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ABSTRACT

In this paper, we are interested in learning the underlyireply
structure behind training data. Solving this basic probismssen-
tial to carry out any graph signal processing or machineniagr
task. To realize this, we assume that the data is smooth asfhect
to the graph topology, and we parameterize the graph topaisigg
an edge sampling function. That is, the graph Laplacianpsessed
in terms of a sparse edge selection vector, which providespalitit
handle to control the sparsity level of the graph. We soleesiharse
graph learning problem given some training data in both tiisea
less and noisy settings. Given the true smooth data, thelppsase
graph learning problem can be solved optimally and is baresin-
ple rank ordering. Given the noisy data, we show that the gparse
graph learning and denoising problem can be simplified tégdes
ing only the sparse edge selection vector, which can be dolsieg
convex optimization.

when the true smooth graph signals are given, the graphitgarn
problem can be solved optimally, and the solution is basesirople
rank ordering Finally, given the noisy graph signals, i.e., for the
joint sparse graph learning and denoising problem, we geogione-
step solution based on convex optimization as well as arritiigo
based on alternating minimization.

The problem of learning the graph Laplacian or the weighted a
jacency matrix from smooth graph signals has been consideze
fore [4,5]. Learning sparse graphs from the true graph ssgndnich
is the problem we consider in Section 3, has been studied]in [5
There the graph learning problem is posed as a constrairiediog-
tion problem with the constraint set being the set of valifhegincy
matrices, and the optimization problem is solved using eraiive
primal-dual algorithm. In contrast, our modelling greatlynplifies
the solution to simpleank ordering Such a modelling is inspired
from [6], where the problem to design edge weights that medm
the algebraic connectivity of the graph has been addredsed],

Index Terms— Graph Learning, graph signal processing, graphthe joint graph learning and denoising problem has beereaddd,

sparsification, topology inference, sparse sampling.

1. INTRODUCTION

Graphs offer a way to describe and explain relationshipsmptex

datasets, a central entity of modern data analysis, wheéasdééuge
is prominent [1-3]. In particular, the nodes of the graphaderithe

entities and the edges encode the pairwise relationshipeketthese
entities. Such entities are referred togaaph signals Examples of
such complex-structured data beyond traditional timésseénclude
data residing on brain networks, gene networks, socialor&syrec-

ommendation systems, transportation networks, and so on.

i.e., the problem that we study in Section 4. An alternatinigim
mization algorithm is proposed, alternating between giepming
and denoising, where the graph learning optimization gobin-
volves a search over the space of all valid graph Laplaci@nsthe
contrary, we show that this problem can be solved in one-atelt
boils down to the design of a sparse edge sampling function.
Graph topology identification is also investigated in [7den
the assumption that the eigenvectors of the graph Laplaaian
known, which is a much stronger assumption. Although thereig
vectors can be computed from graph data (or the sample eoeaxi
matrix) when it is stationary with respect to the graph [8,tBE
graph signals need not always be vertex stationary. In asw, the

Having a good quality graph is central to any graph signal pro estimated eigenvectors are not error free due to limitea datords.

cessing or machine learning task. In this paper, we areésited
in the problem of learning the hidden graph topology behimg t
data. Due to the sheer quantity of data, we are motivatedi¢atse
the simplest graphical models that adequately explain &éte. din
particular, we are interested in learning a sparse graph a.graph
with a limited number of edges that adequately explainsrtpeti(or
training) data. To realize this, we make a simple, but widmslgd as-
sumption [1, 4] that the data is smooth with respect to theadisred
graph.

The contributions in this paper are threefold. First, we aiod
the graph learning problem as an edge selection problenrewie
parameterize the graph througlsparse edge sampling vecton
particular, the proposed model provides an elegant haodlerttrol
the number of edges, thus the graph sparsity. Second, farathe
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In most of the existing approaches [4,5, 7], graph spartidicas (or
can be) achieved by penalizing thenorm of the graph Laplacian
matrix, adjacency matrix or the shift operator, howeveer¢his no
explicit handle to control the number of edges, unlike theppsed
approach. In a related line of research, [10, 11] investigamput-
ing sparse graphs that approximate a given graph spectndiigh
means that their Laplacian matrices have similar quadfatios.

2. PROBLEM SETUP

Consider a dataset witlV real valued elements, which are defined
on the vertices of an undirected gragh= (V, £), where the vertex
setV = {v1, -+ ,vn} denotes the set of nodes, and the edge set
reveals the connection between the nodes. We refer to stabetis
asgraph signals We assume that the length of the graph signals
(thus the number of nodes), i.€Y, is known. However, the edge
set is not known. Therefore, we assumeomplete graplg(V, &)
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as a candidate graph in which each node is connected to etvey o whereW) = {w € {0,1}* | |wl||o = K} is the constraint set that
node with the number of edg&$| = M = N(N —1)/2,andaimto restricts the number of edges.
determine a subgraph ¢f by choosing a subset of edges, from
the edge sef of this candidate graph. 3.2. Solver

Any undirected graph topology is basically determined Iy it
graph Laplacian matrix, which essentially reveals the ectivity ~ Problem (2) is a cardinality constrained Boolean optini@aprob-
of the graph. Let us denote the graph Laplacian matrix @eym-  lem, hence nonconvex. By recalling tat(w) = 3= wnamar,,
metric matrix) of the complete graph by € SV, where[L]; ; is ~ We can express the cost function in (2) as a linear functian,ine.,
nonzero, say equal to 1, onlyif= j or (i, j) € £. The symmetric We have
matrix L can be expressed in terms of the so-caitheiience matrix

A=lai, - ,anm e RV*XM a5 Etr {XT } Z wmtr{ amamT)X}. 3)
m=1
L=AA" = Z Ay, Introducing the lengthy/ vectore = [c1, c2, . .., car]” with ¢, =
tr { X" (amam” )X}, we can write (2) as

where then-th column ofA, i.e.,a., denotes a lengtt¥ edge vec- ) T
tor with entriesla,]; = 1, [a]; = —1, and it has zeros elsewhere, argmin - ¢ w sto |wlo = K. (4)
for an edgem connecting nodes with j (more generallya., is we{o.}M
determined only up to a sign). The above Boolean linear programming problem admits ariapl

Let us now denote the subgragh(V, &) with the edge set  solution and computing the optimal solution is straighifard. It
& C & such that|€s] = K < M. We will refer to such a s solved by sorting the entries efin an ascending ordering. More

subgraph withK edges as d<-sparse graph. We connect such specifically, the solutiom will have entries equal to 1 at indices cor-
a K-sparse graplgs to L through asparse edge selectiorector  responding to thés smallest entries of, and others are set to zero
w = [wi,ws,- - ,wn]” € {0,1}", wherew,, = 1if an edge (ties may be broken arbitrarily). Computationally, thetisay algo-
belongs to the edge subs&t andw,, = 0 otherwise. Interms of  rithm costsO(K log K), and with a parallel implementation (e.g.,
w, [€s| = K means|w|lo = K. (The notation||w||o counts the  on different processors), the computational complexitil bé as
number of non-zero entries w.) Finally, we can write the Lapla- Jow as®(K) [12, 13]. We give another interpretation of this result
cian matrix of theK'-sparse graphl.s, as a function ofw as through the following remark.

T Remark 1. Let us suppose the graph signal is stochastic with co-
W) =) Wnama,. () variance matrixR, = E{z"} € RN *N. Then, the solution t(4)
would selects” edges between those nodes having the highest cross-
In what follows, we will optimally design the edge sampling correlation, i.e., it will add an edge between tlk and thejth node

functionw to recover the graph that sufficiently explains the data. if the variablesz; and x; are strongly correlated. To see this, we
express the cost function (8) as

3. LEARNING FROM NOISELESS GRAPH SIGNALS (X L, (w) X} = tr{ o(w )IAZ }

Letx = [z1,22,--- ,xn]* € RY be a graph signal defined on the M
verticesV of a graph. The smoothness and the spectral content of = Z wm(amTﬁwam)
the signal both depend on the underlying graph topology.LEpta- m=1

cian quadratic form given by” L, (w)a quantifies how smooth the L . N )
graph signale is with respect to the underlying graph [1]. In par- Where R, = 1X X7 € R is the sample data covariance
ticular, the signalz is smoothest with respect to the graph with ~ matrix. Recalling the definition af..., it is easy to see that the term

edges for low values ot” L, (w)x. am” Roam = [Ra)ii + [Ra);; — 2[Rz]:; is small if theith and
jth nodes are highly correlated and we have sufficient santples

3.1. Problem statement: noiseless setting compute the sample covariance matrix.

Suppose we are gived graph signals denoted by the vectors By modelling the graph topology through an edge selectian ve

{@,}£_,, and they are collected in aW x L matrix X = tor, the graph learning problem can be solved optimallygisisim-

[1,---,2L]. We are interested in recovering the graph LapIaC|an0|e and elegant solution with a controlled sparsity levéieveas op-

(in other words, the graph topology) under the prior infotiora  timizing directly the graph Laplacian [4] or the adjacenctrix [5]
that the graph signals are smooth with respect #6-aparse graph. 1eads to a more complicated suboptimal solution with no iexpl
More formally, we state the following. handle to control the graph sparsity.

Problem 1. Given the graph signal§z; }+_,, determine a graph
with K edges such that the graph signals have smooth variations on
the resulting graph. In many cases, we might not have access to the true grapHssigna
Mathematically, the above problem can be cast as the faligwi SUPPose we observe a noisy version of the graph signalas
optimization problem: Y, = T + 1 € RY, (5)

4. LEARNING FROM NOISY GRAPH SIGNALS

L
. 1 T 1 T and we are giver, such observations fdr = 1, 2 L, where we
argmin — x, Ls(w)xry = —tr{X Ls(w)X}, 2 g . oS h
few Z s La(w)e { (w)X}, @) assume thaty, is zero-mean white Gaussian noise of varianée



To recoverr;, based on the smoothness assumption, typically a leastwhereY = [y, y,, -

squares problem is solved withTékhonov regularizationz? Ly,
to enforce the prior information that the noiseless graghalicy, is
smooth with respect to the underlying graph. More specifictile
following optimization problem (assuming, for a momenttttize
graph, i.e.aw is known) is solved [1]:

arg min
{wk}£:1

L
1
=3 (lye = 2ell3 + 72k La(w)ar ), ©)
k=1

where the regularization parameter> 0 controls the amount of
smoothness. This graph denoising problem has an explicitico
given by

@y =[I[+~vLs(w)] 'y, k=1,--, L.

4.1. Problem statement: noisy setting

Having given the above denoising inference problem at hare,
will now formally state the problem of interest.

Problem 2. Given the observationéy, }~_, that is related to the
unknown graph signak;. as in(5), determine the<-sparse graph
such that the estimate, has the lowest possible estimation error,
and it is smooth with respect to the recovered graph.

Sparse graph learning for the denoising inference problkam c
be mathematically formulated as follows:

==

L
argmin = > (g, — |3 + vzl Lo(w)z)  (7)
{mi b wew &5
whose solution is denoted &%} £_,, @). This formulation is dif-
ferent from [4], as [4] solves an optimization problem oves space
of all possible graph Laplacians (instead of parametagittie graph

with w € W) without sparsifying the graph. It can nevertheless be

done through an extr& -norm penalty term.

The above problem (7) is noncovex due to the Boolean and cal

dinality constraints omw and the coupling between the optimization
variables in the second term of (7). We provide two methodsbee

it. The first one is a straightforward approach based onrsdtarg
descent, while the second one is based on convex relaxation.

4.2. Alternating minimization

The optimization problem (7) can be solved using alterigatimn-
imization with respect t({mk}ﬁzl andw. That is, givenw, the
problem in (7) reduces to a linear system in the unknd@nwhich
admits a closed form solution; while givee, }£_,, it reduces to
a Boolean linear programming problem, which admits an ditally

solution with respect tav based on rank ordering. These observa-

tions suggest an iterative alternating minimization athon yield-
ing successive estimates{at,, }-_, with fixedw, and alternately of
w with fixed {z4 }£_,. Specifically, with the iterate ai given per
iteration: > 0, i.e.,w[i], we solve forX [i] using a matrix inversion
as

Xi] = X min(wli])

with
X min(w) = argmin |Y — X ||} + v tr{ X" Ly(w)X}
X

(®)
= [I +vLs (w)]71Y7

I-

,y ] is the data matrix of siz&/ x L.
OnceX [i] is availableaw[i + 1] can be obtained by solving the
Boolean linear program [cf. (4)]

M
w[i + 1] = argmin Z Wmemli+ 1] sto |Jwlo = K,

we{0,1}M T

wherec,, [i + 1] = tr { X" [i + 1](@man")X[i + 1]}. In spite of
the Boolean and cardinality constraints in the above probtbere
exists a simple analytical solution fan[i + 1] based on sorting
{em[i+1]}21_,, i.e., the solutionw[i+1] will have entries equal to 1
atindices corresponding to ttié smallest entries ific,. [i +1]}2_,
and zeros otherwise. The iterations are initialized at 0 by ran-
domly generatingw[i + 1] from a uniform distribution ove¥V. The
above alternating minimization method is computationablyy at-
tractive, and consists of two simple known solutions peratien.
However, the algorithm converges only to a stationary poir(7),
and it suffers from the choice of the initial estimate.

The algorithm proposed in [4] is also along the lines of alter
nating minimization, except that the graph learning steplires a
complicated optimization over the space of all possibléivaapla-
cian matrices.

4.3. Convex relaxation

To avoid the issues related to the initialization of theraléging min-
imization algorithm, in what follows we propose a one-steluiton
based on convex relaxation. We can rewrite the formulatio¢v)
alternatively as

W = arg min X = X min (W)

wew

r(w);

9)
with
r(w) = |Y = Xin(w)||7 + 7 t7{ X fin (W) Ls (w) X min(w) }

and
[T+ 7Ly (w)]| X min(w) = Y. (10)

The computational complexity of solving the linear systerequa-
tions (10) decreases as the sparsitwiincreases. Furthermore, the
estimateq 2, }%_; andw in (9) are still the same as in (7).

Plugging the solution to (10) in(w) and after some straight-
forward matrix algebra, we can express the regularizecduasi
squaredr(w), as

r(w) = tr {YT[I +st(w)r1Y}
(11)
+ 9t {Y Lo (w)Y } — Y [3

Relaxing the cardinality constraiffw|o = K with 17w =
K and the Boolean constrain{®, 1}* with linear inequality con-
straints related to the box constrajft 1]*, the optimization prob-
lem (9) will be convex orw € [0,1]™. To see this, we introduce a
variable

Z=Y"[I+vL,(w)]"'Y +7Y" L (w)Y € R"**
and obtain a semidefinite program:
argmin tr{Z}
Z,w
Z —yYTLs(w)Y Y”
Y I+~L,(w)
1"Tw=K, 0<wn<1l,m=12,..., M,

s.to t 0L+N7 (12)
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Fig. 1. Sparse graph learningThe colored dots indicate the temperature values. (a)dlsis case. Graph withh = 110 edges recovered by solving (2).
(b) Noisy case: Convex relaxation is used to recover a grafthA&v = 110 edges using (12).
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Fig. 2: Performance evaluation.

with variablesw andZ, and recall thals (w) = M wpnamal,.

A standard off-the-shelf solver can be used for solving #raidef-
inite program in (12). For large-scale problems, compatetily
cheaper first-order (and online) methods for solving (12) bae
derived as the size of the linear matrix inequality in (12)eleds on
the size of the training data and the number of nodes.

5. NUMERICAL RESULTS

We use temperature measurements collected aBBosgather sta-
tions in the French region of Brittany and the aim is to leadraph
that explains the observed data; see Fig. 1. Ther&fatobserva-
tions per weather station available, out of which we ilise= 50

SDPT3[14]. The candidate graph witN = 32 will have M = 496
edges, from which we aim to learn a subgraph with= 110 edges.

To begin with, we consider the noiseless case, where the true
graph signal is assumed to be known, and graph learning $n thi
case amounts to solving a sorting problem. As shown in Fig. 1a
we can see that in the learnt graph with= 110 edges, edges are
present between nodes that share similar values. Althdwepro-
posed approach doesn'’t always (e.g., for low value&Kpensure a
well-connected graph, it clusters entities (or correlatedes) with
similar values. Fig. 2a shows that the cost (i.e., smoo#)nefsthe
proposed closed-form sorting solution, which is optimal)awer
than the existing iterative solution [5].

Next, we consider the noisy setting with the same training da
as before, where we perform joint graph learning and demgidin
Fig. 1b, we show the learnt graph witi = 110 edges based on
the convex relaxation approach explained in Sec. 4.3. InZkgwe
evaluate the denoising performance based on the learrth gsapg
the evaluation set. In particular, we show the mean squared e
for different values of the noise level, where the mean sefliarror
is computed fromi 000 independent Monte Carlo experiments. The
one-step solution based on convex optimization (cf. S&).ldads
to a lower error as compared to the alternating minimizatpn
proaches, which in general converge only to a stationamytpdhis
also holds for our method developed in Sec. 4.2, howevertwes
the fact that the proposed alternating minimization (cfc.Se2) is
computationally much less expensive (involving two simighewn
solutions per iteration) as compared to the iterative gmiuin [4].
The graph learnt under the noiseless setting does not periai|
for denoising. Nevertheless, due its simple solution, it ba used
to generate a base graph, which can be further refined foifispec
graph inference problems.

6. CONCLUSIONS

We have studied the problem of learning a sparse graph tleat ad
quately explains the data under a smoothness prior. We ntioelel
graph learning problem as the design of a sparse edge safuyntic-
tion. In other words, we express the graph Laplacian in texfiam
edge selection vector. We have considered both the noésatesb
noisy setting. In the noiseless setting, designing the sdggction
vector is elegant, and it boils down to a simple low-compiezbrt-

ing problem. However, in the presence of noise, we proposera c

snapshots as the training set and the remaining ones asdhe ev putationally cheap altemating minimiza_ltion algorithmvesll as a
ation set. One such observation (i.e., a graph signal) oraphgr ©N€-Step convex relaxation based solution.

with N = 32 nodes is shown in Fig. 1, where the colored dots

indicate different temperature readings. The convex dpétion
problems are solved using ti@v/Xtoolbox, which internally calls

Software and datasets to produce results of this paper can be
downloaded from http://cas.et.tudelft.nl/ ~sundeep/sw/
icasspl7Graphlearning.zip
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