

City, University of London Institutional Repository

Citation: Glackin, C., Chollet, G., Dugan, N., Cannings, N., Wall, J., Tahir, S. F., Ray, I. G.

& Rajarajan, M. (2017). Privacy preserving encrypted phonetic search of speech data. 2017
IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings,
pp. 6414-6418. doi: 10.1109/icassp.2017.7953391

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18491/

Link to published version: https://doi.org/10.1109/icassp.2017.7953391

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

PRIVACY PRESERVING ENCRYPTED PHONETIC SEARCH OF SPEECH DATA

Cornelius Glackin1*, Gerard Chollet1, Nazim Dugan1, Nigel Cannings1, Julie Wall2,

Shahzaib Tahir3, Indranil Ghosh Ray3, and Muttukrishnan Rajarajan3

1 Intelligent Voice Ltd., London, UK 2 University of East London, London, UK 3 City University London, London, UK

Email: neil.glackin@intelligentvoice.com*

ABSTRACT

This paper presents a strategy for enabling speech recognition

to be performed in the cloud whilst preserving the privacy of

users. The approach advocates a demarcation of

responsibilities between the client and server-side

components for performing the speech recognition task. On

the client-side resides the acoustic model, which symbolically

encodes the audio and encrypts the data before uploading to

the server. The server-side then employs searchable

encryption to enable the phonetic search of the speech

content. Some preliminary results for speech encoding and

searchable encryption are presented.

Index Terms— Speech recognition, privacy, searchable

encryption, GPGPU computing

1. INTRODUCTION

In many activities involving big data, cloud computing offers

a common distributed infrastructure for the storage of large

amounts of data in a scalable, efficient, and low cost way. For

sensitive data there is the possibility to use encryption for the

secure storage of data in the cloud. However, whilst we have

become increasingly good at encrypting data at rest, in order

to process the data on the cloud we first need to decrypt it,

which in turn excludes the possibility for using the cloud’s

resources to process sensitive data, unless it can be done in a

secure way.

Speech contains biometric and other information which

should remain private and therefore inaccessible to the cloud

provider. Cloud users want to hide sensitive data such as

speech, from cloud providers; similarly, companies using

cloud services want to protect their intellectual property from

cloud providers and users. Hence the need for strategies for

processing data securely in the cloud becomes increasingly

more important.

Speech is not reproducible in the sense that no speaker is

capable of making the same utterance the same way twice,

there are always small acoustic differences between

utterances that have the same base transcription and this is a

particular challenge of performing encrypted speech

recognition. By reformulating the typical speech recognition

task in such a way as to facilitate cloud computation, for

example by reducing speech recognition to a search

procedure [1], we demonstrate how secure speech processing

in the cloud can be realized.

2. PROPOSED ARCHITECTURE

Our proposed solution involves the compression of speech

containing biometric identifiers to a symbolic representation

[1] that anonymizes the users’ identity, and then on the other

hand to use searchable symmetric encryption [2] to enable the

finding of strings of symbols (e.g. phones) in an encrypted

speech transcription. Encrypted string matching will then be

performed to realize the language modelling component of

the speech recognition system [3]. Fig. 1 illustrates the

concept and the demarcation of responsibilities between the

client and cloud server.

Fig. 1. The client and cloud server concept and division

of responsibilities for the speech processing task

Speech recognition is typically broken down into acoustic

and language modelling tasks. The acoustic model converts

raw speech wave forms into acoustic units such as phones.

The language model incorporates natural language

processing and Bayesian probability theory to infer the text

transcription, given what is known of a particular language,

and what words the sequences of phones likely correspond to.

As can be seen from Fig. 1, in the proposed system, the

acoustic model resides on the client-side and the language

model resides on the server/cloud-side.

mailto:neil.glackin@intelligentvoice.com

3. PRIVACY PRESERVING SPEECH ENCODING

Regarding privacy preservation, in the cloud modality we

need to make sure that personal information is not shared on

the cloud. Since speech is a biometric data type, it is possible

to identify someone and accurately infer a whole host of

information that extends beyond the obvious information

such as gender, to data such as height, weight, age, health and

so on. Hence we need to ensure that speech itself is never in

an unencrypted form on the cloud.

Traditionally, Automatic Speech Recognition (ASR)

involves multiple successive layers of feature extraction to

compress the amount of information processed from the raw

audio so that the training of the acoustic model does not take

an unreasonably long time. However, in recent years with

increases in computational speed, adoption of parallel

computation with GPGPUs, and advances in neural networks,

many researchers are replacing traditional ASR algorithms

with data-driven approaches that simply take the audio data

in its frequency form (e.g. spectrogram) and process it with a

Deep Neural Network (DNN), or more appropriately (since

speech is temporal) with a Recurrent Neural Network (RNN)

that can be trained quickly with GPGPUs. The RNN then

converts the spectrogram directly to phonetic symbols and in

some cases directly to text [4].

The problem with many of these approaches from the

encryption point of view is that they typically combine the

acoustic model and the language model with one neural

network. This involves aligning the acoustic data (containing

sensitive biometrics) at various stages of the network training

with the text transcription with Expectation Maximization,

Viterbi Search or Connectionist Temporal Classification [5].

In our approach, we propose that a higher level of privacy

preservation can be attained by separating the acoustic and

language model training between the client and server-sides

of the system. Thus we need a way to train the acoustic model

in isolation to the language model. In the acoustic model we

use spectrograms as input and phonemes as output classes for

training with a Convolutional Neural Network (CNN). Being

able to train a system to identify time-frequency intervals in

acoustic data and relate it to acoustic units such as phonemes

requires extremely accurate labelling of acoustic data, and

this is afforded by the well-known TIMIT speech corpus [6].

3.3. Preliminary Experiments

We use an implementation of the GoogLeNet architecture [7,

8] with Stochastic Gradient Descent (SGD) for training with

the phonetic transcription within the TIMIT corpus. Once the

CNN acoustic model is trained it is then uploaded to the

client-side and used to perform inferencing, encoding the

audio as phonetic symbols. The audio is first converted to

Short-Term Fourier Transform (STFT) spectrograms and

passed to the trained CNN which classifies the sliding

windows operating over the spectrogram into phonetic

symbols. Fig. 2 illustrates the operation of this convolutional

speech encoder, where the sliding windows operating over

the spectrogram (each one is 256×256 greyscale pixels) are

classified by the CNN into phoneme classes. These are then

encrypted with AES and uploaded to the cloud. Hence as well

as storing encrypted audio the cloud also stores a symbolic

representation of the encrypted speech data.

Fig. 2. Client-side convolutional speech encoder

4. ENCRYPTED PHONETIC SEARCH

We make some assumptions regarding the potential places of

attacks that we need to address for the development of the

security of the speech processing system. The server is

assumed to be ‘friendly but curious’, meaning that it will not

actively try and break the encryption but will monitor the

traffic and infer the content of the audio if it can, which means

that the data should be encrypted. The communication

channels will be assumed to be under threat from an

adversary. The communication channels will be used to

transmit AES encrypted symbolic speech data, and return

AES encrypted search results and transcriptions. This is the

basis by which we will design suitable encryption.

4.1. Deterministic Encryption

Deterministic encryption always encrypts the same message

to the same cipher text. The property preserved by

deterministic encryption is equality, i.e. for any given two

encryptions one can test if the underlying messages are equal

by checking the given cipher texts. Due to this equality

property, the encrypted database leaks a large amount of data

even before the client searches. This means that if the server

sees two or more equal cipher texts in the encrypted database,

it knows that the corresponding encrypted documents contain

a keyword in common. In addition, the server learns the

frequency with which keywords appear which makes the

encrypted database vulnerable to frequency analysis. Another

issue is that since tokens are deterministic encryptions of the

search terms, the server will always know whether the client

is repeating a search or not. A third issue occurs when the

deterministic encryption scheme is based on a public-key

scheme. In this case, all the deterministic encryptions (both

in the encrypted database and in the tokens) are encrypted

using the client’s public key which is available to the server.

The server can then mount a dictionary attack on the

encrypted database by encrypting a list of possible keywords

and comparing them to the ones found in the encrypted

database and in the tokens. If it finds a match, then it knows

the keyword. Hence the solution based on deterministic

encryption supports fast search on encrypted data.

Searchable encryption based on identity based

encryption (IBE) is secure in the traditional cipher text

indistinguishability sense. The anonymity requirement

informally states that cipher texts leak no information

regarding the identity of the recipient, leading to the

commonly desired keyword-privacy guarantees over cipher

texts in searchable encryption. The standard notion of cipher

text indistinguishability in IBE informally means that it is

hard for computationally bounded adversaries to find two

distinct keywords such that the trapdoors for the first

keyword positively match the cipher texts of the second.

4.2. Ranked Searchable Encryption (RSE)

We will consider the client-server infrastructure by

visualizing a scenario in which there are two parties, Alice

(Client) and a cloud server. Alice intends to upload all her

documents (encrypted speech files) D = {D1, D2, …, Di} to

the cloud server to enable remote access. The cloud server

performs the searching of the relevant documents on behalf

of Alice. In the scheme it is assumed that the cloud server acts

in a known and designated manner but is equally also willing

and curious to get hold of any information about the

documents held with it. To prevent theft of any of the

information Alice decides to encrypt all the documents. Once

the documents are encrypted and outsourced she is

challenged with the problem of searching on the encrypted

documents. Whenever Alice decides to view a particular file

she has to download all the documents from the cloud server

and after decrypting all of them she can get hold of her

required set of files. This creates unnecessary network traffic

and post processing overhead. Alice decides to outsource the

documents in such a way that she would only have to

download the relevant and desired documents while keeping

the security and privacy of the outsourced files intact. This

requires a scheme to be developed that would facilitate

performing textual searches over encrypted data.

Searching over encrypted documents is performed in

three phases (Setup, Searching and Outcome). The first phase

i.e. the Setup Phase, comprises the three steps Keyword

Identification, Client Index Generation and Server Index

Generation. In the first step Alice generates an exhaustive set

of unique Keywords W = {W1, W2, …, WN} from the set of

documents D to be outsourced. Next Alice builds a client-side

index table Ic. The Ic is stored with Alice and is never revealed

to the cloud server. In the final step, Alice generates a secure

ranked server-side index Is and outsources it to the cloud

server along with the encrypted set of documents D. This

involves the relevant frequencies of the keywords to be

calculated and inserted into the index table.

In the Searching Phase, Alice generates a Trapdoor Ti for the

particular keyword Wi she is willing to search. Ti is then

transmitted to the cloud server to facilitate the search. In the

Outcome Phase the cloud server returns the encrypted set of

desired files to Alice in the ranked order. Fig. 3 shows the

flow of events of the proposed RSE scheme where a client is

interacting with a cloud server. It can be seen that all the tasks

are performed by the client, whereas, the searching is done at

the cloud server side.

Fig. 4. Server-side index table generation

Pre-processing is done on the client side in three major

steps, namely frequency computation, client-side index

generation and server-side index generation. With frequency

computation, the scheme computes the frequency of the

Fig. 3. RSE Flow of Events

words appearing in each of the selected files. The next task is

to generate the client-side index. The client side index table

is a collection of all key words each assigned with a unique

integer other than 0 and 1. If the total number of a set of

keywords is, say, ‘N’ in number, then a prime number ‘p’ is

chosen such that p > N. All integers that are assigned for the

keywords are from the set {2, 3, …, p-1}.

The client-side index table is simply just a key for the

keywords, which in our case are phonetic symbols. The

server-side index table keeps track of the distribution of the

keywords throughout the documents. The server-side index

table is a frequency table with three modifications: Firstly,

the words are replaced by the integers which are the

multiplicative inverse of their corresponding client-side

index computed modulo prime p. For example, the client-side

index of this is 2. The multiplicative inverse of 2 in modulo

228199 is 114100. So in the Server-side index table, the word

‘this’ is replaced by 114100. Secondly, the file names in the

frequency table are replaced by the encrypted file names. For

example, word.doc is replaced by AES (word.doc) as shown

in the figure. Lastly, the frequencies are replaced by relevant

scores which are computed using the following formula:

𝑆𝑐𝑜𝑟𝑒(𝑄, 𝐹𝑑) = ∑
1

|𝐹𝑑|
(1 + ln 𝑓𝑑,𝑡) ln (1 +

𝑁

𝑓𝑡
)𝑡∈𝑄 (1)

As is illustrated by Fig. 4, to search for a keyword, say

the phoneme ‘n’, the client will compute E = (Decimal (AES

(‘n’))) mod 228199 and the trapdoor K = (Decimal (AES

(‘n’)) * 3) mod 228199. Note that 3 is the client-side index of

the phonetic symbol ‘n’. On the server side, after receiving

(K, E), K will be multiplied modulo 228199 with the integers

occurring in the first row of server-side index table one by

one unless product matches K. For example, since the

multiplicative inverse of 3 in modulo 228199 is 152133, (K ×

152133) mod 228199 = Decimal (AES (‘n’)) mod 228199 =

E. Now the entries of the column corresponding to the integer

152133 are to be checked. The higher the score, the more

relevant the corresponding file is with respect to the search.

If the number of files in which the search is be performed is,

say, 2, then the top two files according to the top two relevant

scores for the keyword ‘n’ are 7.7 and 5.7 and the

corresponding encrypted files are new.docx and Latest.doc.

So the server will return the encrypted new.docx first and

then Latest.doc.

4.2. Searching for Sequences of Phones

To improve the usability of the scheme we have recently

extended it to enable the searching of strings of phonetic

symbols. In effect a simple lexicon can reside on the client-

side, and then the end-user can search using words, the

lexicon can transform the search into strings of phones and

then the encrypted search can be performed. The

modification to the slight modification to the server-side

index table. Basically the relevance score (Eq. 1) is replaced

with a string of integers indicative of a hash chain. To

implement the hash chain functionality, the server side index

table has the various phonetic symbols coded into the column

entries of the table. Take a randomly generated lambda-bit

integer, say r, then the first column in the server side index

table will be r, the next column will be H(r), the third column

will be H2(r) and in general the column corresponding to the

i-th symbol will be Hi-1(r), where H() is a cryptographically

strong keyed hash function (SHA-1 or SHA-2).

So to search for the encrypted audio on the cloud

containing a particular word, say the word ‘test’ we look up

the lexicon that says we need to search the encoded speech

repository for the phonetic string ‘t eh s t’. Then all entries

corresponding to the symbol ‘t’ are masked with 𝐻𝑘𝑚
(𝑡).

Similarly, entries corresponding to other keywords are

masked. Hence to search for the string ‘t eh s t’ for each

symbol 𝑠𝑖 the client will compute:

𝑘𝑖 = 𝐻(𝑑𝑒𝑐𝑖𝑚𝑎𝑙(AES(𝑠𝑖)) + c +𝐻𝑘𝑚
(𝑠𝑖))

𝑘𝑖
𝑡𝑑 = 𝑑𝑒𝑐𝑖𝑚𝑎𝑙(𝐴𝐸𝑆(𝑠𝑖)) ∗ 𝑐 𝑚𝑜𝑑 𝑝 (2)

𝑚𝑠𝑘𝑖 = 𝑑𝑒𝑐𝑖𝑚𝑎𝑙(AES(𝑠𝑖))−1 ∗ 𝐻𝑘𝑚
(𝑠𝑖)

where 𝑐 is the client side index for the phonetic symbol under

question. The search query is then of the form:

({𝑘1, 𝑘1
𝑡𝑑, 𝑚𝑠𝑘1}, {𝑘2, 𝑘2

𝑡𝑑, 𝑚𝑠𝑘2}, {𝑘3, 𝑘3
𝑡𝑑, 𝑚𝑠𝑘3},

{𝑘4, 𝑘4
𝑡𝑑 , 𝑚𝑠𝑘4}). Using the RSE searchable encryption

described previously, the server will detect the columns

corresponding to ‘t’, ‘eh’, ‘s’, ‘t’ and return the AES

encrypted audio filename.

5. CONCLUSIONS

We have presented an outline of encrypted phonetic search of

audio stored on the cloud. Whilst the complete system is still

in development the rationale for how the system works has

been presented along with specification and preliminary

operation of many of the core modules. The rationale

advocates that audio data is uploaded to the cloud and

remains encrypted once it leaves the client-side. On the

client-side the audio data is additionally encoded into

symbols by a novel CNN based acoustic model. The encoded

speech (phonetic symbolic strings) are then encrypted with

AES and uploaded to the cloud. RSE provides the capability

to perform phonetic searching of the encoded audio securely

in the cloud realizing the speech recognition task. The

inherent trapdoor security that RSE employs preserves the

privacy of searches.

ACKNOWLEDGEMENTS

This research was supported by Innovate UK as part of

the ‘Privacy Preserving Speech Processing in the Cloud’

project (Project No.: 102506).

REFERENCES

[1] Chollet, G. Cernocky, J. Constantinescu, A., et al.: ‘Toward

ALISP: A proposal for automatic language independent speech

processing’, Computational Models of Speech Pattern Processing,

K. Ponting (ed.), NATO ASI Series, 1999, 169, pp 375-388.

[2] Curtmola, R. Garay, J. Kamara, S., et al.: ‘Searchable symmetric

encryption: Improved definitions and efficient constructions’, Proc.

13th ACM Conf. Comput. Netw. Secur., 2006, pp. 79.

[3] Pathak, M.A., Raj, B., Rane, S., et al.: ‘Privacy-preserving

speech processing: cryptographic and string-match frameworks

show promise’, IEEE Signal Processing Magazine, 2013, 30(2), pp.

62-74.

[4] Hannun, A., Case, C., Casper, J., et al.: ‘Deep speech: Scaling

up end-to-end speech recognition’, arXiv preprint arXiv:1412.5567,

2014.

[5] Graves, A., Fernández, S., Gomez, F., et al.: ‘Connectionist

temporal classification: labelling unsegmented sequence data with

recurrent neural networks’, Proc. ACM 23rd Int. Conf. Machine

Learning, 2006, pp. 369-376.

[6] ‘DARPA TIMIT Acoustic Phonetic Continuous Speech Corpus

CDROM’ (1993) by Garofolo, J.S., Lamel, L.F., Fisher, W.M., et

al.: https://catalog.ldc.upenn.edu/LDC93S1

[7] ‘CAFFE Deep Learning Framework’,

http://caffe.berkeleyvision.org/

[8] ‘NVIDIA DIGITS Interactive Deep Learning GPGPU Training

System’, https://developer.nvidia.com/digits

http://caffe.berkeleyvision.org/
https://developer.nvidia.com/digits

