8] with Stochastic Gradient Descent (SGD) for training with 

the phonetic transcription within the TIMIT corpus. Once the 

CNN acoustic model is trained it is then uploaded to the 

client-side and used to perform inferencing, encoding the 

audio as phonetic symbols. The audio is first converted to 

Short-Term Fourier Transform (STFT) spectrograms and 

passed to the trained CNN which classifies the sliding 

windows operating over the spectrogram into phonetic 

symbols. Fig. 2 illustrates the operation of this convolutional 

speech encoder, where the sliding windows operating over 

the spectrogram (each one is 256×256 greyscale pixels) are 

classified by the CNN into phoneme classes. These are then 

encrypted with AES and uploaded to the cloud. Hence as well 

as storing encrypted audio the cloud also stores a symbolic 

representation of the encrypted speech data. 

 

 
 

Fig. 2. Client-side convolutional speech encoder 

 

4. ENCRYPTED PHONETIC SEARCH 

 

We make some assumptions regarding the potential places of 

attacks that we need to address for the development of the 

security of the speech processing system. The server is 

assumed to be ‘friendly but curious’, meaning that it will not 

actively try and break the encryption but will monitor the 

traffic and infer the content of the audio if it can, which means 

that the data should be encrypted. The communication 

channels will be assumed to be under threat from an 

adversary. The communication channels will be used to 

transmit AES encrypted symbolic speech data, and return 

AES encrypted search results and transcriptions. This is the 

basis by which we will design suitable encryption.  

 

4.1. Deterministic Encryption 
 

Deterministic encryption always encrypts the same message 

to the same cipher text. The property preserved by 

deterministic encryption is equality, i.e. for any given two 

encryptions one can test if the underlying messages are equal 

by checking the given cipher texts. Due to this equality 

property, the encrypted database leaks a large amount of data 

even before the client searches. This means that if the server 

sees two or more equal cipher texts in the encrypted database, 

it knows that the corresponding encrypted documents contain 

a keyword in common. In addition, the server learns the 

frequency with which keywords appear which makes the 

encrypted database vulnerable to frequency analysis. Another 

issue is that since tokens are deterministic encryptions of the 

search terms, the server will always know whether the client 



is repeating a search or not. A third issue occurs when the 

deterministic encryption scheme is based on a public-key 

scheme. In this case, all the deterministic encryptions (both 

in the encrypted database and in the tokens) are encrypted 

using the client’s public key which is available to the server. 

The server can then mount a dictionary attack on the 

encrypted database by encrypting a list of possible keywords 

and comparing them to the ones found in the encrypted 

database and in the tokens. If it finds a match, then it knows 

the keyword. Hence the solution based on deterministic 

encryption supports fast search on encrypted data. 

Searchable encryption based on identity based 

encryption (IBE) is secure in the traditional cipher text 

indistinguishability sense. The anonymity requirement 

informally states that cipher texts leak no information 

regarding the identity of the recipient, leading to the 

commonly desired keyword-privacy guarantees over cipher 

texts in searchable encryption. The standard notion of cipher 

text indistinguishability in IBE informally means that it is 

hard for computationally bounded adversaries to find two 

distinct keywords such that the trapdoors for the first 

keyword positively match the cipher texts of the second. 

 

4.2. Ranked Searchable Encryption (RSE) 
 

We will consider the client-server infrastructure by 

visualizing a scenario in which there are two parties, Alice 

(Client) and a cloud server. Alice intends to upload all her 

documents (encrypted speech files) D = {D1, D2, …, Di} to 

the cloud server to enable remote access. The cloud server 

performs the searching of the relevant documents on behalf 

of Alice. In the scheme it is assumed that the cloud server acts 

in a known and designated manner but is equally also willing 

and curious to get hold of any information about the 

documents held with it. To prevent theft of any of the 

information Alice decides to encrypt all the documents. Once 

the documents are encrypted and outsourced she is 

challenged with the problem of searching on the encrypted 

documents. Whenever Alice decides to view a particular file 

she has to download all the documents from the cloud server 

and after decrypting all of them she can get hold of her 

required set of files. This creates unnecessary network traffic 

and post processing overhead. Alice decides to outsource the 

documents in such a way that she would only have to 

download the relevant and desired documents while keeping 

the security and privacy of the outsourced files intact. This 

requires a scheme to be developed that would facilitate 

performing textual searches over encrypted data. 

Searching over encrypted documents is performed in 

three phases (Setup, Searching and Outcome). The first phase 

i.e. the Setup Phase, comprises the three steps Keyword 

Identification, Client Index Generation and Server Index 

Generation. In the first step Alice generates an exhaustive set 

of unique Keywords W = {W1, W2, …, WN} from the set of 

documents D to be outsourced. Next Alice builds a client-side 

index table Ic. The Ic is stored with Alice and is never revealed 

to the cloud server. In the final step, Alice generates a secure 

ranked server-side index Is and outsources it to the cloud 

server along with the encrypted set of documents D. This 

involves the relevant frequencies of the keywords to be 

calculated and inserted into the index table. 

 

 

In the Searching Phase, Alice generates a Trapdoor Ti for the 

particular keyword Wi she is willing to search. Ti is then 

transmitted to the cloud server to facilitate the search. In the 

Outcome Phase the cloud server returns the encrypted set of 

desired files to Alice in the ranked order. Fig. 3 shows the 

flow of events of the proposed RSE scheme where a client is 

interacting with a cloud server. It can be seen that all the tasks 

are performed by the client, whereas, the searching is done at 

the cloud server side. 

 

 
 

Fig. 4. Server-side index table generation 

 

Pre-processing is done on the client side in three major 

steps, namely frequency computation, client-side index 

generation and server-side index generation. With frequency 

computation, the scheme computes the frequency of the 

 
 

Fig. 3. RSE Flow of Events 



words appearing in each of the selected files. The next task is 

to generate the client-side index. The client side index table 

is a collection of all key words each assigned with a unique 

integer other than 0 and 1. If the total number of a set of 

keywords is, say, ‘N’ in number, then a prime number ‘p’ is 

chosen such that p > N. All integers that are assigned for the 

keywords are from the set {2, 3, …, p-1}. 

The client-side index table is simply just a key for the 

keywords, which in our case are phonetic symbols. The 

server-side index table keeps track of the distribution of the 

keywords throughout the documents. The server-side index 

table is a frequency table with three modifications: Firstly, 

the words are replaced by the integers which are the 

multiplicative inverse of their corresponding client-side 

index computed modulo prime p. For example, the client-side 

index of this is 2. The multiplicative inverse of 2 in modulo 

228199 is 114100. So in the Server-side index table, the word 

‘this’ is replaced by 114100. Secondly, the file names in the 

frequency table are replaced by the encrypted file names. For 

example, word.doc is replaced by AES (word.doc) as shown 

in the figure. Lastly, the frequencies are replaced by relevant 

scores which are computed using the following formula: 

 

𝑆𝑐𝑜𝑟𝑒(𝑄, 𝐹𝑑) = ∑
1

|𝐹𝑑|
(1 + ln 𝑓𝑑,𝑡) ln (1 +

𝑁

𝑓𝑡
)𝑡∈𝑄  (1) 

 

As is illustrated by Fig. 4, to search for a keyword, say 

the phoneme ‘n’, the client will compute E = (Decimal (AES 

(‘n’))) mod 228199 and the trapdoor K = (Decimal (AES 

(‘n’)) * 3) mod 228199. Note that 3 is the client-side index of 

the phonetic symbol ‘n’.  On the server side, after receiving 

(K, E), K will be multiplied modulo 228199 with the integers 

occurring in the first row of server-side index table one by 

one unless product matches K. For example, since the 

multiplicative inverse of 3 in modulo 228199 is 152133, (K × 

152133) mod 228199 = Decimal (AES (‘n’)) mod 228199 = 

E. Now the entries of the column corresponding to the integer 

152133 are to be checked. The higher the score, the more 

relevant the corresponding file is with respect to the search. 

If the number of files in which the search is be performed is, 

say, 2, then the top two files according to the top two relevant 

scores for the keyword ‘n’ are 7.7 and 5.7 and the 

corresponding encrypted files are new.docx and Latest.doc. 

So the server will return the encrypted new.docx first and 

then Latest.doc.  

 

4.2. Searching for Sequences of Phones 

 

To improve the usability of the scheme we have recently 

extended it to enable the searching of strings of phonetic 

symbols. In effect a simple lexicon can reside on the client-

side, and then the end-user can search using words, the 

lexicon can transform the search into strings of phones and 

then the encrypted search can be performed. The 

modification to the slight modification to the server-side 

index table. Basically the relevance score (Eq. 1) is replaced 

with a string of integers indicative of a hash chain. To 

implement the hash chain functionality, the server side index 

table has the various phonetic symbols coded into the column 

entries of the table. Take a randomly generated lambda-bit 

integer, say r, then the first column in the server side index 

table will be r, the next column will be H(r), the third column 

will be H2(r) and in general the column corresponding to the 

i-th symbol will be Hi-1(r), where H() is a cryptographically 

strong keyed hash function (SHA-1 or SHA-2). 

So to search for the encrypted audio on the cloud 

containing a particular word, say the word ‘test’ we look up 

the lexicon that says we need to search the encoded speech 

repository for the phonetic string ‘t eh s t’. Then all entries 

corresponding to the symbol ‘t’ are masked with 𝐻𝑘𝑚
(𝑡). 

Similarly, entries corresponding to other keywords are 

masked. Hence to search for the string ‘t eh s t’ for each 

symbol 𝑠𝑖 the client will compute: 

 

𝑘𝑖 = 𝐻(𝑑𝑒𝑐𝑖𝑚𝑎𝑙(AES( 𝑠𝑖 )) + c +𝐻𝑘𝑚
(𝑠𝑖)) 

𝑘𝑖
𝑡𝑑 = 𝑑𝑒𝑐𝑖𝑚𝑎𝑙(𝐴𝐸𝑆( 𝑠𝑖  )) ∗  𝑐 𝑚𝑜𝑑 𝑝  (2) 

𝑚𝑠𝑘𝑖 = 𝑑𝑒𝑐𝑖𝑚𝑎𝑙(AES( 𝑠𝑖  ))−1 ∗ 𝐻𝑘𝑚
(𝑠𝑖) 

where 𝑐 is the client side index for the phonetic symbol under 

question. The search query is then of the form: 

({𝑘1, 𝑘1
𝑡𝑑, 𝑚𝑠𝑘1}, {𝑘2, 𝑘2

𝑡𝑑, 𝑚𝑠𝑘2}, {𝑘3, 𝑘3
𝑡𝑑, 𝑚𝑠𝑘3}, 

{𝑘4, 𝑘4
𝑡𝑑 , 𝑚𝑠𝑘4}). Using the RSE searchable encryption 

described previously, the server will detect the columns 

corresponding to ‘t’, ‘eh’, ‘s’, ‘t’ and return the AES 

encrypted audio filename. 

 

5. CONCLUSIONS 

 

We have presented an outline of encrypted phonetic search of 

audio stored on the cloud. Whilst the complete system is still 

in development the rationale for how the system works has 

been presented along with specification and preliminary 

operation of many of the core modules. The rationale 

advocates that audio data is uploaded to the cloud and 

remains encrypted once it leaves the client-side. On the 

client-side the audio data is additionally encoded into 

symbols by a novel CNN based acoustic model. The encoded 

speech (phonetic symbolic strings) are then encrypted with 

AES and uploaded to the cloud. RSE provides the capability 

to perform phonetic searching of the encoded audio securely 

in the cloud realizing the speech recognition task. The 

inherent trapdoor security that RSE employs preserves the 

privacy of searches. 
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