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ABSTRACT

One of the longstanding problems in spectral graph clugg8GC)
is the so-called model order selection problem: automagkstgon
of the correct number of clusters. This is equivalent to tfabjem
of finding the number of connected components or commuriities
an undirected graph. In this paper, we propose AMOS, an aitan
model order selection algorithm for SGC. Based on a recegiyan
sis of clustering reliability for SGC under the random ict@rnec-
tion model, AMOS works by incrementally increasing the nemaf
clusters, estimating the quality of identified clusters] anoviding
a series of clustering reliability tests. Consequently, @Moutputs
clusters of minimal model order with statistical clusterirliabil-
ity guarantees. Comparing to three other automated graistecing
methods on real-world datasets, AMOS shows superior pagnce
in terms of multiple external and internal clustering nestri

1. INTRODUCTION

Undirected graphs are widely used for network data analydisre
nodes represent entities or data samples, and the existante
strength of edges represent relations or affinity betweeteso
The goal of graph clustering is to group the nodes into ctashé
high similarity. Applications of graph clustering, alsodan as
community detectior{J1]2], include but are not limited taygin sig-
nal processing [3=11], multivariate data clusteringl [14}-1mage
segmentatior{ [15,16], and network vulnerability assessfig]].

Spectral clusterind [12=14] is a popular method for grapis<l
tering, which we refer to as spectral graph clustering (SG@orks
by transforming the graph adjacency matrix into a graph &eiph
matrix [18], computing its eigendecomposition, and perfioig K-
means clusterind [19] on the eigenvectors to partition thees into
clusters. Although heuristic methods have been proposedtm
matically select the number of clusters|12[13, 20], rigsrtheoret-
ical justifications on the selection of the number of eigetwes for
clustering are still lacking and little is known about theahilities
and limitations of spectral clustering on graphs.

Based on a recent development of clustering reliabilityhyais
for SGC under the random interconnection model (RIM) [21& w
propose a novel automated model order selection (AMOSyighgo
for SGC. AMOS works by incrementally increasing the numbfer o
clusters, estimating the quality of identified clusters] anoviding
a series of clustering reliability tests. Consequently, @Moutputs
clusters of minimal model order with statistical clusterireliabil-
ity guarantees. Comparing the clustering performance awerld
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datasets, AMOS outperforms three other automated graptecing
methods in terms of multiple external and internal clusigretrics.

2. RELATED WORK

Most existing model selection algorithms specify an uppaurul
Kmax On the numbelX of clusters and then selest based on op-
timizing some objective function, e.g., the goodness of fiithe
k-cluster model fork = 2,..., Kmax. In [12], the objective is
to minimize the sum of cluster-wise Euclidean distancesveen
each data point and the centroid obtained from K-meansechust
ing. In [20], the objective is to maximize the gap between Ah¢h
largest and thé K + 1)-th largest eigenvalue. In[13], the authors
propose to minimize an objective function that is assodiatéh
the cost of aligning the eigenvectors with a canonical coaite
system. In[[2P2], the authors propose to iteratively divideluster
based on the leading eigenvector of the modularity matrid no
significant improvement in the modularity measure can béael.
The Louvain method i [23] uses a greedy algorithm for madiyla
maximization. In[[24,25], the authors propose to use thereigc-
tors of the nonbacktracking matrix for graph clustering.evehthe
number of clusters is determined by the number of real efaes
with magnitude larger than the square root of the largest@ue.
The proposed AMOS algorithm not only automatically selebts
number of clusters but also provides multi-stage stasiktists for
evaluating clustering reliability of SGC.

3. THEORETICAL FRAMEWORK FOR AMOS

3.1. Random interconnection model (RIM)

Consider an undirected graph where its connectivity streds rep-
resented by an x n binary symmetric adjacency matriX, where
n is the number of nodes in the gragi\]... = 1 if there exists an
edge between the node pair, ¢), and otherwis¢A].., = 0. An un-
weighted undirected graph is completely specified by itacahcy
matrix A, while a weighted undirected graph is specified by a non-
negative matriXW, where nonzero entries denote the edge weights.

Assume there ar& clusters in the graph and denote the size of
clusterk by ni. The size of the largest and smallest cluster is de-
noted bynmax andnmin, respectively. LetA, denote thew, x ny
adjacency matrix representing the internal edge connetioclus-
terk and letC;; (1,5 € {1,2,..., K}, i # j) be ann; x n; matrix
representing the adjacency matrix of inter-cluster edgmections
between the cluster pait,(j). The matrix Ay is symmetric and
C;; = CJ, foralli # j.

The random interconnection model (RIM)]21] assumes that: (
the adjacency matriA . is associated with a connected graph of
ni nodes but is otherwise arbitrary; (2) th&( K — 1)/2 matrices


http://arxiv.org/abs/1609.06457v1
http://arxiv.org/abs/de-na/0002534

{Ci; }i>; are random mutually independent, and e@th has i.i.d.
Bernoulli distributed entries with Bernoulli parameter € [0, 1].
(3) For undirected weighted graphs the edge weight of eateln-in
cluster edge between clusteérandj is independently drawn from
a common nonnegative distribution with me#n;; and bounded
fourth moment. In particular, We call this modelhamogeneous
RIM when all random interconnections have equal probgbéitd
mean edge weight, i.ep;; = pandW,; = W for all i # j.
Otherwise, the model is called athomogeneouRIM.

3.2. Spectral graph clustering (SGC)

The graph Laplacian matrix of the entire graph is definell as S —
W, whereS = diag W1,) is a diagonal matrix andl,,(0,,) is the
n x 1 column vector of ones (zeros). Similarly, the graph Lagaci
matrix accounting for the within-cluster edges of clugtés denoted
by L. We also denote theth smallest eigenvalue di by A;(L)
and define the partial eigenvalue s#nx (L) = S5, \;(L). To
partition the nodes in the graph inf§ (K > 2) clusters, spectral
clustering [14] uses thé eigenvectors{u, }~_, associated with
the K smallest eigenvalues &f. Each node can be viewed aga
dimensional vector in the subspace spanned by these emerse
K-means clusterind [19] is then implemented on iedimensional
vectors to group the nodes infd clusters.

Throughout this paper we assume the graph is connected, ot
erwise the connected components can be easily found anddhe p -
posed algorithm can be applied to each connected compogeats V = [cos

rately. If the graph is connected, by the definition of thephraapla-
cian matrixL, the smallest eigenvectar; is a constant vector and

Ai(L) > 0V > 2. As aresult, for connected undirected graphs,

it suffices to use thé& — 1 eigenvectorguy } £, of L for SGC. In

mingery 9. Kk} S2:k(Lg) | "
i (K—Dnmax W
In particular, t g = tus Whenc = 1.

_ mingeg o Ky S2:x (Lg)

tLB = - (K=1)nmin

Theoren ] (a) shows that there exists a critical valudat sep-
arates the behavior of the rows ®f into two regimes: (1) when
t < t*, based on conditions (a-1) to (a-3), the rows of edchis
identical and cluster-wise distinct such that SGC can beesstul.
(2) whent > t*, the row sum of eaclY;, is zero, and the incoher-
ence of the entries ifY';, make it impossible for SGC to separate
the clusters. Theoref 1 (b) provides closed-form upper awer
bounds on the critical valug', and these two bounds become tight
when every cluster has identical size (ie= 1).

3.4. Phasetransitionsunder inhomogeneous RIM

We can extend the phase transition analysis of the homogsneo
RIM to the inhomogeneous RIM. Le¥ € R"*(X=1 pe the
eigenvector matrix ofl. under the inhomogeneous RIM, and let
Y € R™(E-1 pe the eigenvector matrix of the graph Lapla-
cian L of another random graph, independent Iof generated
by a homogeneous RIM with cluster interconnectivity pargmne
t. We can specify the distance between the subspaces spanned
by the columns ofY and Y by inspecting their principal an-
gles [14]. SinceY and Y both have orthonormal columns, the
vectorv of K — 1 principal angles between their column spaces is
Lo(YTY), ... cos L ox_1(YTY)]", whereoy (M)

is the k-th largest singular value of real rectangular maivik Let
O(Y,Y) = diagv), and letsin ©(Y,Y) be defined entrywise.
Whent < t*, the following theorem provides an upper bound on the
Frobenius norm ofin ©(Y,Y), denoted by] sin ©(Y,Y)||r.

particular, thesd< — 1 eigenvectors are represented by the columns

of the eigenvector matri¥’ = [us, us, ..., ux] € R®*E=1,

3.3. Phasetransitionsunder homogeneous RIM

LetY = [YT,YZ,..., Y%]" be the cluster partitioned eigenvec-
tor matrix associated with for SGC, wheréy’;, € R™=* (K —1) wjith
its rows indexing the nodes in cluster Under the homogeneous

RIM, lett = p - W be the inter-cluster edge connectivity parameter.

Fixing the within-cluster edge connections and varyingheorem
[ below shows that there exists a critical vatti¢hat separates the
behavior ofY for the cases of < ¢t* andt > ¢*.

Theorem 1. Under the homogeneous RIM with parameter=
p - W, there exists a critical valuée* such that the following holds
almostsurely agx, — coVk € {1,2,..., K}and =2 — ¢ > (O
Ift<t*, Y= 1., 1};71\/)@
[v’flnk R vglnk, ..
Ift >t*, Y} 1n, =0x_1, Vk;
Ift=1t" Yr= 1, 1};71\/)@ OI'YI;‘F].TL,c =0x-1, VEk,
whereV, = diag(vf,v%,... vk _|) € RE-DXE-D,
In particular, whent < ¢*, Y has the following properties:
(a-1)The columns oY, are constant vectors.
(a-2) Each column ofY has at least two nonzero cluster-wise con-
stant components, and these constants have alternatimg sigch
that their weighted sum equals (i.e., >, nkvf =0, Vyj €
{1,2,...,K —1}).

() .711]}'(,11%] , Vk;

(a-3) No two columns o have the same sign on the cluster-wise

nonzero components.
Furthermoret™ satisfies:
(b) tg < t* < tue, Where

Theorem 2. Under the inhomogeneous RIM with interconnection
parameters{t;; = pi; - Wi;}, lett* be the critical threshold value
for the homogeneous RIM specified by Thedrkm 1, and define-
min{t, [Ax4+1(%) — ¢|}. For afixedt, if t < t* andén — 6 >0
asny — oo Vk € {1,2,..., K}, the following statement holds
almost surely as, — co V k and% —c> 0

L /[

|| sin® (Y, Y)|r o

Furthermore, letmax = maxi; ti;. If tmax < t*, then

Isin©(Y, ¥)||r < min L=Lllr
t<tmax ndt
By Theorem[dL, since under the homogeneous RIM the rows
of Y has cluster-wise separability when < t*, Theorem[P
shows that under the inhomogeneous RIM cluster-wise separa
bility in 'Y can still be expected provided that the subspace distance
| sin ®(Y,Y)| # is small andt < t*. Moreover, iftmax < t*, we
can obtain a tighter upper bound ¢8in ©(Y,Y)||». These two
theorems serve as the cornerstone of the proposed AMOSthatgor
and the proofs are given in the extended verdion [21].

4. AUTOMATED MODEL ORDER SELECTION (AMOS)
ALGORITHM FOR SPECTRAL GRAPH CLUSTERING

Based on the theoretical framework in SEE. 3, we propose @A au
mated model order selection (AMOS) algorithm for automated-
ter assignment for SGC. The flow diagram of AMOS is displayed i
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Fig. 1: Flow diagram of the proposed automated model order selec-

tion (AMOS) algorithm for spectral graph cluster (SGC).
Algorithm 1 p-value computation of V-test for the RIM test

Input: Ann; x nj interconnection matriflij
Output: p-valug, 7)
x = C;;1,,; (# of nonzero entries of each row @;;)
y = n;1,, — x (# of zero entries of each row ﬁij)
X =x"x —x"1,, andY = y'y —y"1,,.

2
N = ninj(nj — 1) andV = (\/X + \/?) .
Compute test statistig = Y=~

V2N
Compute p-valug, j)= 2 - min{®(Z),1 — ®(2)}

Fig.[d, and the algorithm is summarized in Algorithin 2. The @S
codes can be downloaded from https://github.com/tgeABtD'S.
AMOS works by iteratively increasing the number of clustirs
and performing multi-stage statistical clustering relibtests un-
til the identified clusters are deemed reliable. The stasiktests in
AMOS are implemented in two phases. The first phase is tohest t
RIM assumption based on the interconnectivity pattern ohedus-
ter (Sec[4l1), and the second phase is to test the homogeneit
variation of the interconnectivity parameter; for every cluster pair
¢ andj in addition to making comparisons to the critical phase-tran
sition threshold (Sed._4.2). The proofs of the establishatistical
clustering reliability tests are given in the extended ieer§21]].

The input graph data of AMOS is a matrix representing a con-

nected undirected weighted graph. For each iteratiali jiISGC is

implemented to produc& clusters{@k}i(:l, where@;c is thek-th
identified cluster with number of nod@s and number of edges ..

4.1. RIM test via p-valuefor local homogeneity testing

Given clusters{ék}ﬁil obtained from SGC with model ordéf, let

C;; be then; x n; interconnection matrix of between-cluster edges

connecting clustersand;. The goal of local homogeneity testing is
to compute a p-value to test the hypothesis that the idemhtifiesters
satisfy the RIM. More specifically, we are testing the nulbbthesis
that(AJij is a realization of a random matrix with i.i.d. Bernoulli en-
tries (RIM) and the alternative hypothesis t@[j is arealization of
a random matrix with independent Bernoulli entriget RIM), for

kKo 1Reject D FAIL | Homogeneous Algorithm 2 Automated model order selection (AMOS) algorithm
RIM pAss| RIMphase |PASS .
O R —— L p—1 transtton test |—p—] for spectral graph clustering (SGC)
Graph Data Clusters via test via + N N N -
e o Rittest | o | T . chsters Input: a connected undirected weighted graph, p-value signifi-
FAIL | transition test | PASS cance level;, RIM confidence interval parametess o/

Output: number of clusterg and identified cluster{ﬁk},ﬁi1
Initialization: K = 2. Flag= 1.
while Flag= 1 do N
Obtain K clusters{G}, }_, via spectral clusterings
# Local homogeneity testing
for i = 1to K do
for j =i+ 1to K do
Calculate p-valué( 5) from Algorithm[.
if p-valueg, 7) < n then Reject RIM
Go back to §) with K = K + 1.
end if
end for
endfor e
Estimatep, W, {5, }, {W; }, andts specified in Sed412.
#Homogeneous RIM test
if p lies within the confidence interval ipl(then
# Horlw\ogeneous RIM phase transition t#st
if - W< s then Flag= 0.
else Go back to ¢) with K = K + 1.
end if
elseif p does not lie within the confidence interval [d ¢hen
# Inhomogeneous RIM phase transition tést

if Hf:l HJK:Z'Jd Fij (;AJ/?\U) >1-— o' then
J

Wij
Flag= 0.
else Go back to ¢) with K = K + 1.
end if
end if
end while

OutputK clusters{Gy }1_,.

4.2. Phasetransition tests

Once the identified clustel{aGA;c}f:1 pass the RIM test, one can em-
pirically determine the reliability of the clustering réisuusing the
phase transition analysis in SE¢. 3. AMOS first tests thenagson

of homogeneous RIM, and performs themogeneous RIM phase
transition testby comparing the empirical estimateof the inter-
connectivity parametgrwith the empirical estimatég of the lower
boundt s ont* based on Theorel 1. If the test on the assumption of
homogeneous RIM fails, AMOS then performs theomogeneous

alli # j, i > j. To compute a p-value for the RIM test we use the R|\M phase transition testy comparing the empirical estimatigax

V-test [26] for homogeneity testing of the row sums of eacthricon-
nection matrix(AJ,L-j. Specifically, the V-test tests that the rowﬁnij
are all identically distributed. For a@ij the test statisti¢Z of the
V-test converges to a standard normal distributiomas; — oo,
and the p-value for the hypothesis that the row sunfs‘gfare ii.d.
is p-valudi, j) = 2 - min{®(Z),1 — ®(Z)}, whered(-) is the cu-
mulative distribution function (cdf) of the standard notrdsstribu-
tion. The proposed V-test procedure is summarized in Algofd.
The RIM test or(AJij rejects the null hypothesis if p-val(iej) < 7,

Of tmax With Z13 based on Theorefd 2.
e Homogeneous RIM test: The homogeneous RIM test is summa-
rized as follows. Given clustel{ﬁk}ﬁil, we estimate the intercon-
nectivity parameter§p;; } by pi; = ﬁ:—ﬁ whereni;; is the number
of inter-cluster edges between clusténd j, andp;; is the max-
imum likelihood estimator (MLE) op;;. Under the homogeneous
RIM, the estimate of the parameieis p = %’%1;’” where

=1 "k
my, is the number of within-cluster edges of clusieandm is the

My

wheren is the desired single comparison significance level. Theotal number of edges in the graph. A generalized log-litadd ra-

AMOS algorithm won'’t proceed to the phase transition teagst
(Sec[Z:2) unless eve;; passes the RIM test.

tio test (GLRT) is used to test the validity of the homogerseRIM.
By the Wilk's theorem[[3[L], an asymptoti®0(1 — «)% confidence



Dataset Node Edge Ground truth Dataset Method NMI  RI F C NC

IEEE reliability test| 73 power 108 3 power AMOS (3) 89 9% .94 .046 .068

system (RTS)[27] | stations power lines | subsystems IEEERTS| Louvain(6) .74 .83 .67 .144 .169

Hibernia Internet 55 cities 162 American & ?3) NB (3) .75 .87 .81 .070 .100

backbone map [28] connections| Europe cities ST (2) 73 .78 .74 021 .041

Cogent Internet 197 cities 243 American & _ _ AMOS 2) 10 10 10 .030 .057

backbone map [28] connections| Europe cities Hibernia | Louvain (6) .27 .51 .32 .222 .263

Minnesota road 2640 3302 roads | None ) NB (2) 73 .89 .90 .027 .053

map [29] intersections ST (2) .87 .96 .96 .028 .050

88234 AMOS (4 42 62 .53 .036 .048

Facebook[[30] 4039 users | giondships | NONe Cogent | Louvain ((1)1) 24 54 25 186 .204

2 NB (3) 26 54 57 .073 .109

Table 1. Summary of real-world datasets. ST (14) .34 54 28 .148 .164

AMOS (46) 074 076

interval forp in an assumed homogeneous RIM is Minnesota | Louvain (33) .. 290 .299

) NB (35) 140 144

K K ST (100) 119 120

{p )i <2 D I ey [ npy @ AMOS (5) 004 004

i=1g=itl Facebook | Louvain (17) .076 .079

K ) NB (55) i i T 478 486

+(ﬁzﬁJ — T/)’\h]) ln(l — ]/i])] -2 <m — Z ’ﬁlk> lnp ST (7) .006 _007
k=1

K K Table 2: Performance comparison of automated graph clustering al-

— n2—2ﬁ2—2 m—Zfﬁ In(1—p) <& ; ; ;
k k P)=8(Ky_1,2 (0 gorithms. The number in the parenthesis of the Dataset @dgth

k=1 k=1 column shows the number of ground-truth (identified) clusst&F”
whereg, ., is the uppen-th quantile of the central chi-square distri- (“C") stands for F-measure (conductance). “-” means notiate
bution with degree of freedom The clusters pass the homogeneousdue to lack of ground-truth cluster information. For eachringthe
RIM test if p is within the confidence interval specified g (1). best method is highlighted in bold face.
e Homogeneous RIM phase transition test: By Theorenil, if

the identified clusters follow the homogeD\eo/u\s RIM, thery e tuning method (STYTI3], the nonbacktracking matrix mettiie)

deemed reliable when< #.s, wheret = p-W,Wisthe average of  [p4,25], and the Louvain method [23]. For AMOS, we use the

all between-cluster edge weights, dngl = "““%U;v-ﬁfj} S2(Lk)  degree normalized adjacency mattfix][14] as the input gragih, d
—1)Mmax / —5

e Inhomogeneous RIM phase transition test: If the clusters fail ~@nd seta = o’ = 0.05 andn = 107". For performance eval-

the homogeneous RIM test, we then use the maximum of MLEs of@tion, multiple clustering metrics are computed for asisesthe
t:;’s, denoted bytmax = max;s; £;;, as a test statistic for testing clustering quality. These metrics are normalized mutuakrination

the null hypothesiso: Tmax < fLe against the alternative hypothe- (NMI) [B4], Rand index (RI)[[34], F-measure () [34], condamce
SiS H1: tmax > tis. The test acceptfly if fmax < tus and hence (C) [15], and normalized cut (NC)[15]. For NMI, RI, and F, higy
by TheorenfR the identified clusters are deemed reliablendtsie ~ V&lue means better clustering performance, whereas fordN&h

Anscombe transformation on tig;’s for variance stabilization [32), OWer value means better clustering performance.
Table[2 summarizes the clustering performance of the datase

Hﬁ whered = 3. Under the null in Table[1. For each dataset, AMOS has the most clustering met
1+"A12'L—%j ® rics of best performance among these four methods, whiclodem
hypothesis thatmax < tig, from [33, Theorem 2.1], an asymp- strates the robustness and reliability of AMOS. In particufor the
totic 100(1 — a’)% confidence interval fOlmax IS [0,%], where datasets with ground-truth cluster information such thatexternal
¥(a/, {t:;}) is a function of the precision parameterc [0,1] and  clustering metrics NMI, RI, and F can be computed, AMOS shows
{Ej}. Furthermore, it can be shown that verifyiig< T is equiv-  significant improvement over other methods. In additiom,dlos-

let A;;(z) = sin™*

alent to checking the condition tering metrics over which AMOS does not prevalil, its perfance
is comparable to the best method.
s S a_B /
Fij | =.pij | >1—a, 2
ITII o ="pu |21 @ 6. CONCLUSION
i=1j=14+1 ij

This paper presents an automated model order selection MO

algorithm for spectral graph clustering (SGC). Stemmirgfrthe

Li5,;e0,1} + s, <2315, €10,1}3, andlis the indicator function.  phase transition analysis on the clustering reliabiliyS@&C under
the random interconnection model, AMOS performs iteraB@&C

5. EXPERIMENTSON REAL-WORLD DATASETS and multi-stage statistical tests such that it automayidaids the

minimal number of clusters with statistical clusteringiabllity

We implement the proposed AMOS algorithm on the real-woeld n  guarantees. Experiments on real-world datasets show @3\

work datasets in Tablg 1, and compare the clustering rewitits ~ outperforms other three automated graph clustering mettiod

three other automated graph clustering methods, inclutiegelf-  terms of multiple external and internal clustering metrics

where Fi(w,5i5) = @ (A, + 2+ (Ai(2) - Aiy(55)))
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